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Supplement Material 

 

Additional validation plots for Methanol and Ethanol 

 

 

Figure S1: CH3OH 0.9%/O2 1.35%/N2/NO 0.005% oxidation in JSR at 10 atm, ϕ = 1.0 and τ = 1.0 

s. Symbols: experimental data (Moréac et al., 2006), lines: this model prediction. 



 

Figure S2: 200 ppm of NO on methanol oxidation (ϕ =0.3, 2500 ppm of CH3OH, 12500 ppm of 

O2, 700 ppm of H2O, τ =0.8 s. Symbols: experimental data (Dayma et al., 2007), lines: this model 

prediction. 

 

Figure S3: 220 ppm of NO on methanol oxidation (ϕ =0.6, 8000 ppm of CH3OH, 20000 ppm of 

O2, 700 ppm of H2O, τ =1.0 s. Symbols: experimental data (Dayma et al., 2007), lines: this model 

prediction. 



 

Fig. S4: 250 ppm of NO on methanol oxidation (ϕ =1.0, 2500 ppm of CH3OH, 3750 ppm of O2, 

700 ppm of H2O, τ = 0.8 s. Symbols: experimental data (Dayma et al., 2007), lines: this model 

prediction. 

 

Figure S5: 30 ppm of NO2 on methanol oxidation (ϕ = 0.3, 2500 ppm of CH3OH, 12500 ppm of 

O2, 800 ppm of H2O, τ =0.8 s. Symbols: experimental data (Dayma et al., 2007), lines: this model 

prediction. 



 

Figure S6: 30 ppm of NO2 on methanol oxidation (ϕ = 1.0, 2500 ppm of CH3OH, 3750 ppm of O2, 

800 ppm of H2O, τ = 0.8 s. Symbols: experimental data (Dayma et al., 2007), lines: this model 

prediction. 

 

Figure S7: Methanol oxidation in flow (5 % O2, CH3OH 400 ppm, NO 215 ppm, balance He). 

Symbols: experimental data (Lyon et al., 1990), lines: this model prediction. 

 



 

 

Figure S8: Ethanol oxidation in presence of NO, ϕ = 1.01, NO 576 ppm, 735 ppm CH3OH, 0.64 

% H2O (set 4) and ϕ = 1.58, NO 520, 720 ppm CH3OH, 0.96 % H2O  (set 2). Symbols: experimental 

data (Alzueta and Hernández, 2002), lines: this model prediction 



 

Figure S9: C2H5OH/O2/H2O/N2 oxidation in flow reactor. Symbols: experimental data (set 1, set 

3 and set 5) (Alzueta and Hernández, 2002), lines: this model prediction. 

 

 



 

Figure S10: Flow analysis for ethanol oxidation in presence of NO, ϕ = 1.01, NO 576 ppm, 735 

ppm CH3OH, 0.64 % H2O (set 4) in Figure S8. 

 

Figure S11 C2H5OH/O2/H2O/N2 oxidation in flow reactor. Symbols: experimental data (set 1, set 

3 and set 5) (Alzueta and Hernández, 2002), lines: this model prediction. 



 

Figure S12: Ethanol oxidation in presence of NO in flow reactor 5000 ppm C2H5OH/O2/N2/ 500 

ppm NO at 40 and 60 bar. Symbols: experimental data from (Marrodán et al., 2018), lines: this 

model prediction. 

 



 

Figure S13: Ethanol oxidation in flow reactor 5000 ppm C2H5OH/O2/N2/ at 20 bar (set 4). 

Symbols: experimental data from (Marrodán et al., 2018), lines: this model prediction. 

 



 

 

Figure S14: Temperature profile in burner stabilized premixed flames methanol/air (left) and 

ethanol/air (right) at three different equivalence ratio (ϕ = 0.8, 1.0 and 1.2), 1atm and 373K for 

flame shown in Figure 9. Symbols: experimental data (Bohon et al., 2018; Myles D. Bohon 2018, 

personal communication, 27 July), lines: calculated temperature solving energy conservation 

equation. Solid lines: taking radiation factor = 0.5 (standard), dash lines: using radiation factor = 

8.0.  



