_oci	Gene	Polymorphism	Trait	Population	Studie	Size (n)	Year	Reference
1q24.3	GLC1A locus	D1S194 - D1S191	POAG	US	Linkage	1 family POAG: 22, C: 15	1993	Sheffield ¹
	MYOC	rs121909193	POAG	US	C-C	POAG: 330, C: 471	1997	Stone ²
		rs74315328	POAG					
		rs74315329	POAG					
		21 mutations	POAG	Cau, Asian	Cases	POAG: 1703	1999	Fingert ³
		SNP third exon (85%)	POAG	Cau, Asian	Database	Not applicable	2008	Hewitt ⁴
2cen-q13	GLC1B locus	D2S2161 - D2S2264	POAG	UK	Linkage	POAG: 6 families	1996	Stoilova ⁵
		D2S1897 - D2S2269	POAG	Australia	Linkage	1 family POAG: 7, C: 8	2006	Charlesworth ⁶
		8 DS markers	-	US	Linkage	18 families POAG: 46, C:31	1998	Allingham ^z
3q21-q24	GLC1C locus	D3S3637 - D3S1744	POAG	US	Linkage	1 family POAG: 12, C: 32	1997	Wirtz ⁸
		D3S3637 - D3S3694	POAG	US, Greece	Linkage	2 families POAG: 22, C: 72	2004	Samples ⁹
	IL20RB	rs367923973	POAG	US	Linkage	1 family POAG: 12, C: 32	2014	Keller <u>¹⁰</u>
3q23	GLC1D locus	D8S1830 - D8S592	POAG	US	Linkage	1 family POAG: 8, C:12	1998	Trifan ¹¹
10p14-p15	GLC1E locus	D10S1729 - D10S1664	NTG	UK	Linkage	1 family NTG: 16, C: 23	1998	Sarfarazi ¹²
	OPTN	rs28939688	NTG	Cau	Linkage	POAG: 54 families	2002	Rezaie ¹³
		rs11258194	NTG, POAG		C			
		rs28939688	NTG	Cau, Asian	C-C	POAG: 1048, C: 251	2003	Alward ¹⁴
		rs11258194	NTG	UK	C-C	HTG: 183, NTG: 132, C: 95	2003	Aung <u>¹⁵</u>
		rs11258194	IOP	France, Morocco	C-C	POAG: 293, C: 170	2003	Melki ¹⁶
		rs11258194	POAG	India	Cases	HTG: 170, NTG: 50	2006	Sripriya <u>¹⁷</u>
′q35-q36	GLC1F locus	D7S2442 - D7S483	POAG	US	Linkage	POAG: 12, C: 13	1999	Wirtz ¹⁸
		D7S1277i	NTG	Japan	C-C	NTG: 141, C: 101	2010	Murakami ¹⁹
	ASB10	exon 3 deletion	POAG	US	Linkage	POAG: 4, C: 1, Unr. C: 1	2012	Pasutto ²⁰
		26 polymorphisms	POAG	US, Germany	C-C	POAG: 1172, C: 461	2012	Pasutto ²⁰
		24 polymorphisms	POAG	Pakistan	C-C	POAG: 30 (family), 208, C: 151	2015	Micheal ²¹
		nonsynonymous	-	US	C-C	POAG: 158, C: 82	2012	Fingert ²²
5q22.1	WDR36	rs118204022	POAG	US	Linkage	POAG: 130 families, Unr. C: 676	2005	Monemi ²³
•		rs35703638	POAG		0			
		rs116529882	POAG					
		rs34595252	POAG					
		11 mutations	NTG	Germany	cases	NTG: 112	2007	Weisschuh ²⁴
		8 mutations	POAG	Germany	C-C	POAG: 399, C: 376	2008	Pasutto ²⁵
		16 mutations	HTG	China	C-C	HTG: 82, NTG: 42, C: 77	2009	Fan ²⁶
5q22.1	WDR36	D5S2027	IOP	Mongolia	Linkage	C:1451 of 142 families	2010	Lee ²⁷
		rs10038177	HTG	India	C-C	HTG: 116, NTG: 207, C: 303	2011	Mookherjee ²⁸
		6 mutations	POAG	Italy	Linkage	POAG: 34 families	2011	Frezzotti ²⁹
		Haplotype H2	POAG	Spain	C-C	POAG: 479, C: 380	2011	Blanco-Marchite ³⁰
		26 variations	POAG	Taiwan	C-C	POAG: 61 C: 61	2017	Su <u>³¹</u>
2p15-p16	GLC1H locus	D2S2352 - D2S2165	POAG	UK	Linkage	7 families POAG: 35, C: 32, U: 18	2007	Suriyapperuma ³²
	EFEMP1	rs756065296	POAG	AA	Linkage	1 family POAG: 5, C: 3	2015	Mackay ³³
15q11-q13	GLC1I	Centromere - D15S822	POAG	Cau, AA, Hispanic	Linkage	81 families POAG: 227, C: 143	2005	Allingham ³⁴
		Centromere - D15S822	POAG	Cau	Linkage	25 families POAG: 107, C: 60	2006	Woodroffe ³⁵

Supplemental table 2: Glaucoma loci and associated genes

Loci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
9q22	GLC1J locus	D9S1841 - D9S271	POAG	US	Linkage	25 families POAG: 105, C: 93	2004	Wiggs <u>³⁶</u>
	COL15A1	rs2075662	POAG	Cau, AA	Linkage	15 families	2013	Wiggs <u>³⁷</u>
		rs2075662	POAG	Cau, AA	Cases	401	2013	Wiggs ³⁷
		rs61999303	POAG	Cau, AA	Linkage	15 families	2013	Wiggs <u>³⁷</u>
		rs10519	POAG					
20p12	GLC1K locus	D20S846 - D20S891	POAG	US	Linkage	25 families POAG: 105, C: 93	2004	Wiggs <u>³⁶</u>
		D20S848 - rs6081603	POAG	US	Linkage	4 families POAG: 19, C: 25	2008	Sud ³⁸
3p21-p22	GLC1L locus	D3S1298 - D3S1289	POAG	Australia	Linkage	1 family POAG:24, C: 119	2005	Baird ³⁹
5q22.1-q32	GLC1M locus	D5S2051 - D5S2090	POAG	China	Linkage	1 family POAG: 9, C: 18	2006	Pang ⁴⁰
15q22-q24	GLC1N locus	D15S1036 - rs922693	POAG	China	Linkage	1 family POAG: 8, C: 17	2006	Wang ⁴¹
12q14	GLC1P locus	D12S1700	CODA	US	Linkage	CODA: 17	2007	Fingert ⁴²
	TBK1	Duplication	NTG	AA	Linkage	NTG: 12	2011	Fingert ⁴³
		Duplication	NTG	US	C-C	HTG: 326, NTG: 152, C: 100	2011	Fingert ⁴³
		Duplication	NTG	Japan, US	C-C	NTG: 309, C: 202	2012	Kawase ⁴⁴
		Duplication	NTG	UK, US	C-C	NTG: 341, C: 414	2014	Ritch ⁴⁵
		Duplication	NTG	Australia	C-C	HTG: 1045, NTG: 334, C: 254	2015	Awedalla ⁴⁶
4q35.1-q35.2	GLC1Q locus	rs13104825 - rs1425963	POAG	UK	Linkage	1 family POAG: 10, C: 1	2011	Porter ⁴⁷
2p22.2	CYP1B1	D2S2186 - D2S1346	PCG	US	Linkage	PCG: 5 families	1997	Stoilov ⁴⁸
		7 mutations	POAG	France	C-C	POAG: 236, C: 47	2004	Melki <u>⁴⁹</u>
		6 mutations	POAG	India	C-C	POAG: 200, C: 100	2006	Acharya ⁵⁰
		6 mutations	POAG	India	C-C	POAG: 134, C: 200	2007	Chakrabarti ⁵¹
		rs1056836	POAG	India	C-C	POAG: 264, C: 95	2008	Bhattacharjee ⁵²
		2 mutations	POAG	India	C-C	HTG: 198, NTG: 53, C: 100	2007	Kumar ⁵³
		7 mutations	POAG	Spain	C-C	POAG: 82, C: 93	2006	Lopez-Garrido54
		7 mutations	POAG	Germany	C-C	HTG: 270, NTG: 82, C: 376	2010	Pasutto ⁵⁵
		multiple mutations	POAG	New Zealand	cases	Glaucoma: 150	2012	Patel ⁵⁶
		rs180040	POAG	Cau, Asian	Meta	POAG: 2554, C: 4334	2015	Wang <mark>57</mark>
		8 mutations	POAG	Pakistan	C-C	POAG: 190, C: 40	2015	Micheal ⁵⁸
		any mutation	-	Germany	C-C	NTG: 285, C: 282	2009	Wolf <u>⁵⁹</u>
		any mutation	-	China	C-C	HTG: 255, NTG: 100, C: 201	2010	Fan ⁶⁰
		any mutation	-	Cau, Asian	Meta	POAG: 2292, C: 1717	2012	Dong <mark>61</mark>
		any mutation	-	Saudi-Arabia	C-C	POAG: 50, C:50	2018	Abu-Amero ⁶²
6q22.31	GJA1	c.791_792deIAA	POAG	China	Linkage	1 family POAG:7 C:7	2015	Huang ⁶³
1q41	TP53BP2	c.109G > A	POAG	Netherlands	Linkage	family POAG: 8, C: 1	2017	Micheal ⁶⁴

Abbreviations: POAG= primary open-angle glaucoma; NTG= normal tension glaucoma; HTG= high tension glaucoma; IOP= intraocular pressure; CODA=cavitary optic disk anomalies; PCG=primary congenital glaucoma; UK= United Kingdom; Cau= Caucasian; US= United States; AA= African American; C-C= case control; Meta= meta-analysis; unr.= unrelated. (-) indicates that no significant association between the gene and any of the glaucoma traits was observed.

_oci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
9q31.1	ABCA1	rs2472493	IOP	Asian, EU	Meta	(D): 35296	2014	Hysi <u>⁶⁵</u>
-		rs2472493	POAG	Cau	Meta	PÓAG: 4284, C: 95560	2014	Hysi <mark>⁶⁵</mark>
		rs2472493	POAG	Australia, US	GWAS	(D) POAG: 1155, C: 1992 (R) POAG: 3558, C: 9496	2014	Gharahkhani ⁶⁶
		rs2472493	POAG	US, Australia, EU, Singapore, China	Meta	(D) POAG: 3853, C: 33480 (R) POAG: 3164, C: 9242	2016	Bailey ⁶⁷
		rs2472493	IOP	EU, Asia	GWAS	(D): 69756 (R): 37930	2017	Choquet ⁶⁸
		rs2472493	POAG, IOP	Multi-ethnic	GWAS	(D) POAG: 4986 C: 58426 (R) POAG: 7329 C: 169561	2018	Choquet ⁶⁹
		rs2472493	POAG	Multi-ethnic	GWAS	(D) POAG: 7329 C: 169561 (R) POAG: 4986 C: 58426	2018	Choquet ⁶⁹
		rs2487032 rs2164560	POAG POAG	China, Singapore	GWAS	(D) POAG: 1007, C: 1009 (R) POAG: 1899, C: 4965	2014	Chen ⁷⁰
		rs2472459 rs2472519	POAG POAG					
		rs2487048	IOP	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs2487048	POAG	Cau, Asian	Meta	POAG: 6429, C: 41404	2017	
		rs2472496	IOP, VCDR, CA	EU, Asian	Meta	37930	2017	
3q12.2	ABI3BP	rs9860250	ODA	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
9q34.2	ABO	rs8176693	IOP	Asian, EU	Meta	(D): 35296	2014	Hysi <u>⁶⁵</u>
		Bloodgroup B	POAG	Pakistan	C-C	POAG: 220, C: 2046	2009	Khan ^{<u>73</u>}
		rs8176741 rs8176672	IOP, VCDR, CA CA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
5q12-q13	ADAMTS6	rs2307121	CCT	Cau, Asian	Meta	20000	2013	Lu <u>⁷⁴</u>
11q24.3	ADAMTS8	rs4936099	VCDR	Cau, Asian	Meta	(D) 21094 and 6784	2014	Springelkamp ⁷⁵
·		rs4936099 rs55796939	VCDR, CA IOP	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs56009602	CCT	Europa	Meta	17803	2018	Iglesias ⁷⁶
			CCT	Asia	Meta	8107	2018	Iglesias ⁷⁶
16q23.1	ADAMTS18-NUDT7	Rs75828804	IOP	EU, Asia	GWAS	(D): 69756 (R): 37930	2017	Choquet ⁶⁸
4p16.1	AFAP1	rs4619890 rs4478172	POAG POAG	Australia, US	GWAS	(D) POAG: 1155, C: 1992 (R) POAG: 3558, C: 9496	2014	Gharahkhani ⁶⁶
		rs11732100	POAG	US, Australia, EU, Singapore, China	Meta	(D) POAG: 3853, C: 33480 (R) POAG: 3164, C: 9242	2016	Bailey ⁶⁷
		rs28795989	IOP	EU, Asia	GWAS	(D): 69756 (R): 37930	2017	Croquet ⁶⁸
		rs59521811	POAG, IOP	Multi-ethnic	GWAS	(D) POAG: 4986 C: 58426 (R) POAG: 7329 C: 169561	2018	Choquet ⁶⁹
		rs9330348	POAG	Multi-ethnic	GWAS	(D) POAG: 7329 C: 169561 (R) POAG: 4986 C: 58426	2018	Choquet ⁶⁹
15q24-q25	AKAP13	rs6496932	CCT	Croatia, Scotland	GWAS	(D): 1445, (R): 824	2010	Vitart ⁷⁷
		rs6496932	CCT	Singapore	GWAS	(D): 5080	2011	Vithana ⁷⁸
		rs6496932	CCT	Asian	GWAS	(D): 7711, (R): 2681	2012	Cornes ⁷⁹
		rs6496932	CCT	Cau, Asian	Meta	20000	2013	Lu <u>⁷⁴</u>
		rs6496932	-	US-Cau	GWAS	(D): 1117, (D): 6470	2012	Ulmer ⁸⁰