 

 

 

 

 

 

 



Figure S15: Flow analysis for flame shown in Figure 9. Methanol/air (ϕ = 1.2, top), Ethanol/air (ϕ 

= 1.2, bottom). 

 

 

 

 

 



Figure S16: Flow analysis for flame shown in Figure 9. Methanol/air (ϕ = 0.8, top), Ethanol/air (ϕ 

= 0.8, bottom). 

 

 

 

 

 

Figure S17: Speciation in burner stabilized premixed flame for CH4/O2/N2 at three different 

equivalence ratio at 5.3 kPa and 273.15 K, top (ϕ = 0.8), middle (ϕ = 1.0) and bottom (ϕ = 1.25). 



Symbols: experimental data from Lamoureux et al. (2016); lines: model prediction imposing 

experimental temperature profile. 

 

 

 

Figure S18: Speciation in burner stabilized premixed flame for C2H6/O2/N2 at 3.33 kPa and ϕ = 

1.07 (left), at 4.0 kPa and ϕ = 1.28 (right). Symbols: experimental data from Sutton et al. (2012); 

lines: model prediction imposing experimental temperature profile. 

 

 



Figure S19: Reaction flow analysis based on the nitrogen atom at ϕ = 1.0 for the burner stabilized 

laminar premixed methanol/air (a) and ethanol/air (b) flames shown in Figure 9 at HAB = 1 mm. 

 

Additional model validation for pure fuels  

 

Figure S20: Laminar flame speed of C2H2/air at standard condition (298 K, 1 atm), left and at 298K 

and 2 atm, right. Lines: model prediction from this study. Symbols: experimental 

data(Egolfopoulos et al., 1990, Jomaas et al., 2005, Park et al., 2013, Ravi et al., 2015, Rokni et 

al., 2015, Shen et al., 2015, Lokachari et al., 2018) 

 

 

Figure S21: Laminar flame speed of C2H4/air at standard condition (298 K, 1 atm), left figure and 

at 298K and elevated pressure, right figure. Lines: model prediction from this study. Symbols: 

experimental data(Tseng et al., 1993, Aung et al., 1995, Hassan et al., 1998a, Hirasawa et al., 2002, 

Jomaas et al., 2005, Kumar et al., 2008, Park et al., 2013, Mathieu et al., 2015) 



 

 

Figure S22: Ignition delay time comparison between model predictions against experimental data 

for C2H2/O2/Ar in shock tube. Lines: model prediction from this study. Symbols: experimental 

data ((Eiteneer and Frenklach, 2003, Rickard et al., 2005) 

 

 



 

 

 

Figure S23: Ignition delay time comparison between model predictions against experimental data 

for C2H4/O2/N2 in shock tube. Lines: model prediction from this study. Symbols: experimental 

data(Kopp et al., 2014). 

 



 

 

Figure S24: Speciation of C2H4/O2/N2 oxidation in JSR, comparison between model predictions 

against experimental data. Lines: model prediction from this study. Symbols: experimental data 

(Le Cong et al., 2010). 

 

 



 

 

Figure S25: Laminar flame speed of C2H6/air at standard condition (298 K, 1 atm), left figure and 

at 298K and elevated pressure (2 atm, red; 5 atm, blue; and 10 atm, green), right figure. Lines: 

model prediction from this study. Symbols: experimental data (Egolfopoulos et al., 1990, Tseng 

et al., 1993, Aung et al., 1995, Hassan et al., 1998b, Vagelopoulos and Egolfopoulos, 1998, 

Konnov et al., 2003, Jomaas et al., 2005, Dyakov et al., 2007, Dirrenberger et al., 2011, Lowry et 

al., 2011) 

 



 

Figure S26: Ignition delay time comparison between model predictions against experimental data 

for C2H6/O2/Ar in shock tube. Lines: model prediction from this study. Symbols: experimental 

data (Zhang et al., 2013, Hu et al., 2015) 
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