Loci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
15q24-q25	AKAP13	rs1828481	CCT	Asian	GWAS	(D): 7711, (R): 2681	2012	Cornes <u>⁷⁹</u>
		rs1828481	-	US-Cau	GWAS	(D): 1117, (D): 6470	2012	Ulmer ⁸⁰
		rs34896088	CCT	Europa	Meta	17803	2018	Iglesias ⁷⁶
		rs34896088	CCT	Asia	Meta	8107	2018	Iglesias <mark>⁷⁶</mark>
2p13.3	ANTXR1	rs6732795	IOP	EU, Asia	GWAS	(D): 69756 (R): 37930	2017	Choquet ⁶⁸
19q13.2	APOE	rs429358	NTG	Japan	C-C	POAG: 310, C: 179	2005	Mabuchi 2005 <u>⁸¹</u>
		rs429358	NTG	Japan	C-C	HTG: 294, NTG: 106, C: 281	2005	Fan ^{<u>82</u>}
		rs429358	NTG	China	C-C	HTG: 294, NTG: 106, C: 300	2006	Lam ⁸³
		rs429358	NTG	Arabic	C-C	POAG: 60, C: 130	2009	Al-dabbagh ^{<u>84</u>}
		rs429358	NTG	Australia	C-C	HTG: 72, NTG: 70, C: 51	2002	Vickers ⁸⁵
		rs429358	-	UK	C-C	POAG: 137, C: 75	2004	Ressiniotis ⁸⁶
		rs429358	-	Turkey	C-C	POAG: 75, C: 119	2009	Saglar ^{<u>87</u>}
		rs429358	-	Estonia	C-C	POAG: 242, C: 187	2007	Zetterberg 88
		rs429358	-	UK	C-C	NTG: 155, C: 349	2004	Lake ⁸⁹
		rs7412	POAG	Japan	C-C	POAG: 310, C: 179	2005	Mabuchi ⁸¹
		rs7412	POAG	Japan	C-C	HTG: 294, NTG: 106, C: 281	2005	Fan ⁸²
		rs7412	POAG	China	C-C	HTG: 294, NTG: 106, C: 300	2006	Lam <u>⁸³</u>
		rs7412	POAG	Arabic	C-C	POAG: 60, C: 130	2009	Al-dabbagh ⁸⁴
		rs7412	POAG	Australia	C-C	HTG: 72, NTG: 70, C: 51	2002	Vickers ⁸⁵
		rs7412	POAG	Poland	C-C	POAG: 183, C: 209	2015	Nowak ⁹⁰
		rs7412	POAG	Greece	C-C	POAG: 53, C: 107	2013	Chiras ⁹¹
		rs7412	-	UK	C-C	POAG: 137, C: 75	2004	Ressiniotis ⁸⁶
		rs7412	-	Turkey	C-C	POAG: 75, C: 119	2009	Saglar ^{<u>87</u>}
		rs7412	-	Estonia	C-C	POAG: 242, C: 187	2007	Zetterberg 88
		rs7412	-	UK	C-C	NTG: 155, C: 349	2004	Lake ⁸⁹
		rs429358 + rs7412	POAG	Cau, Asian	Meta	POAG: 1971, C: 1756	2014	Liao ⁹²
11q23.1	ARHGAP20/ POU2AF1	rs4938174	ССТ	Cau, Asian	Meta	20000	2013	Lu ⁷⁴
11q23.3	ARHGEF12	rs58073046	IOP	NL, Australia	GWAS	(D): 8105, (R): 7471	2015	Springelkamp 93
•		rs58073046	POAG, NTG	NL, Australia, NZ	C-C	POAG: 1225, C:4117	2015	Springelkamp 93
		11:120357425	IOP	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs12794618	IOP	,				
		Rs199800298	IOP	EU, Asia	GWAS	(D): 69756 (R): 37930	2017	Choquet ⁶⁸
10q21.2	ARID5B	rs7090871	CCT	Cau, Asian	Meta	20000	2013	Lu <u>74</u>
- 1		rs35809595	CCT	Europa	Meta	17803	2018	Iglesias ⁷⁶
		rs35809595	CCT	Asia	Meta	8107	2018	Iglesias ⁷⁶
		rs5785510	IOP	EU, Asia	GWAS	(D): 69756 (R): 37930	2017	Choquet ⁶⁸
2q37.1	ARL4C	rs13024279	ССТ	Europa	Meta	17803	2018	Iglesias ⁷⁶
1		rs13024279	CCT	Asia	Meta	8107	2018	Iglesias ⁷⁶
15q26.3	ASB7	rs11247230	CA, VCDR	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
		rs4299136	VCDR, CA, ODA	EU, Asian	Meta	37930	2010	Springelkamp ⁷¹
		rs34222435	CA	_0, / 0iul1	mota	0.000	2017	opinigonanip

Loci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
15q26.3	ASB7	rs60779155	ODA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
10q21.3-q22.1	ATOH7	rs1900004	ODA	NL	Linkage	23000	2011	Axenovich ⁹⁴
		rs1900004	ODA	NL, UK	GWAS	(D): 7360, (R): 4455	2010	Ramdas ⁹⁵
		rs1900004	POAG	Eu	Meta	POAG: 3161, C: 42837	2011	Ramdas ⁹⁶
		rs1900004	NTG	Japan	C-C	HTG: 212, NTG: 213, C: 191	2012	Mabuchi ⁹⁷
		rs1900004	VCDR, POAG	US-Cau	C-C	POAG: 539, C: 336	2011	Fan ⁹⁸
		rs1900004	VCDR	Cau, Asian	Meta	(D) 21094 and 6784	2014	Springelkamp ⁷⁵
		rs1900004	ODA	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
		rs1900004	VCDR	Latino	GWAS	(D): 3596, (R): 941	2017	Nannini ⁹⁹
		rs1900005	VCDR					
		rs1900005	VCDR	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs10998036	CA					
		rs7916410	ODA					
		rs3858145	ODA	Australia, UK	GWAS	(D): 1368, (R): 848	2010	Macgregor ¹⁰⁰
		rs3858145	CA	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
		rs7916697	ODA	Singapore, NL	GWAS	(D): 4445, (R): 9236	2011	Khor <u>¹⁰¹</u>
		rs7916697	ODA	Australia, UK	PC	4224	2014	Venturini ¹⁰²
		rs7916697	VCDR	Latino	GWAS	(D): 3596, (R): 941	2017	Nannini ⁹⁹
		rs61854782	VCDR	China	C-C	HTG: 117, NTG: 25, C: 289	2012	Chen ¹⁰³
		rs56238729	VCDR	Latino	GWAS	(D): 3596, (R): 941	2017	Nannini ⁹⁹
12q24.12	ATXN2	rs7137828	POAG	US, Australia, EU, Singapore, China	Meta	(D) POAG: 3853, C: 33480 (R) POAG: 3164, C: 9242	2016	Bailey ⁶⁷
13q12.11	AVGR8	rs1034200	CCT	Croatia, Scotland	GWAS	(D): 1445, (R): 824	2010	Vitart ⁷⁷
		rs1034200	ССТ	Cau, Asian	Meta	20000	2013	Lu <u>⁷⁴</u>
17q23	BCAS3	rs8068952	VCDR	NL, UK	GWAS	(D): 7360, (R): 4455	2010	Ramdas ⁹⁵
		rs11651885	CA	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
		rs11867840	CA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
20p12.3	BMP2	rs6054374	VCDR	Cau, Asian	Meta	(D) 21094 and 6784	2014	Springelkamp ⁷⁵
		rs6054383	CA, VCDR	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
		rs6107845	VCDR	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs6054375	CA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
14q22.1	BMP4	rs10130556	CA, VCDR	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
7q11.21	C7orf42	rs4718428	CCT	Asian	GWAS	(D): 7711, (R): 2681	2012	Cornes ⁷⁹
		rs4718428	CCT	Cau, Asian	Meta	20000	2013	Lu <u>⁷⁴</u>
22q13.1	CARD10	rs9607469	ODA	Singapore, NL	GWAS	(D): 4445, (R): 9236	2011	Khor <u>¹⁰¹</u>
		rs9607469	VCDR	India	C-C	POAG: 97, C: 371	2015	Philomenadin ¹⁰⁴
		rs9607469	ODA	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
		rs5756813	VCDR	Cau, Asian	Meta	(D) 21094 and 6784	2014	Springelkamp ⁷⁵
		rs5756813	CA, VCDR	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
		rs2092172	VCDR, CA, ODA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs56385951	ODA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
7q31.1	CAV1/CAV2	rs4236601	POAG	Iceland,	GWAS	(D) POAG: 1263, C: 34877	2010	Thorleifsson ¹⁰⁵
· -1*···				Cau, Asian	00	(R) POAG: 2474, C: 2644	2010	

Loci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
7q31.1	CAV1/CAV2	rs4236601	POAG	US-Cau	C-C	HTG: 671, NTG: 329, C: 1183	2011	Wiggs <u>106</u>
·		rs4236601	POAG	Spain	C-C	POAG: 391 C: 383	2017	Zanon-Moreno ¹⁰⁷
		rs4236601	-	Brazil	C-C	POAG: 310 C: 247	2018	Nunes ¹⁰⁸
		rs4236601	HTG	China, Japan	C-C	POAG: 848, C:1574	2016	Rong ¹⁰⁹
		rs7795356	POAG	Japan	GWAS	(D) POAG: 1394, C: 6599, (R) POAG: 1802, C: 7212	2012	Osman ¹¹⁰
		rs4136601 rs1052990	POAG POAG	US-Cau	C-C	HTG: 671, NTG: 329, C: 1183	2011	Wiggs ¹⁰⁶
		rs1052990	HTG	China, Japan	C-C	POAG: 848, C:1574	2016	Rong <u>¹⁰⁹</u>
		rs10258482	IOP	Asian, EU	Meta	(D): 35296	2014	Hysi <u>⁶⁵</u>
		rs10258482	POAG	Cau	Meta	POAG: 4284, C: 95560	2014	Hysi <u>⁶⁵</u>
		rs10262524	IOP	Asian, EU	Meta	(D): 35296	2014	Hysi <u>⁶⁵</u>
		rs10262524	POAG	Cau	Meta	POAG: 4284, C: 95560	2014	Hysi ⁶⁵
		rs10281637	IOP	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs10281637	POAG	Cau, Asian	Meta	POAG: 6429, C: 41404	2017	Springelkamp ⁷¹
		rs6969706	POAG	Multi-ethnic	GWAS	(D) POAG: 7329 C: 169561	2018	Choquet ⁶⁹
1q42.13	CDC42BPA	rs6671926	ODA, CA, VCDR	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷⁵
		1:227562773	CA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs11811982	ODA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
1p22 CDC7/TGFBR3	CDC7/TGFBR3	rs1192415	ODA	NL	Linkage	23000	2011	Axenovich ⁹⁴
		rs1192415	ODA	NL, UK	GWAS	(D): 7360, (R): 4455	2010	Ramdas ⁹⁵
		rs1192415	ODA	Singapore, NL	GWAS	(D): 4445, (R): 9236	2011	Khor <u>¹⁰¹</u>
		rs1192415	ODA	Australia	C-C	POAG: 876, C: 883	2012	Dimasi ¹¹¹
		rs1192415	POAG	Eu	Meta	POAG: 3161, C: 42837	2011	Ramdas ^{<u>96</u>}
		rs1192415	POAG	China	Cases	469	2015	Trikha <u>112</u>
		rs1192415	ODA	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
		rs1192415	VCDR	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs4658101	VCDR	Cau, Asian	Meta	(D) 21094 and 6784	2014	Springelkamp ⁷⁵
		rs4658101	ODA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs4658101	VCDR	Latino	GWAS	(D): 3596, (R): 941	2017	Nannini ⁹⁹
6p21.2	CDKN1A	6:36592986	CA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		6:36592986	POAG	Cau, Asian	Meta	POAG: 6429, C: 41404	2017	Springelkamp ⁷¹
		rs6913530	POAG	Multi-ethnic	GWAS	(D) POAG: 4986 C: 58426	2018	Choquet ⁶⁹
9p21	CDKN2B(-AS)	rs1063192	VCDR	NL, UK	GWAS	(D): 7360, (R): 4455	2010	Ramdas ⁹⁵
		rs1063192	VCDR	Japan	C-C	HTG: 212, NTG: 213, C: 191	2012	Mabuchi ⁹⁷
		rs1063192	VCDR	Australia	C-C	POAG: 876, C: 883	2012	Dimasi ¹¹³
		rs1063192	POAG	Japan	GWAS	(D) POAG: 1394, C: 6599 (R) POAG: 1802, C: 7212	2012	Osman ¹¹⁰
		rs1063192	POAG	Eu	Meta	POAG: 3161, C: 42837	2011	Ramdas ⁹⁶
		rs1063192	POAG	US-Cau	C-C	POAG: 539, C: 336	2011	Fan ⁹⁸
		rs1063192	POAG	Africa	C-C	POAG: 272, C: 165	2012	Cao ¹¹⁴
		rs1063192	VCDR	Latino	GWAS	(D): 3596, (R): 941	2017	Nannini ⁹⁹
		rs1063192	POAG	EU, Asian	Meta	POAG: 11316, C: 24055	2017	Hu ^{<u>115</u>}

Loci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
p21	CDKN2B(-AS)	rs1063192	-	Saudi-Arabia	C-C	POAG:87, C:94	2016	Abu-Amero ¹¹⁶
		rs523096	NTG	Japan	GWAS	(D) POAG: 286, C: 557	2012	Takamoto ¹¹⁷
						(R) POAG: 183, C: 514		
		rs523096	NTG	Japan	GWAS	(D) POAG: 1244, C: 975	2012	Nakano ¹¹⁸
		rs4977756	POAG	Australia, NZ	GWAS	(D) POAG: 590, C: 3956 (R) POAG: 892, C: 4582	2011	Burdon ¹¹⁹
		rs4977756	NTG	Cau	Meta	POAG: 3146, C: 3487	2012	Wiggs <u>120</u>
		rs7049105	NTG	Cau	Meta	POAG: 3146, C: 3487	2012	Wiggs ¹²⁰
		rs2157719	NTG,POAG					
		rs2157719	VCDR	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs2157719	POAG	Cau, Asian	Meta	POAG: 6429, C: 41404	2017	Springelkamp ⁷¹
		rs2157719	POAG	Spain	C-C	POAG: 391 C: 383	2017	Zanon-Moreno ¹⁰⁷
		rs2157719	POAG	Brazil	0-0 C-C	POAG: 310 C: 247	2017	Nunes ¹⁰⁸
		rs2157719	POAG	Japan	C-C	POAG: 1172, C: 1559	2010	Shiga ¹²¹
		rs1360589	CA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs1360589	POAG	Cau, Asian		POAG: 6429, C: 41404	2017	Springelkamp ⁷¹
			POAG		Meta			Burdon ¹¹⁹
		rs10120688	POAG	Australia, NZ	GWAS	(D) POAG: 590, C: 3956 (R) POAG: 892, C: 4582	2011	
		rs10120688	POAG	UK	GWAS	(D) POAG: 387, C: 5380 (R) POAG: 294, C: 50	2012	Gibson ¹²²
		rs10811645	POAG	Multi-ethnic	GWAS	(D) POAG: 4986 C: 58426 (R) POAG: 7329 C: 169561	2018	Choquet ⁶⁹
		rs7865618	VCDR	Cau, Asian	Meta	(D) 21094 and 6784	2014	Springelkamp ⁷⁵
		rs7865618	ODA	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
		rs7865618	VCDR	Latino	GWAS	(D): 3596, (R): 941	2010	Nannini ⁹⁹
		rs7866783	POAG	US, Australia, EU,	Meta	(D) POAG: 3853, C: 33480	2016	Bailey ⁶⁷
		137 0007 00	10/10	Singapore, China	weta	(R) POAG: 3164, C: 9242	2010	Dalley
		rs1333037	POAG	Multi-ethnic	GWAS	(D) POAG: 7329 C: 169561 (R) POAG: 4986 C: 58426	2018	Choquet ⁶⁹
2q12.1	CHEK2	rs1547014	VCDR	NL, UK	GWAS	(D): 7360, (R): 4455	2010	Ramdas ⁹⁵
	••••	rs1547014	VCDR	Cau	Meta	POAG: 3146, C: 3487	2012	Wiggs ¹²⁰
		rs1547014	VCDR	Japan	C-C	HTG: 212, NTG: 213, C: 191	2012	Mabuchi ⁹⁷
		rs1547014	VCDR	Cau, Asian	Meta	(D) 21094 and 6784	2014	Springelkamp ⁷⁵
		rs1033667	CA	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
		rs5752773	VCDR, CA, ODA	EU, Asian	Meta	37930	2010	Springelkamp ⁷¹
		rs738722	VCDR, CA, ODA	LO, //0/0/1	Meta	01000	2017	Ophngeikamp
		rs5762752	VCDR, CA, ODA					
5q26.3	CHSY1	rs4965359	CCT	Asian	GWAS	(D): 7711, (R): 2681	2012	Cornes ⁷⁹
9420.3	CHOTI	rs752092	CCT	Cau, Asian		20000	2012	Lu ⁷⁴
26 027	COL4A3	rs7606754	CCT	Cau, Asian Cau, Asian	Meta Meta	20000	2013	Lu
q36-q37	UUL4A3		CCT			17803		
		rs62279163		Europa	Meta		2018	Iglesias ⁷⁶
-24.0 -24.0		rs143937055	IOP	EU, Asia	GWAS	(D): 69756 (R): 37930	2017	Choquet ⁶⁸
q34.2-q34.3	COL5A1/RXRA	rs1536482	CCT	Croatia, Scotland	GWAS	(D): 1445, (R): 824	2010	Vitart ⁷⁷
		rs1536482	CCT	Singapore	GWAS	(D): 5080	2011	Vithana ^{<u>78</u>}

Loci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
9q34.2-q34.3	COL5A1/RXRA	rs1536482	CCT	Asian	GWAS	(D): 7711, (R): 2681	2012	Cornes ⁷⁹
		rs1536482	ССТ	Germany, NL	GWAS	(D): 3931, (R): 1418	2012	Hoehn <u>123</u>
		rs1536482	CCT	Cau, Asian	Meta	20000	2013	Lu <u>⁷⁴</u>
		rs1536482	CCT	Europa	Meta	17803	2018	Iglesias ⁷⁶
		rs1536482	CCT	Asia	Meta	8107	2018	Iglesias ⁷⁶
		rs7044529	ССТ	Singapore	GWAS	(D): 5080	2011	Vithana ⁷⁸
		rs7044529	CCT	Cau, Asian	Meta	20000	2013	Lu <u>⁷⁴</u>
		rs3132306	CCT	Germany, NL	GWAS	(D): 3931, (R): 1418	2012	Hoehn ¹²³
		rs3132306	CCT	Asian	GWAS	(D): 7711, (R): 2681	2012	Cornes ⁷⁹
		rs943423	CCT	Latino US	GWAS	(D): 1644, (R): 124	2013	Gao <u>¹²⁴</u>
		rs3118515	CCT					
		rs3118515	CCT	Latino	GWAS	(D): 3584 (R): 931	2016	Gao <u>¹²⁵</u>
3q12.1	COL8A1	rs2623325	VCDR	Cau, Asian	Meta	(D): 21094 and 6784	2014	Springelkamp ⁷⁵
•		rs2623325	CA, VCDR	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
		rs6804624	VCDR, CA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs1997404	ODA	,				
1p34.2	COL8A2	rs96067	CCT	Singapore	GWAS	(D): 5080	2011	Vithana ⁷⁸
•		rs96067	CCT	Asian	GWAS	(D): 7711, (R): 2681	2012	Cornes ⁷⁹
		rs96067	CCT	Cau	Cases	100	2010	Desronvil ¹²⁶
		rs96067	CCT	Cau, Asian	Meta	20000	2013	Lu <u>⁷⁴</u>
22q11.21	COMT	Multiple SNP's (in women)	POAG	US	Meta	HTG: 1637, NTG: 717, C: 3430	2013	Pasquale ¹²⁷
8q21.13	CRISPLD1	rs117598310	CA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
10q21-22	CTNNA3	rs12220165	ODA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
5q12.3	CWC27	rs10064391	CCT	Europa	Meta	17803	2018	Iglesias ⁷⁶
10q23.33	CYP26A1/MYOF	rs66479974	IOP	EU, Ásia	GWAS	(D): 69756 (R): 37930	2017	Choquet ⁶⁸
8q21.3	DCAF4L2	rs9969524	ODA	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
•		8:88744441	ODA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
13q13.3	DCLK1	rs1926320	NTG	Japan	C-C	HTG: 212, NTG: 213, C: 191	2012	Mabuchi ⁹⁷
		rs1926320	VCDR	NL, UK	GWAS	(D): 7360, (R): 4455	2010	Ramdas ⁹⁵
		rs9546434	CA, VCDR	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
		13:36629905	VCDR	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs7323428	CA	,				
12q21.33	DCN	rs7308752	CCT	Europa	Meta	17803	2018	Iglesias ⁷⁶
1		rs7308752	CCT	Asia	Meta	8107	2018	Iglesias ⁷⁶
14q21	DDHD1	rs2251069	CA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
7p21.2	DGKB	rs10274998	VCDR	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
3q27.2-q27.3	DGKG	rs9853115	IOP	EU, Asia	GWAS	(D): 69756 (R): 37930	2017	Choquet ⁶⁸
		rs9853115	POAG	Multi-ethnic	GWAS	(D) POAG: 7329 C: 169561	2018	Choquet ⁶⁹
1p36.21	DHRS3	rs3924048	CA, VCDR	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
2q35	DIRC3	rs1549733	ODA	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
1		rs1367187	ODA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹

Loci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
11p13	DNAJC24	rs542340	POAG	AA; Hispanic	GWAS	(D) POAG: 1702, C: 6067 (R) POAG: 489, C: 2685	2014	Hoffmann ¹²⁸
5q35.1	DUSP1	rs17658229	VCDR	Cau, Asian	Meta	(D) 21094 and 6784	2014	Springelkamp ⁷⁵
		rs114503346	VCDR	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs35084382	CA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
2p16.1	EFEMP1	rs1346786	CA, VCDR	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
		rs3791679	CA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs7426380	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
11p13	ELP4	rs11031436	ODA	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
		rs555091	POAG	AA; Hispanic	GWAS	(D) POAG: 1702, C: 6067	2014	Hoffmann ¹²⁸
		rs506227	POAG			(R) POAG: 489, C: 2685		
10q25.3	ENO4	rs1681739	VCDR, CA, ODA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
6p25.3	EXOC2	rs17756712	VCDR	Cau, Asian	Meta	(D) 21094 and 6784	2014	Springelkamp ⁷⁵
		rs2073006	POAG	Multi-ethnic	GWAS	(D) POAG: 7329 C: 169561	2018	Choquet ⁶⁹
1q24.2	F5	rs12406092	ODA	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
		rs10753787	VCDR	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs201655303	ODA					
6q14.1	FAM46A	rs1931656	CCT	Europa	Meta	17803	2018	Iglesias ⁷⁶
		rs1931656	CCT	Asia	Meta	8107	2018	Iglesias ⁷⁶
16p13.3	FAM86A/RBFOX1	rs192917960	POAG	AA; Hispanic	GWAS	(D) POAG: 1702, C: 6067 (R) POAG: 489, C: 2685	2014	Hoffmann ¹²⁸
12q24.31	FAM101A	rs10846617	CA, VCDR	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
		rs7311936	VCDR	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs11613189	CA					
9q33.3	FAM125B	rs2286885	IOP	UK, EU	GWAS	(D): 2774, (R): 22789	2014	Nag <u>¹²⁹</u>
15q26.3	FAM169B	rs6598351	CA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
5q21.3	FBXL17/FER	rs73220188	IOP	EU, Asia	GWAS	(D): 69756 (R): 37930	2017	Choquet ⁶⁸
3p14.3	FLNB	rs6764184	CA, VCDR	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
		rs6764184	CA, VCDR	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs12494328	CA					
		rs12494328	POAG	Cau, Asian	Meta	POAG: 6429, C: 41404	2017	Springelkamp ⁷¹
2q23.3	FMNL2	rs55692468	IOP	EU, Asia	GWAS	(D): 69756 (R): 37930	2017	Choquet ⁶⁸
		rs56117902	POAG, IOP	Multi-ethnic	GWAS	(D) POAG: 4986 C: 58426	2018	Choquet ⁶⁹
3q25.31	FNDC3B	rs4894535	CCT	Cau, Asian	Meta	20000	2013	Lu <u>⁷⁴</u>
		rs4894535	POAG	Cau	C-C	POAG: 2979, C: 7399	2013	Lu <u>⁷⁴</u>
		rs6445055	IOP	Asian, EU	Meta	(D): 35296	2014	Hysi <u>⁶⁵</u>
		rs6445055	POAG	Cau	Meta	POAG: 4284, C: 95560	2014	Hysi <u>⁶⁵</u>
				EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs7617946	CCT	Europa	Meta	17803	2018	Iglesias ⁷⁶
		rs7617946	CCT	Asia	Meta	8107	2018	Iglesias ⁷⁶
		rs7635832	IOP	EU, Asia	GWAS	(D): 69756 (R): 37930	2017	Choquet ⁶⁸
13q12.11	FGF9-SGCG	rs7327928	CCT	Europa	Meta	17803	2018	Iglesias ⁷⁶
6p25.3	FOXC1	rs2745572	IOP	EU, Asia	GWAS	(D): 69756 (R): 37930	2017	Choquet ⁶⁸

Loci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
5p25.3	FOXC1	rs2745572	POAG	US, Australia, EU, Singapore, China	Meta	(D) POAG: 3853, C: 33480 (R) POAG: 3164, C: 9242	2016	Bailey ⁶⁷
13q14.1	FOXO1	rs2721051	ССТ	Cau, Asian	Meta	20000	2013	Lu <u>⁷⁴</u>
-		rs2755238	CCT	Europa	Meta	17803	2018	Iglesias ⁷⁶
		rs1161662	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
17p13.1	GAS7	rs11656696	IOP	NL, UK, Australia, NZ	GWAS	(D) 11927, (R) 7482	2012	Koolwijk van ¹³⁰
		rs11656696	POAG	NL	Meta	POAG: 1432, C: Unknown	2012	Koolwijk van <u>¹³⁰</u>
		rs11656696	-	Saudi-Arabia	C-C	POAG: 92, C:95	2017	Kondkar ¹³¹
		rs9913911	IOP	Asian, EU	Meta	(D): 35296	2014	Hysi <u>⁶⁵</u>
		rs9913911	POAG	Cau	Meta	POAG: 4284, C: 95560	2014	Hysi <u>⁶⁵</u>
		rs9913911	IOP, VCDR, CA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs9913911	POÁG	Cau, Asian	Meta	POAG: 6429, C: 41404	2017	Springelkamp ⁷¹
		rs9913911	POAG	Japan	C-C	POAG: 1172, C: 1559	2017	Shiga ¹²¹
		rs9913911	IOP	EU, Asia	GWAS	(D): 69756 (R): 37930	2017	Choquet ⁶⁸
		rs9913911	POAG, IOP	Multi-ethnic	GWAS	(D) POAG: 4986 C: 58426 (R) POAG: 7329 C: 169561	2018	Choquet ⁶⁹
		rs9913911	POAG	Multi-ethnic	GWAS	(D) POAG: 7329 C: 169561 (R) POAG: 4986 C: 58426	2018	Choquet ⁶⁹
		rs9897123	POAG	US, Australia, EU, Singapore, China	Meta	(D) POAG: 3853, C: 33480 (R) POAG: 3164, C: 9242	2016	Bailey ⁶⁷
7p21	GLCCI1/ICA1	rs59072263	IOP	Australia, UK	GWAS	(D): 2175, (R): 4866	2013	BMES <u>132</u>
12q23	GLT8D2	rs1564892	CCT	Cau, Asian	Meta	20000	2013	Lu <u>⁷⁴</u>
		rs11111869	CCT	Europa	Meta	17803	2018	Iglesias ⁷⁶
		rs11111869	CCT	Asia	Meta	8107	2018	Iglesias ⁷⁶
6p25.3	GMDS	rs3046543	POAG	Australia, US	GWAS	(D) POAG: 1155, C: 1992 (R) POAG: 3558, C: 9496	2014	Gharahkhani ⁶⁶
		rs11969985 rs114096562	POAG POAG					
1p13.3	GSTM1	null>positive	POAG	Italy	C-C	POAG: 42, C: 45	2003	Izzotti ¹³³
		null>positive	POAG	Arabic	C-C	POAG: 153, C: 159	2005	Yildirim ¹³⁴
		null>positive	POAG	Turkey	C-C	POAG: 49, C: 120	2008	Abu-Amero ¹³⁵
		null>positive	POAG	Brazil	C-C	POAG: 87, C: 85	2011	Rocha ¹³⁶
		null>positive	POAG	Cau, Asian	Meta	POAG: 1339, C: 1412	2013	Huang ¹³⁷
		null>positive	POAG	Greece	C-C	POAG: 106, C: 120	2016	Lavaris ¹³⁸
		null>positive	-	Serbia	C-C	POAG: 102, C:202	2010	Stamenkovic ¹³⁹
		positive>null	POAG	Estonia	C-C	POAG: 250, C: 202	2000	Juronen ¹⁴⁰
		positive>null	POAG	Turkey	C-C	POAG: 230, C. 202 POAG: 144, C: 121	2000	Unal ¹⁴¹
		positive>null	POAG	Cau, Asian	meta	POAG: 1984 C: 121	2007	Malik ¹⁴²
17p12	HS3ST3B1/PMP22	rs12940030	CCT	Cau, Asian	Meta	20000	2017	Lu ⁷⁴
17912	110001001/FIVIF22	rs9900807	CCT	Europa	Meta	17803	2013	Iglesias ⁷⁶
		rs9900807	CCT	Asia	Meta	8107	2018	Iglesias ⁷⁶
6000.01	HSF2	rs1402538	VCDR			(D) 21094 and 6784	2018	Springelkamp ⁷⁵
6q22.31	II JEZ	151402000	VUDR	Cau, Asian	Meta	(D) 21094 and 0704	2014	Springerkamp

Loci	Gene	Polymorphisr	n Trait	Population	Stu	dy Size (n)		Year Referenc
6q22.31	HSF2	rs1402538	CA, VCDR	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
·		rs2684249	CA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
22q12.2	HORMAD2	rs2412970	ODA	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
6q14.1	IBTK	rs1538138	CCT	US-Cau	GWAS	(D): 1117	2012	Ulmer ⁸⁰
,		rs1538138	CCT	Asian	GWAS	(D): 7711, ®: 2681	2012	Cornes ⁷⁹
		rs1538138	CCT	Cau, Asian	Meta	20000	2013	Lu <u>⁷⁴</u>
	IBTK / FAM46A	rs2875087	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
11p13	IMMP1L	rs1223068	ODA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
17q21.32	KPNB1	rs11870935	CA, VCDR	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
9q34.2-q34.3	LCN12/PTGDS	rs11145951	CCT	Cau, Asian	Meta	20000	2013	Lu <u>⁷⁴</u>
9q31.3	LPAR1	rs1007000	CCT	Cau, Asian	Meta	20000	2013	Lu ⁷⁴
040110		rs10817107	CCT	Europa	Meta	17803	2018	Iglesias ⁷⁶
			CCT	Asia	Meta	8107	2018	Iglesias ⁷⁶
2q21.2-q22.2	LRP1B	rs2381190	ODA	NL	Linkage	23000	2010	Axenovich ⁹⁴
2921.2 922.2		rs491391	ODA	Australia, UK	GWAS	(D): 1368, (R): 848	2010	Macgregor ¹⁰⁰
15q26.3	LRRK1	rs930847	CCT	Cau, Asian	Meta	20000	2010	Lu ⁷⁴
10420.0		rs930847	CCT	Europa	Meta	17803	2013	Iglesias ⁷⁶
		rs930847	CCT	Asia	Meta	8107	2018	Iglesias ⁷⁶
2p22-21	LTBP1	rs115781177	CCT	Europa	Meta	17803	2018	Iglesias
2022-21	LIDFI	rs115179432	IOP		GWAS		2018	Choquet ⁶⁸
E-201			IOP	Multi-ethnic		(D)69,756 (D): 60756 (D): 27020	2017 2017	
5q22.1	MIR548F3 MPDZ/NF1B	rs596169		EU, Asia	GWAS	(D): 69756 (R): 37930		Choquet ⁶⁸ Lu ⁷⁴
9p23		rs1324183	CCT POAG	Cau, Asian	Meta	20000	2013	
11q22.2	MMP1	rs1799750		Poland	C-C	POAG 196, C: 253	2011	Majsterek ¹⁴³
		rs1799750	RNFLT, POAG	Cau	C-C	POAG: 255, C: 256	2013	Markiewicz ¹⁴⁴
		rs1799750	POAG	Pakistan	C-C	POAG: 112, C: 118	2013	Micheal ¹⁴⁵
~		rs1799750	POAG	Cau,Asian	Meta	POAG: 1261, C: 1089	2016	He ¹⁴⁶
20q13.2	MMP9	rs3918249	POAG	Cau, Asian	Meta	POAG: 550, C: 794	2016	Zhang ¹⁴⁷
		rs3918249	RNFLT, VCDR	Cau	C-C	POAG: 255, C: 256	2013	Markiewicz ¹⁴⁴
		rs3918242	POAG	India	C-C	POAG: 224, C: 367	2018	Thakur ¹⁴⁸
		rs17576	-	Cau, Asian	Meta	POAG: 1357, C: 1432	2016	Zhang ¹⁴⁷
		rs2274755	NTG	South Korea	C-C	HTG: 146, HTG: 174, C: 380	2018	Suh 2017 ¹⁴⁹
5q11.2	MOCS2/FST	Rs4865762	IOP	EU, Asia	GWAS	(D): 69756 (R): 37930	2017	Choquet ⁶⁸
2q21.2	NCKAP5	rs7588567	POAG	Japan	GWAS	(D) POAG: 1394, C: 6599, (R) POAG: 1802, C: 7212	2012	Osman ¹¹⁰
8q22.1	NDUFAF6	rs10429294	CCT	Europa	Meta	17803	2018	Iglesias ⁷⁶
7q36	NOS3	rs3918226	POAG	Australia	C-C	POAG: 53, C: 60	1998	Tunny <u>¹⁵⁰</u>
		rs3918226	-	China	C-C	HTG: 255, NTG: 100, C: 201	2010	Fan ⁶⁰
		Intron-4	POAG	Pakistan	C-C	POAG: 159, C: 166	2010	Ayub <u>¹⁵¹</u>
		Intron-4	-	China	C-C	POAG: 66, C: 100	2005	Lin ¹⁵²
		rs2070744	POAG	Egypt	C-C	POAG: 160, C: 110	2014	Emam ¹⁵³
		rs2070744	POAG	Cau	C-C	POAG: 527, C: 1539	2011	Kang <u>¹⁵⁴</u>
		rs2070744	POAG	Cau, Asian	Meta	POAG: 1156, C: 1879	2016	Xiang ¹⁵⁵
		rs2070744	NTG	Korea	C-C	NTG: 251; C: 245	2017	Jeoung ¹⁵⁶

.oci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
q36	NOS3	rs2070744	-	UK	C-C	HTG: 58, NTG: 76, C: 38	2005	Logan ¹⁵⁷
		rs2070744	-	China	C-C	POAG: 66, C: 100	2005	Lin ¹⁵²
		rs2070744	-	China	C-C	HTG: 255, NTG: 100, C: 201	2010	Fan ⁶⁰
		rs2070744	-	EU-Cau	Cases	HTG: 300, NTG: 127	2012	Weiss ¹⁵⁸
		rs3918188	POAG	US-Cau	C-C	POAG: 527, C: 1543	2010	Kang <u>¹⁵⁹</u>
		rs3918188	POAG	Brazil	C-C	POAG: 90, C: 127	2012	Magalhaes da Silva ¹⁶⁰
		rs3918188	POAG	Cau	C-C	POAG: 374, C: 1085	2011	Kang <u>¹⁶¹</u>
		rs3793342 + rs11771443	POAG	China	C-C	POAG: 102, C: 120	2011	Liao ¹⁶²
		rs2333227	-	China	C-C	POAG: 66, C: 100	2005	Lin <u>¹⁵²</u>
		rs1799983	POAG	Cau, Asian	Meta	POAG: 1230, C: 2035	2016	Xiang <u>¹⁵⁵</u>
		rs1799983	-	China	C-C	HTG: 255, NTG: 100, C: 201	2010	Fan ⁶⁰
		rs1799983	-	EU-Cau	Cases	HTG: 300, NTG: 127	2012	Weiss ¹⁵⁸
5q26.2	NR2F2	rs8034595	ODA	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
q31	NR3C2	rs3931397	CCT	Cau, Asian	Meta	20000	2013	Lu <u>⁷⁴</u>
9q13.33	NTF4	c.20G > A	POAG	Germany, NL	GWAS	(D) HTG: 270, NTG: 82, C: 376	2009	Pasutto ¹⁶³
		rs61732310	POAG			(R) HTG: 338, NTG: 266, C: 1414		
		c.269G > A	POAG					
		rs121918427	POAG					
		rs121918428	POAG					
		c.338T > C	POAG	China	C-C	POAG: 174, C: 91	2010	Vithana ¹⁶⁴
		c.470G > C	POAG	China	C-C	POAG: 720, C: 950	2012	Chen ¹⁶⁵
		c.545C > T	POAG					
		genewide	-	Eu	C-C	POAG: 443, C: 533	2010	Liu <u>¹⁶⁶</u>
		genewide	-	India	C-C	POAG: 141, C: 285	2010	Rao <u>¹⁶⁷</u>
1p11.2	NUP160/PTPRJ	rs747782	IOP	Asian, EU	Meta	(D): 35296	2014	Hysi <mark>65</mark>
		rs1681630	IOP					
		rs7946766	IOP					
q28-q29	OPA1	rs166850	NTG	UK	C-C	NTG: 163, C: 186	2002	Aung <u>¹⁶⁸</u>
-		rs166850	NTG	UK	C-C	HTG: 67, NTG: 70, C: 75	2010	Yu-Wai-Man ¹⁶⁹
		rs166850	NTG	Cau, Asian	Meta	HTG: 1200, NTG: 713, C: 1935	2012	Guo <u>¹⁷⁰</u>
		rs166850	-	Greece	C-C	POAG: 106, C: 120	2016	Lavaris ¹³⁸
		rs166850	-	Korea	C-C	NTG: 75, C: 101	2004	Woo <u>171</u>
		rs166850	-	Germany	C-C	NTG: 285, C: 282	2009	Wolf <u>⁵⁹</u>
		rs166850	-	China	C-C	HTG: 255, NTG: 100, C: 201	2010	Fan ⁶⁰
		rs10451941	NTG	UK	C-C	NTG: 163, C: 186	2002	Aung ¹⁶⁸
		rs10451941	NTG	UK	C-C	NTG: 61, C: 49	2003	Powell ¹⁷²
		rs10451941	NTG	Japan	C-C	HTG: 191, NTG: 194, C: 185	2007	Mabuchi <u>¹⁷³</u>
		rs10451941	NTG	UK	C-C	HTG: 67, NTG: 70, C: 75	2010	Yu-Wai-Man <u>¹⁶⁹</u>
		rs10451941	NTG	Cau, Asian	Meta	HTG: 1200, NTG: 713, C: 1935	2012	Guo <u>170</u>
		rs10451941	-	Korea	C-C	NTG: 75, C: 101	2004	Woo <u>171</u>

Loci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
3q28-q29	OPA1	rs10451941	-	Germany	C-C	NTG: 285, C: 282	2009	Wolf <u>⁵⁹</u>
		rs10451941	-	China	C-C	HTG: 255, NTG: 100, C: 201	2010	Fan ⁶⁰
		rs10451941	-	Greece	C-C	POAG: 106, C: 120	2016	Lavaris ¹³⁸
11p13	PAX6	rs3026398	CCT	Au-Cau	PC	956	2010	Dimasi ¹¹¹
•		rs7104512	ODA	NL	GWAS	(D): 5312, (R): 5933	2012	Gasten ¹⁷⁴
		rs10835818	ODA				-	
		rs7126851	ODA	NL	GWAS	(D): 5312, (R): 5933	2012	Gasten ¹⁷⁴
5p13.3	PDZD2	rs72759609	VCDR	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
8q21.13	PKIA	rs78150043	IOP	Eu	Meta	29578	2017	Springelkamp ⁷¹
		8:78380944	IOP			20010	2011	opinigonanip
10q23.33	PLCE1	rs7072574	VCDR	Cau, Asian	Meta	(D) 21094 and 6784	2014	Springelkamp ⁷⁵
10920.00		10:96008348	VCDR, CA	EU, Asian	Meta	37930	2014	Springelkamp ⁷¹
		rs2274224	POAG	Multi-ethnic	GWAS	(D) POAG: 7329 C: 169561	2018	Choquet ⁶⁹
10p12.31	PLXDC2	rs7081455	POAG		GWAS	(D) POAG: 418, C:300	2010	Nakano ¹⁷⁵
10012.31	FLADUZ	15/001400	IUAG	Japan	GWAS	(R) POAG: 409, C 448	2009	INANAHU-
		rs7081455	-	China	C-C	POAG: 462, C: 577	2012	Chen ¹⁷⁶
		rs7081455	-	Africa	C-C	POAG: 272, C: 165	2012	Cao ¹¹⁴
		rs7081455	-	Saudi-Arabia	C-C	POAG: 188, C: 164	2018	Kondkar ¹⁷⁷
		rs7098387	POAG	Korea	C-C	POAG: 211, C: 904	2014	Kim ¹⁷⁸
16p13.2	PMM2	rs3785176	POAG	China	GWAS	(D) POAG: 1007, C: 1009	2014	Chen ⁷⁰
1001012		rs67792030	POAG	onnia	01110	(R) POAG: 1899, C: 4965	2011	Chich
17p13.1	POLR2A	17:7423981	CCT	Europa	Meta	17803	2018	Iglesias ⁷⁶
1p36.32	PRDM16	rs199942561	ODA	EU, Asian	Meta	37930	2010	Springelkamp ⁷¹
9q34.2	PRR31	rs2386136	CCT	Europa	Meta	17803	2018	Iglesias ⁷⁶
8q24.2	PSCA	rs2920293	VCDR	EU, Asian	Meta	37930	2010	Springelkamp ⁷¹
7q11.21	RABGEF1	rs68168107	CCT	Europa	Meta	17803	2018	Iglesias ⁷⁶
7911.21	RADULIT	rs68168107	CCT	Asia	Meta	8107	2018	Iglesias ⁷⁶
11p11.2	RAPSN	rs12419342	IOP	Asian, EU	Meta	(D): 35296	2010	Hysi ⁶⁵
11011.2		rs12419342	POAG	Cau	Meta	POAG: 4284, C: 95560	2014	Hysi <mark>65</mark>
		rs12419342	IOP	Norfolk island	Cases	Population: 330	2014	Matovinovic ¹⁷⁹
		rs79390637	IOP	EU, Asia	GWAS	(D): 69756 (R): 37930	2017	Choquet
3p24.2	RARB	rs11129176	ODA	EU, Asian	Meta	(D) 17248 and 6841	2017	Springelkamp ⁷²
5p24.2	INAIND	rs11129176	ODA	EU, Asian	Meta	37930	2013	Springelkamp ⁷¹
14q11.2	RBM23	14:23388793	VCDR	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
14411.2 1p36.23	RERE	rs301801	VCDR	Cau, Asian		(D) 21094 and 6784	2017	Springelkamp ⁷⁵
1030.23	RERE	rs301801	CA, VCDR	EU, Asian	Meta Meta	(D) 21094 and 6764 (D) 17248 and 6841	2014 2015	Springelkamp ⁷²
		rs12015126	CA, VCDR CA, VCDR	NL	Linkage	(D) 17248 and 6841 23000	2015	Axenovich ⁹⁴
			CA, VCDR -					Ramdas ⁹⁵
		rs12015126		NL, UK	GWAS	(D): 7360, (R): 4455	2010	
		rs12015126	-	Japan	C-C	HTG: 212, NTG: 213, C: 191	2012	Mabuchi ⁹⁷
		rs2252865	CA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
3p24.3	RFTN1	rs690037	CA	Australia, UK	GWAS	(D): 1368, (R): 848	2010	Macgregor ¹⁰⁰
10 10 11		rs690037	CCT	China	C-C	HTG: 117, NTG: 25, C: 289	2012	Chen ¹⁰³
12q13.11	RPAP3	rs11168187	VCDR	Cau, Asian	Meta	(D) 21094 and 6784	2014	Springelkamp ⁷⁵

₋oci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
lp31	RPE65	rs1925953	VCDR	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
p25	RREB1	rs4960295	VCDR	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
l6q12.1	SALL1	rs1362756	ODA	NL, UK	GWAS	(D): 7360, (R): 4455	2010	Ramdas ⁹⁵
		rs1362756	POAG	EU	Meta	POAG: 3161, C: 42837	2011	Ramdas ⁹⁶
		rs1362756	ODA, CA, VCDR	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp72
		rs1362756	-	Singapore, NL	GWAS	(D): 4445, (R): 9236	2011	Khor ¹⁰¹
		rs1362756	-	NL	GWAS	(D): 5312, (R): 5933	2012	Gasten ¹⁷⁴
		rs1345467	VCDR	Cau, Asian	Meta	(D) 21094 and 6784	2014	Springelkamp ⁷⁵
		rs1345467	ODA	EU, Asian	Meta	37930	2017	Springelkamp ⁷⁵
		rs11646917	CA	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
		rs11646917	CA	EU, Asian	Meta	37930	2017	Springelkamp ⁷⁵
		rs66983417	VCDR, CA, ODA	EU, Asian	Meta	37930	2017	Springelkamp ⁷⁵
1q13.1	SCYL1	rs17146964	VCDR	NL, UK	GWAS	(D): 7360, (R): 4455	2010	Ramdas ⁹⁵
-		rs17146964	-	Japan	C-C	HTG: 212, NTG: 213, C: 191	2012	Mabuchi ⁹⁷
4p22-p23	SIX1/SIX6	rs10483727	VCDR	NL, UK	GWAS	(D): 7360, (R): 4455	2010	Ramdas ⁹⁵
• •		rs10483727	RNFLT	NL	Linkage	23000	2011	Axenovich ⁹⁴
		rs10483727	POAG	Eu	Meta	POAG: 3161, C: 42837	2011	Ramdas ⁹⁶
		rs10483727	VCDR, POAG	US-Cau	C-C	POAG: 539, C: 336	2011	Fan ⁹⁸
		rs10483727	POAG	Japan	GWAS	(D) POAG: 1394, C: 6599 (R) POAG: 1802, C: 7212	2012	Osman ¹¹⁰
		rs10483727	POAG	Cau	Meta	PÓAG: 3146, C: 3487	2012	Wiggs <u>120</u>
		rs10483727	VCDR, POAG	Australia	C-C	POAG: 876, C: 883	2012	Dimasi ¹¹³
		rs10483727	-	Africa	C-C	POAG: 272, C: 165	2012	Cao <u>¹¹⁴</u>
		rs10483727	-	Japan	C-C	HTG: 212, NTG: 213, C: 191	2012	Mabuchi ⁹⁷
		rs10483727	-	UK	GWAS	(D) POAG: 387, C: 5380 (R) POAG: 294, C: 50	2012	Gibson ¹²²
		rs10483727	RNFLT	EU	Cases	231	2015	Kuo <u>¹⁸⁰</u>
		rs10483727	VCDR	India	C-C	POAG: 97, C: 371	2015	Philomenadin ¹⁰⁴
		rs10483727	CA	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp72
		rs10483727	POAG	China	C-C	POAG: 866, C: 266	2016	Sang ¹⁸¹
		rs10483727	POAG	Saudi Arabia	C-C	POAG: 92, C:94	2018	Kondkar ¹⁸²
		rs10483727	POAG	China, Japan	C-C	POAG: 1440, C: 1313	2018	Rong <mark>183</mark>
		rs4901977	VCDR	Cau, Asian	Meta	(D) 21094 and 6784	2014	Springelkamp ⁷⁵
		rs33912345	POAG	US, Australia, EU, Singapore, China	Meta	(D) POAG: 3853, C: 33480 (R) POAG: 3164, C: 9242	2016	Bailey ⁶⁷
		rs33912345	POAG, NTG	China	C-C	PÓAG: 866, C: 266	2016	Sang <mark>¹⁸¹</mark>
		rs33912345	POAG	Japan	C-C	POAG: 1172, C: 1559	2017	Shiga ¹²¹
		rs33912345	POAG	China, Japan	C-C	POAG: 1440, C: 1313	2018	Rong ¹⁸³
		rs8015152	VCDR	EU, Asian	Meta	37930	2017	Springelkamp ⁷⁵
		rs8015152	POAG	Cau, Asian	Meta	POAG: 6429, C: 41404	2017	Springelkamp ⁷⁵
		rs4436712	CA	EU, Asian	Meta	37930	2017	Springelkamp ⁷⁵
		rs4436712	POAG	Cau, Asian	Meta	POAG: 6429, C: 41404	2017	Springelkamp ⁷⁵
		rs34935520	ODA	EU, Asian	Meta	37930	2017	Springelkamp ⁷⁵

Loci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
14p22-p23	SIX1/SIX6	rs34935520	POAG	Cau, Asian	Meta	POAG: 6429, C: 41404	2017	Springelkamp ⁷⁵
		rs34935520	POAG	Multi-ethnic	GWAS	(D) POAG: 7329 C: 169561	2018	Choquet ⁶⁹
						(R) POAG: 4986 C: 58426		
		rs12436579	POAG	China, Japan	C-C	POAG: 1440, C: 1313	2018	Rong ¹⁸³
		rs35155027	POAG	Multi-ethnic	GWAS	(D) POAG: 4986 C: 58426 (R) POAG: 7329 C: 169561	2018	Choquet ⁶⁹
5q22.33	SMAD3	rs12913547	CCT	Cau, Asian	Meta	20000	2013	Lu <u>⁷⁴</u>
		rs12912010	CCT	Europa	Meta	17803	2018	Iglesias
		rs12912010	CCT	Asia	Meta	8107	2018	Iglesias
		rs12912045	IOP	EU, Asia	GWAS	(D): 69756 (R): 37930	2017	Choquet ⁶⁸
2p21	SRBD1	rs3213787	NTG	Japan	C-C	NTG: 305, C: 355	2010	Writing 184
		rs3213787	POAG, NTG	Japan	C-C	HTG: 212, NTG: 158, C: 191	2011	Mabuchi ¹⁸⁵
		rs3213787	-	Africa	C-C	POAG: 272, C: 165	2012	Cao <u>¹¹⁴</u>
		rs11884064	POAG	UK	GWAS	(D) POAG: 387, C: 5380 (R) POAG: 294, C: 50	2012	Gibson ¹²²
11q13.1	SSSCA1	rs1346	VCDR	Cau, Asian	Meta	(D) 21094 and 6784	2014	Springelkamp ⁷⁵
		rs1346	CA, VCDR	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
		rs1346	VCDR, CA	EU, Asian	Meta	37930	2017	Springelkamp ⁷⁵
3q22.3	STAG1	3:136138073	ССТ	Europa	Meta	17803	2018	Iglesias ⁷⁶
3q26.32	TBL1XR1/KCNMB2	rs7620503	CCT	Cau, Asian	Meta	20000	2013	Lu <u>⁷⁴</u>
•		3:177298094	CCT	Europa	Meta	17803	2018	Iglesias ⁷⁶
		3:177298094	ССТ	Asia	Meta	8107	2018	Iglesias ⁷⁶
18q21.2	TCF4	rs11659764	IOP	EU, Asia	GWAS	(D): 69756 (R): 37930	2017	Choquet ⁶⁸
7q31.2	TFEC-TES	rs6968419	IOP	EU, Asia	GWAS	(D): 69756 (R): 37930	2017	Choquet ⁶⁸
3q25.31	TIPARP	rs9822953	CCT	Europa	Meta	17803	2018	Iglesias ⁷⁶
15q13	TJP1	rs785422	CCT	Cau, Asian	Meta	20000	2013	Lu <u>⁷⁴</u>
		rs785420	CCT	Europa	Meta	17803	2018	Iglesias ⁷⁶
9q33.1	TLR4	rs2149356	POAG, NTG	Japan	C-C	POAG: 184, NTG: 365, C: 216	2012	Takano <u>¹⁸⁶</u>
		rs2149356	POAG	Mexico	C-C	POAG: 187, C: 109	2016	Navarro-Partida ¹⁸
		rs7037117	NTG	Japan	C-C	NTG: 250, C: 318	2008	Shibuya ¹⁸⁸
		rs7037117	POAG, NTG	Japan	C-C	POAG: 184, NTG: 365, C: 216	2012	Takano ¹⁸⁶
		rs7037117	POAG	China	C-C	POAG: 462, C: 577	2012	Chen ¹⁷⁶
		rs7037117	-	Africa	C-C	POAG: 272, C: 165	2012	Cao ¹¹⁴
		rs12377632	POAG	Mexico	C-C	POAG: 187, C: 109	2016	Navarro-Partida ¹⁸
		rs1927911	POAG	Mexico	C-C	POAG: 187, C: 109	2016	Navarro-Partida ¹⁸
		rs2149356	POAG	Mexico	C-C	POAG: 187, C: 109	2016	Navarro-Partida ¹⁸
		rs4986790	POAG	Mexico	C-C	POAG: 187, C: 109	2017	Navarro-Partida ¹⁸
		rs4986790	-	Saudi-Arabia	C-C	POAG: 85, C: 95	2016	Abu-Amero ¹⁹⁰
		rs4986791	POAG	Mexico	C-C	POAG: 187, C: 109	2017	Navarro-Partida ¹⁸
		rs4986791	-	Saudi-Arabia	C-C	POAG: 85, C: 95	2016	Mousa ¹⁹¹
		genewide	-	Korea	C-C	NTG: 147, C: 380	2011	Suh ¹⁹²
1q24	TMCO1	rs4656461	POAG	Australia, NZ	GWAS	(D) POAG: 590, C: 3956 (R) POAG: 892, C: 4582	2011	Burdon ¹¹⁹

oci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
24	TMCO1	rs4656461	POAG	Chinese	C-C	HTG: 870, NTG: 297, C: 934	2015	Chen ¹⁹³
•		rs4656461	IOP	Asian, EU	Meta	(D): 35296	2014	Hysi <u>⁶⁵</u>
		rs4656461	POAG	Cau	Meta	POAG: 4284, C: 95560	2014	Hysi ⁶⁵
		rs4656461	POAG	Spain	C-C	POAG: 391 C: 383	2017	Zanon-Moreno ¹⁰⁷
		rs4656461	-	Australia, NZ	Cases	1420	2012	Sharma ¹⁹⁴
		rs7518099	POAG	Australia, NZ	GWAS	(D) POAG: 590, C: 3956 (R) POAG: 892, C: 4582	2011	Burdon ¹¹⁹
		rs7518099	IOP	Cau	Meta	POAG: 2647, C: 3589	2014	Ozel ¹⁹⁵
		rs7518099	POAG	US, Australia, EU, Singapore, China	Meta	(D) POAG: 3853, C: 33480 (R) POAG: 3164, C: 9242	2016	Bailey ⁶⁷
		rs7518099	-	UK	GWAS	(D) POAG: 387, C: 5380 (R) POAG: 294, C: 50	2012	Gibson ¹²²
		rs7555523	IOP	NL, UK, Australia, NZ	GWAS	(D) 11927, (R) 7482	2012	Koolwijk van ¹³⁰
		rs7555523	POAG	NL	Meta	POAG: 1432	2012	Koolwijk van <u>¹³⁰</u>
		rs7555523	IOP	Asian, EU	Meta	(D): 35296	2014	Hysi ⁶⁵
		rs7555523	POAG	Cau	Meta	POAG: 4284, C: 95560	2014	Hysi <u>⁶⁵</u>
		rs7555523	POAG	Chinese	C-C	HTG: 870, NTG: 297, C: 934	2015	Chen ¹⁹³
		rs7555523	-	Saudi-Arabia	C-C	POAG: 87, C: 94	2016	Kondkar <u>¹⁹⁶</u>
		rs10918274	IOP	Eu, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs7524755	POAG, IOP	Multi-ethnic	GWAS	(D) POAG: 4986 C: 58426 (R) POAG: 7329 C: 169561	2018	Choquet ⁶⁹
		Rs2814471	POAG	Multi-ethnic	GWAS	(D) POAG: 7329 C: 169561 (R) POAG: 4986 C: 58426	2018	Choquet ⁶⁹
		rs1913845	-	Japan	GWAS	(D) POAG: 1394, C: 6599	2012	Osman ¹¹⁰
		rs12723198	-	·		(R) POAG: 1802, C: 7212		
		rs10918271	-					
		rs7411708	-					
		Rs6668108	IOP	EU, Asia	GWAS	(D): 69,756 (R): 37,930	2017	Croquet ⁶⁸
q21.31	TMTC2	rs7961953	POAG	Japan	GWAS	(D) POAG: 418, C:300 (R) POAG: 409, C 448	2009	Nakano ¹⁷⁵
		rs7961953	-	China	C-C	PÓAG: 462, C: 577	2012	Chen ¹⁷⁶
		rs7961953	-	Africa	C-C	POAG: 272, C: 165	2012	Cao <u>114</u>
		rs7961953	-	Korea	C-C	POAG: 211, C: 904	2014	Kim <u>¹⁷⁸</u>
		rs7972528	CA	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
		rs1511589	ODA	-,				r 0
		rs10862688	VCDR	Cau, Asian	Meta	(D) 21094 and 6784	2014	Springelkamp ⁷⁵
		rs324780	VCDR	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
		rs482507	CA		motu	0.000	2017	opinigonality -
		rs442376	ODA					
		rs324794	POAG	Multi-ethnic	GWAS	(D) POAG: 4986 C: 58426	2018	Choquet ⁶⁹
21.3	TNF	rs1800629	POAG	Turkey	C-C	POAG: 86, C: 193	2018	Bozkurt ¹⁹⁷
021.0	LINE	rs1800629	POAG	China	C-C	POAG: 60, C: 193 POAG: 60, C: 103	2012	Lin ¹⁹⁸
		rs1800629	POAG		C-C	POAG: 60, C: 103 POAG: 223, C: 202	2003	
		151000029	I UAG	Iran	0-0	1 070. 223, 0. 202	2009	Razeghinejad ¹⁹⁹

Loci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
6p21.3	TNF	rs1800629	POAG	China	C-C	HTG: 255, NTG: 100, C: 201	2010	Fan ⁶⁰
		rs1800629	POAG	Cau, Asian	Meta	POAG: 1182, C: 3003	2013	Xin ²⁰⁰
		rs1800629	POAG	Egypt	C-C	POAG: 60, C: 26	2016	Hamid ²⁰¹
		rs1800629	POAG	Poland	C-C	POAG: 252 C:191	2017	Tikunova ²⁰²
		rs1800629	-	Australia	C-C	POAG: 114, C: 228	2006	Mossbock ²⁰³
		rs1800629	-	Cau, Asian	Meta	POAG: 1798, C: 1683	2015	Lee ²⁰⁴
		rs1800630	POAG	China	C-C	POAG: 234, C: 230	2012	Wang ²⁰⁵
		rs4645836	POAG					
		rs361525	-	Australia	C-C	POAG: 114, C: 228	2006	Mossbock ²⁰³
		rs361525	-	Cau, Asian	Meta	POAG: 404, C: 625	2013	Xin ²⁰⁰
		rs361525	-	Eu, Turkey	Meta	POAG: 404, C: 625	2015	Lee ²⁰⁴
		rs1799724	-	Cau, Asian	Meta	POAG: 808, C: 1039	2013	Xin ²⁰⁰
		rs645836	-	Cau, Asian	Meta	POAG: 645, C: 666	2013	Xin ²⁰⁰
17p13.1	TP53	rs1042522	POAG	China	C-C	HTG: 255, NTG: 100, C: 201	2010	Fan ⁶⁰
		rs1042522	POAG	Cau, Asian	C-C	POAG: 1930, C: 1463	2012	Guo ²⁰⁶
		rs1042522	RNFLT	Cau	C-C	POAG: 186, C: 188	2014	Nowak ²⁰⁷
		rs1042522	-	Turkey	C-C	POAG: 75, C: 119	2009	Saglar ⁸⁷
		rs1042522	-	India	C-C	POAG:139, C: 218	2000	Gupta ²⁰⁸
		rs1042522	-	Japan	C-C	HTG: 212, NTG: 213, C: 189	2012	Mabuchi ⁹⁷
		rs57958982	_	oupun	00	1110.212,1110.210, 0.100	2012	Mabdolli
2p24.3	TRIB2	rs2113818	CA,VCDR	EU, Asian	Meta	(D) 17248 and 6841	2015	Springelkamp ⁷²
2024.0	INIDZ	rs13016883	CA	EU, Asian	Meta	37930	2013	Springelkamp ⁷¹
22q13.1	TRIOBP	rs1074407	CA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
•	TXNRD2			US, Australia, EU,	Meta			Bailey ⁶⁷
22q11.21	TANKUZ	rs35934224	POAG	Singapore, China	meta	(D) POAG: 3853, C: 33480 (R) POAG: 3164, C: 9242	2016	Dalley
		rs58714937	POAG	Multi-ethnic	GWAS	(D) POAG: 7329 C: 169561	2018	Choquet ⁶⁹
4q26	UGT8	rs10021731	ODA	EU, Asian	Meta	37930	2010	Springelkamp ⁷¹
1p31	U6/ GADD45A	rs787541	ODA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
5q14.2-14.3	VCAN	rs7717697	VCDR, CA, ODA	EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
3p25.2	VGLL4	rs2443724	ODA	EU, Asian EU, Asian	Meta	37930	2017	Springelkamp ⁷¹
3pz5.z 7q11.21	VKORC1L1	rs11763147	CCT	Cau, Asian	Meta	20000	2017	Lu ⁷⁴
	WNT7B		CCT			(D): 3584 (R): 931	2013	Gao <u>¹²⁵</u>
22q13		rs10453441	CCT	Latino	GWAS GWAS			Fan ²⁰⁹
		rs9330813	001	India Latino, EU	+ Meta	(D): 159, (R): 8844 Total: 9003	2018	
2q35	WNT10A	rs121908120	ССТ	Europa	+ Meta	17803	2018	Iglesias ⁷⁶
2q33 16q24	ZNF469	rs12447690	CCT	Croatia, Scotland	GWAS	(D): 1445, (R): 824	2018	Vitart ⁷⁷
10424		rs12447690	CCT	Australia, UK	GWAS	(D): 5058	2010	Lu ²¹⁰
			CCT	,				
		rs12447690	CCT	Singapore	GWAS GWAS	(D): 5080	2011	Vithana ⁷⁸ Hoehn ¹²³
		rs12447690		Germany, NL		(D): 3931, (R): 1418	2012	
		rs12447690	CCT	Asian	GWAS	(D): 7711, (R): 2681	2012	Cornes ⁷⁹
		rs12447690	CCT, POAG	US-Cau	GWAS	(D): 1117, (D): 6470	2012	Ulmer ⁸⁰

Loci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
16q24	ZNF469	rs12447690	CCT	Latino	GWAS	(D): 3584 (R): 931	2016	Gao <u>¹²⁵</u>
		rs12447690	-	Australia	C-C	POAG: 876, C: 883	2012	Dimasi ¹¹³
		rs9938149	CCT	Australia, UK	GWAS	(D): 5058	2010	Lu <u>²¹⁰</u>
		rs9938149	CCT	Singapore	GWAS	(D): 5080	2011	Vithana ⁷⁸
		rs9938149	CCT	Germany, NL	GWAS	(D): 3931, (R): 1418	2012	Hoehn <u>¹²³</u>
		rs9938149	CCT	Cau, Asian	Meta	20000	2013	Lu <u>⁷⁴</u>
		rs9938149	CCT	Norfolk Island	Cases	330	2017	Matovinovic ¹⁷⁹
		rs9938149	-	Australia	C-C	POAG: 876, C: 883	2012	Dimasi <u>¹¹³</u>
		rs35193497	CCT	Europa	Meta	17803	2018	Iglesias ⁷⁶
		rs35193497	CCT	Asia	Meta	8107	2018	Iglesias ⁷⁶
		rs12926024	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
1q43	ZP4	rs547984	POAG	Japan	GWAS	(D) POAG: 418, C:300 (R) POAG: 409, C: 448	2009	Nakano ¹⁷⁵
		rs547984	-	Africa	C-C	PÓAG: 272, C: 165	2012	Cao <u>¹¹⁴</u>
		rs547984	-	Saudi-Arabia	C-C	POAG: 90, C: 95	2017	Azad ²¹¹
		rs540782	POAG	Japan	GWAS	(D) POAG: 418, C:300 (R) POAG: 409, C 448	2009	Nakano ¹⁷⁵
		rs540782	-	Saudi-Arabia	C-C	PÓAG: 92, C: 95	2017	Kondkar ²¹²
		rs693421	POAG	Japan	GWAS	(D) POAG: 418, C:300 (R) POAG: 409, C 448	2009	Nakano ¹⁷⁵
		rs693421	POAG	Korea	C-C	PÓAG: 211, C: 904	2014	Kim <u>¹⁷⁸</u>
		rs693421	-	China	C-C	POAG: 462, C: 577	2012	Chen ¹⁷⁶
		rs2499601	POAG	Japan	GWAS	(D) POAG: 418, C:300 (R) POAG: 409, C 448	2009	Nakano ¹⁷⁵

Abbreviations: CA= cup area; CCT= central corneal thickness; HTG= high tension glaucoma; NTG= normal tension glaucoma; IOP= intraocular pressure; ODA= optic disc area; POAG= primary open angle glaucoma; RNFLT= retina nerve fiber layer thickness; VCDR= vertical cup disc ratio; AA= African American, Cau= Caucasian; NL= Netherlands NZ= New Zealand; UK= United Kingdom; US= United States; C-C= case control; Meta= meta-analysis. (D)= Discover®(R)= Replication (-) indicates that no significant association between the gene and any of the glaucoma traits was observed.

Loci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
7q21.12	ABCB1	rs2032582	POAG	China	C-C	POAG: 129, C: 121	2016	Liu ²¹³
		rs1045642	POAG					
		rs1045642	IOP					
15q26.3	ADAMTS17	rs72755233	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
12q12	ADAMTS20	rs7977237	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
10q25.3	ADRB1	rs1801253	NTG	Japan	C-C	HTG: 211, NTG: 294, C: 240	2006	Inagaki ²¹⁴
5q32	ADRB2	rs1042713	POAG	Japan	C-C	HTG: 211, NTG: 294, C: 240	2006	Inagaki ²¹⁴
		rs1042714	IOP					
Xq23	AGTR2	rs11091046	NTG	Japan	C-C	HTG: 190, NTG: 268, C: 240	2005	Hashizume ²¹⁵
		rs11091046	-	Mexico	C-C	POAG: 118, C: 100	2013	Buentello-Volante ²¹⁶
8q23.1	ANGPT1	rs2514884	POAG	Multi-ethnic	GWAS	(D) POAG: 7329 C: 169561	2018	Choquet ⁶⁹
-		rs10105844	IOP	Multi-ethnic	GWAS	(D)69756	2017	Choquet ⁶⁸
5p15.2	ANKH	rs76325372	POAG	Multi-ethnic	GWAS	(D) POAG: 7329 C: 169561	2018	Choquet ⁶⁹
14q11.2	APEX1	rs1130409	POAG	Poland	C-C	POAG: 150, C: 190	2013	Cuchra ²¹⁷
13q12.12	BASP1P1	rs9552680	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
11p14.1	BDNF	rs6265	RNFLT, POAG	Cau	C-C	POAG: 167, C: 193	2014	Nowak ²¹⁸
•		rs2030324	POAG, VCDR	Poland	C-C	POAG: 363, C: 406	2015	Nowak ⁹⁰
2p22.3	BIRC6	rs2754511	POAG	US-Cau	C-C	POAG: 678, C: 421	2011	Carbone ²¹⁹
•		rs2754511	-	Pakistan	C-C	POAG: 471, C: 160	2014	Ayub ²²⁰
6p22.2	BTN3A2	rs4712981	CCT	Norfolk Island	Cases	330	2018	Kho <u>²²¹</u>
•		rs853676	ODA	Norfolk Island	Cases	330	2018	Kho <u>²²¹</u>
11p13	CAT	rs769217	POAG	China	C-C	POAG: 416; C: 997	2017	Gong
•		rs1001179	POAG	Poland	C-C	POAG: 209; C: 191	2016	Malinowska
		rs1001179	-	Saudi Arabia	C-C	POAG: 225; C: 403	2013	Abu-Amero
3p12.1	CADM2	Rs34201102	POAG	Multi-ethnic	GWAS	(D) POAG: 7329 C: 169561	2018	Choquet ⁶⁹
1p13.1	CD2	c.596A > G	POAG	China	Cases	3	2014	Liu ²²²
16q22.1	CDH1	rs1801026	POAG	China	C-C	POAG: 60, C: 103	2006	Lin ²²³
·		rs1801026	-	China	C-C	HTG: 255, NTG: 100, C: 201	2010	Fan ⁶⁰
9p21.3	CDKN2A	rs3088440	POAG	Spain	C-C	POAG: 391 C: 383	2017	Zanon-Moreno ¹⁰⁷
3p26.3- p26.2	CNTN4	copy number	POAG	Indian, Cau	C-C	POAG: 971, C: 749	2014	Kaurani ²²⁴
MtDNA	mt-CO1	rs879053914	POAG	African American	C-C	POAG: 1339, C: 850	2018	Collins ²²⁵
mtDNA	mt-CO3	rs2248727	NTG	Korea	C-C	NTG: 196; C: 202	2014	Jeoung ²²⁶
21q22.3	COL6A1/COL6A2	rs2839082	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
2q37.3	COL6A3	rs7599762	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
21q22.3	COL18A1	rs144147445	POAG	Cau, AA	C-C	15 families	2013	Wiggs ³⁷
15q24.1	CYP1A1	rs4646903	POAG	Brazil	C-C	POAG: 152, C: 100	2014	Costa ²²⁷
14q32.1	CYP46A1	rs754203	POAG	France	C-C	POAG: 150, C: 118	2009	Fourgeux ²²⁸
1190211		rs754203	POAG	India	C-C	POAG: 122, C: 112	2016	Chandra ²²⁹
		rs754203	-	Australia	C-C	POAG: 330, C: 251	2010	Mossbock ²³⁰
mtDNA	mt-CYB	m.14766C>T	NTG	Korea	C-C	NTG: 196; C: 202	2011	Jeoung ²²⁶
3p22.2	DCLK3	rs17197692	RNFLT	NL	Linkage	23000	2014	Axenovich ⁹⁴
11q14.1	DLG2	rs790357	IOP	Norfolk island	Cases	Population: 330	2017	Matovinovic ¹⁷⁹

oci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
q31.22	EDNRA	rs5335	POAG	Japan	C-C	HTG: 176, NTG: 250, C:224	2005	Ishikawa ²³¹
-		rs5335	POAG	Mexico	C-C	POAG: 118, C: 100	2013	Buentello-Volante ²¹⁶
q11.23	ELN	rs149154973	POAG	Multi-ethnic	GWAS	(D) POAG: 4986 C: 58426	2018	Choquet ⁶⁹
p12.1	ELOVL5	rs735860	NTG, POAG	Japan	C-C	NTG: 305, C: 355	2010	Writing <u>184</u>
		rs735860	POAG	Japan	C-C	HTG: 212, NTG: 158, C: 191	2011	Mabuchi ¹⁸⁵
		rs735860	NTG, POAG	Japan	C-C	HTG: 212, NTG: 213, C: 191	2015	Mabuchi ²³²
4q23.3	ESR2	rs1256031	POAG, IOP	Japan	C-C	HTG: 212, NTG: 213, C: 191	2010	Mabuchi ²³³
		rs4986938	POAG	•				
5q21.1	FBN1	rs17352842	CCT	Australia-Cau	PC	956	2010	Dimasi <u>¹¹¹</u>
14q31.3	GALC	Heterozygous	POAG	Cau	C-C	POAG: 1030, C: 2330	2011	Liu ²³⁴
		deletion						
		Heterozygous	-	Korea	C-C	NTG: 276, C: 135	2016	Shin ²³⁵
		deletion						
9p24.2	GLIS3	rs2224492	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
7q35-36	GPDS1	D7S2462	NTG	Japan	C-C	NTG: 141, C: 101	2009	Nakamura ²³⁶
10p12.1	GPR158	rs11014632	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
3p21.31	GPX1	rs1050450	POAG	Poland	C-C	POAG: 209; C: 191	2016	Malinowska ²³⁷
22q11.2	GSTT1	null genotype	POAG	Turkey	C-C	POAG: 144, C: 121	2007	Unal <u>¹⁴¹</u>
		null genotype	POAG	Brazil	C-C	POAG: 100, C: 53	2014	Silva ²³⁸
		active	POAG	Serbia	C-C	POAG: 102, C:202	2018	Stamenkovic ¹³⁹
		null genotype	-	Cau, Asian	Meta	POAG: 1306, C: 1114	2013	Lu ^{<u>239</u>}
		null genotype	-	Cau, Asian	meta	POAG: 1591 C: 1337	2017	Malik ¹⁴²
17p13.3	HABP1	rs1805429	POAG	India	C-C	HTG: 116, NTG: 321, C: 96	2012	Basu ²⁴⁰
		rs2472614	POAG					
		rs8072363	POAG					
ntDNA	Haplogroups	non-L3	POAG	African	C-C	POAG: 1919, C: 2162	2018	Gudiseva ²²⁵
		haplotype						
3q24.12	HAS2	rs6651224	POAG	India	C-C	HTG: 116, NTG: 321, C: 96	2012	Basu ²⁴⁰
2p12	HK2	rs678350	POAG, NTG	Japan	C-C	HTG: 310, NTG: 407, C: 391	2013	Shi ²⁴¹
Sp21.3	HSP70-1	rs1008438	POAG	Japan	C-C	HTG: 211, NTG: 290, C: 241	2007	Tosaka ²⁴²
	HSP70	rs1043618	-	Pakistan	C-C	POAG: 159, C: 166	2010	Ayub ¹⁵¹
		rs1043618	POAG	Cau	C-C	POAG: 167, C: 193	2014	Nowak ²¹⁸
		rs1043618	RFNLT	Poland	C-C	POAG: 363, C: 406	2015	Nowak ⁹⁰
1p34.2	HIVEP3	rs1866758	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
3p21.3	HYAL3	rs2285044	POAG	India	C-C	HTG: 116, NTG: 321, C: 96	2012	Basu ²⁴⁰
		rs3774753	POAG					
		rs1310073	POAG					
		rs1076872	POAG					
1p15.5	IGF2	rs680	POAG	China	C-C	POAG: 60, C: 104	2003	Tsai ²⁴³
2q34	IKZF2	rs56335522	POAG	Multi-ethnic	GWAS	(D) POAG: 7329 C: 169561	2018	Choquet ⁶⁹
2q14	IL1A	rs1800587	POAG	China	C-C	PÓAG: 156, C: 167	2006	Wang ²⁴⁴
		rs1800587	-	China	C-C	POAG 194, C: 79	2007	How ²⁴⁵
		rs1800587	NTG	India	C-C	HTG: 116, NTG: 199, C: 301	2010	Mookherjee ²⁸

oci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
14	IL1A	rs1800587	-	Asian	Meta	POAG: 822 , C: 714	2017	Li <u>246</u>
		rs1800587	-	Brazil	C-C	POAG: 214, C:187	2018	Oliveira ²⁴⁷
		rs17561	-					
q14	IL1B	rs16944	POAG	India	C-C	HTG: 116, NTG: 199, C: 301	2010	Mookherjee ²⁸
		rs16944	POAG	Cau	C-C	POAG: 255, C: 256	2013	Markiewicz ¹⁴⁴
		rs16944	-	China	C-C	POAG: 60, C:103	2003	Lin ^{<u>198</u>}
		rs16944	-	Asian/Cau	Meta	POAG:1053, C:986	2017	Li ²⁴⁶
		rs1143634	-					
		rs1143634	-	China	C-C	POAG 194, C: 79	2007	How <u>²⁴⁵</u>
		rs1143634	POAG	Brazil	C-C	POAG: 214, C:187	2018	Oliveira ²⁴⁷
		rs16944	POAG					
		rs1134627	-					
17p13.2	INCA1	rs34629349	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
9p23	LINC00583	rs1831902	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
20q12	LINC01734	rs3918508	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
9q33.3	LMX1B	rs7859156	POAG	UK	C-C	HTG: 272, NTG: 37, C: 276	2009	Park ²⁴⁸
		rs7854658	NTG					
		rs55770306	POAG	Multi-ethnic	GWAS	(D) POAG: 7329 C: 169561	2018	Choquet ⁶⁹
5q24.1	LOXL1	rs1048661	POAG	Cau, Asain	Meta	PÓAG: 2611, C: 2682	2015	Wu ²⁴⁹
		rs3825942	POAG			·		
		rs2165241	POAG					
		rs2165241	POAG	Spain	C-C	POAG: 329, C: 329	2015	Zanon-Moreno ²⁵⁰
		rs2165241	-	Cau, Asian	Meta	POAG: 2098, C: 16473	2014	Sun ²⁵¹
		rs1048661	-	Greece	C-C	POAG: 66, C: 93	2014	Anastapoulos ²⁵²
		rs1048661	-	Cau, Asian	Meta	POAG: 1795, C: 2916	2014	Sun ²⁵¹
		rs1048661	-	Cau, Asian	Meta	POAG: 2223, C: 16664	2010	Chen ²⁵³
		rs1048661	-	Turkey	C-C	POAG: 100, C: 100	2013	Kasim ²⁵⁴
		rs1048661	-	Greece	C-C	POAG: 52, C: 107	2013	Chiras ⁹¹
		rs3825942	-	0.0000	00		2010	Cilliao
		rs3825942	-	Greece	C-C	POAG: 66, C: 93	2014	Anastapoulos ²⁵²
		rs3825942	-	Cau, Asian	Meta	POAG: 2456, C: 2846	2014	Sun ²⁵¹
		rs3825942	-	Cau, Asian	Meta	POAG: 2223, C: 16664	2014	Chen ²⁵³
		rs3825942	-	Turkey	C-C	POAG: 2223, C. 10004 POAG: 100, C: 100	2010	Kasim ²⁵⁴
3q27.3-q28	LPP	rs13076750	- IOP	Multi-ethnic	GWAS	(D)69,756	2013	Choquet ⁶⁸
3q22 3q22	LRP12/ZFPM12	rs284489	NTG	Cau	Meta	NTG: 720, C: 3443	2017	Wiggs <u>120</u>
6q12.2	LPCAT2	rs1502007	ODA	Norfolk Island	Cases	330	2012	Kho ²²¹
•								Wolf ⁵⁹
q26.33	MFN1	rs2111534	NTG	Germany	C-C	POAG: 285, C:282	2009	
p36.22	MFN2	rs873458	NTG	Germany	C-C	POAG: 285, C:282	2009	Wolf ⁵⁹
		rs2295281	NTG	Germany	0.0		~ ~ ~ ~	10F5
1q22.2	MPP7	rs7916852	POAG	India	C-C	POAG: 746, C: 697	2016	Vishal ²⁵⁵
		rs10763643	POAG					
		rs10763644	POAG					

.oci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
6q12.2	MMP2	rs9923304	ODA	Poland	C-C	POAG: 271, C: 281	2013	Kaminska ²⁵⁶
		rs243865	ODA					
1q22.2	MMP12	rs2276109	ODA	Cau	C-C	POAG: 255, C: 256	2013	Markiewicz ¹⁴⁴
1q13.1	MIR612	rs12803915	VCDR, CA	EU, Asain	GWAS	37930	2017	Ghanbari ²⁵⁷
0q13.33	MIR3196	rs113297757	POAG	Greece	C-C	POAG: 40, C:188	2018	Chatzikyriakidou ²⁵⁸
4q11.2	MIR4707	rs2273626	VCDR, CA	EU, Asian	meta	37930	2017	Ghanbari ²⁵⁷
p36.22	MTHFR	rs1801133	POAG	Germany	C-C	POAG: 76, C: 71	2005	Jünemann ²⁵⁹
		rs1801133	POAG	India	C-C	POAG: 144, C: 173	2014	Gupta ²⁶⁰
		rs1801133	POAG	Saudi Arabia	C-C	POAG: 210, C: 280	2016	Al-Shahrani ²⁶¹
		rs1801133	-	Cau, Asian, Mexican	Meta	POAG: 1970, C: 1712	2015	Zhao ²⁶²
ntDNA	MT-ND2	m.4883C>T	NTG	Korea	C-C	NTG: 196; C: 202	2014	Jeoung ²²⁶
ntDNA	MT-ND5	m.12359C> G	POAG	Saudi Arabia	C-C	POAG: 27, C: 159	2006	Abu-Amero ²⁶³
		17 variants	POAG	India	C-C	POAG: 101, C: 71	2013	Banerjee ²⁶⁴
		4 variants	POAG	India, Ireland	C-C	POAG: 32, C: 110	2015	Sundaresan ²⁶⁵
cen-q13	NCK2	D2S176 marker	NTG	Japan	C-C	POAG: 143, C: 103	2008	Akiyama ²⁶⁶
I		rs2033008	NTG	Japan	C-C	HTG: 310, NTG: 407, C: 391	2013	Shi ²⁴¹
9p13.2	OLFM2	c.431G→A	POAG	Japan	C-C	HTG: 215, NTG: 277, C: 240	2006	Funayama ²⁶⁷
, q31	OPTC	rs553656496	POAG	India	C-C	POAG: 200, C: 100	2007	Acharya ²⁶⁸
1-		c.382T > C	POAG			,		,
		rs559635109	POAG					
		Mutations	-	India	C-C	HTG: 198, NTG: 53, C: 100	2007	Kumar ⁵³
0p13	PANK2/RNF24	rs6037744	VCDR	NL	Linkage	23000	2011	Axenovich ⁹⁴
q27.1	PARL	rs1000002	NTG	Germany	C-C	POAG: 285, C:282	2009	Wolf <u>⁵⁹</u>
4=		rs1402003	NTG	Connaily			2000	
q23.3	PDE7B	rs9494457	POAG, IOP	Multi-ethnic	GWAS	(D) POAG: 4986 C: 58426	2018	Choquet ⁶⁹
q21.1	PDIA5	rs11720822	POAG	US-Cau	C-C	POAG: 678, C: 421	2011	Carbone ²¹⁹
4		rs2241962	POAG					
q25	PITX2-C4ORF32	Rs17527016	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
9–0 p12.2	PKHD1	rs1396046	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
p25.2	PPARG	rs1801282	POAG	India	C-C	POAG: 122, C: 112	2016	Chandra ²²⁹
q21.3	PON1	rs3917594	IOP	Japan	C-C	POAG: 555, C: 284	2006	Inagaki ²⁶⁹
q= 1.0		rs662	POAG	China	C-C	POAG: 37, C: 100	2010	Zhou ²⁷⁰
q33.3	PSMB7	rs479398	POAG	US-Cau	C-C	POAG: 207, C: 270	2010	Carbone ²¹⁹
q21.2	RAB9BP1	copy number	IOP	EU, AU	GWAS	(D) 992; (R): 2087	2013	Nag ²⁷¹
q21.2 q21	RFPL4B	rs141917145	IOP	Multi-ethnic	GWAS	(D)69,756	2010	Choquet ⁶⁸
p21.3	RHOA	rs974495	POAG	Turkey	C-C	POAG: 179, C: 182	2017	Saracaloglu ²⁷²
4q11.2	RPGRIP1	20 variants	NTG, POAG	Germany	C-C	(D) HTG: 270, NTG: 82, C: 376	2010	Fernandez-
1911-2		20 1010110		Connuny	00	(R) HTG: 79, NTG: 304, C: 104	2011	Martinez ²⁷³
2q13.2	RPS26	rs10876864	ODA	Norfolk Island	Cases	330	2018	Kho ²²¹
2q13.2	RRP7A	rs4822136	IOP	Norfolk Island	Cases	330	2018	Kho ²²¹
q25.1	TSC22D2	rs11710845	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
2q12.2	SEC14L2/TAP	rs737723	POAG	Mediterranean	C-C	POAG: 250, C: 250	2013	Zanon-Moreno ²⁷⁴
q21.11	SEMA3C-HGF	rs1509922	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸

Supplemental table 4: Continued

Loci	Gene	Polymorphism	Trait	Population	Study	Size (n)	Year	Reference
20p13	SIRPA	rs6034909	VCDR	NL	Linkage	23000	2011	Axenovich ⁹⁴
20p13	SLC23A2	rs1279683	POAG	Mediterranean	C-C	POAG: 250, C: 250	2013	Zanon-Moreno ²⁷⁴
17p13.3	SMG6	rs4790881	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
15q21.3	TCF12	rs2593221	POAG	Multi-ethnic	GWAS	(D) POAG: 4986 C: 58426	2018	Choquet ⁶⁹
7p21.3	THSD7A	rs12699251	POAG	Multi-ethnic	GWAS	(D) POAG: 7329 C: 169561	2018	Choquet ⁶⁹
12q23.3	TMEM119	rs74481774	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
11q23.3	TMEM136	rs12806740	POAG	Multi-ethnic	GWAS	(D) POAG: 7329 C: 169561	2018	Choquet ⁶⁹
2q11.2	TMEM182	rs869833	POAG	Japan	C-C	HTG: 310, NTG: 407, C: 391	2013	Shi ²⁴¹
2q35	TNS1	rs1035673	IOP	Multi-ethnic	GWAS	(D)69,756	2017	Choquet ⁶⁸
9q34.2	VAV2	rs2156323	POAG	Japan	C-C	PÓAG: 100, C: 100	2010	Fujikawa ²⁷⁵
1p13.3	VAV3	rs2801219	POAG	Japan	C-C	POAG: 100, C: 100	2010	Fujikawa ²⁷⁵
12q13.11	VDR	rs1544410	POAG	China	C-C	POAG: 73, C: 71	2016	Lv ²⁷⁶
•		rs731236	POAG					
6p12	VEGF	- 460 gene polymorphism	POAG	China	C-C	POAG: 60, C: 78	2014	Lin ²⁷⁷
19q13.31	XRCC1	rs25487	POAG	Pakistan	C-C	POAG: 160, C: 193	2011	Yousaf ²⁷⁸
·		rs25487	POAG, VCDR, ODA, RNFLT	Poland	C-C	POAG: 170, C: 193	2013	Szaflik ²⁷⁹
		rs25487	POAG	Poland	C-C	POAG: 412, C: 454	2015	Cuchra ²⁸⁰
		rs25487	-	Turkey	C-C	POAG: 144 , C: 121	2007	Güven ²⁸¹
19q13.32	XPD	rs13181	POAG	Pakistan	C-C	POAG: 160, C: 193	2011	Yousaf ²⁷⁸
		rs13181	-	Turkey	C-C	POAG: 144 , C: 121	2007	Güven ²⁸¹

Abbreviations: CCT= central corneal thickness; NTG= normal tension glaucoma; IOP= intraocular pressure; ODA= optic disc area; POAG= primary open angle glaucoma; RNFLT= retina nerve fiber layer thickness; VCDR= vertical cup disc ratio; AA= African American, Cau= Caucasian; NL= Netherlands; UK= United Kingdom; US= United States; C-C= case control; Meta= meta-analysis. (-) indicates that no significant association between the gene and any of the glaucoma traits was observe

Supplemental References

1. Sheffield VC, Stone EM, Alward WL, Drack AV, Johnson AT, Streb LM, Nichols BE. Genetic linkage of familial open angle glaucoma to chromosome 1q21-q31. Nat Genet. 1993;4(1):47-50

2. Stone EM, Fingert JH, Alward WL, Nguyen TD, Polansky JR, Sunden SL, Nishimura D, Clark AF, Nystuen A, Nichols BE, et al. Identification of a gene that causes primary open angle glaucoma. Science. 1997;275(5300):668-70

3. Fingert JH, Heon E, Liebmann JM, Yamamoto T, Craig JE, Rait J, Kawase K, Hoh ST, Buys YM, Dickinson J, et al. Analysis of myocilin mutations in 1703 glaucoma patients from five different populations. Hum Mol Genet. 1999;8(5):899-905

4. Hewitt AW, Mackey DA, Craig JE. Myocilin allele-specific glaucoma phenotype database. Hum Mutat. 2008;29(2):207-11

5. Stoilova D, Child A, Trifan OC, Crick RP, Coakes RL, Sarfarazi M. Localization of a locus (GLC1B) for adult-onset primary open angle glaucoma to the 2cen-q13 region. Genomics. 1996;36(1):142-50

6. Charlesworth JC, Stankovich JM, Mackey DA, Craig JE, Haybittel M, Westmore RN, Sale MM. Confirmation of the adult-onset primary open angle glaucoma locus GLC1B at 2cen-q13 in an Australian family. Ophthalmologica. 2006;220(1):23-30

7. Allingham RR, Wiggs JL, Damji KF, Herndon L, Youn J, Tallett DA, Jones KH, Del Bono EA, Reardon M, Haines JL, et al. Adult-onset primary open angle glaucoma does not localize to chromosome 2cen-q13 in North American families. Hum Hered. 1998;48(5):251-5

Wirtz MK, Samples JR, Kramer PL, Rust K, Topinka JR, Yount J, Koler RD, Acott TS. Mapping a gene for adult-onset primary open-angle glaucoma to chromosome 3q. Am J Hum Genet. 1997;60(2):296-304
 Samples JR, Kitsos G, Economou-Petersen E, Steinkamp P, Sykes R, Rust K, Patzer C, Grigoriadou M, Aperis G, Psilas K, et al. Refining the primary open-angle glaucoma GLC1C region on chromosome 3 by haplotype analysis. Clin Genet. 2004;65(1):40-4

10. Keller KE, Yang YF, Sun YY, Sykes R, Gaudette ND, Samples JR, Acott TS, Wirtz MK. Interleukin-20 receptor expression in the trabecular meshwork and its implication in glaucoma. J Ocul Pharmacol Ther. 2014;30(2-3):267-76

11. Trifan OC, Traboulsi EI, Stoilova D, Alozie I, Nguyen R, Raja S, Sarfarazi M. A third locus (GLC1D) for adult-onset primary open-angle glaucoma maps to the 8q23 region. Am J Ophthalmol. 1998;126(1):17-28

12. Sarfarazi M, Child A, Stoilova D, Brice G, Desai T, Trifan OC, Poinoosawmy D, Crick RP. Localization of the fourth locus (GLC1E) for adult-onset primary open-angle glaucoma to the 10p15-p14 region. Am J Hum Genet. 1998;62(3):641-52

13. Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, Heon E, Krupin T, Ritch R, Kreutzer D, et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science. 2002;295(5557):1077-9

14. Alward WL, Kwon YH, Kawase K, Craig JE, Hayreh SS, Johnson AT, Khanna CL, Yamamoto T, Mackey DA, Roos BR, et al. Evaluation of optineurin sequence variations in 1,048 patients with open-angle glaucoma. Am J Ophthalmol. 2003;136(5):904-10

15. Aung T, Ebenezer ND, Brice G, Child AH, Prescott Q, Lehmann OJ, Hitchings RA, Bhattacharya SS. Prevalence of optineurin sequence variants in adult primary open angle glaucoma: implications for diagnostic testing. J Med Genet. 2003;40(8):e101

16. Melki R, Belmouden A, Akhayat O, Brezin A, Garchon HJ. The M98K variant of the OPTINEURIN (OPTN) gene modifies initial intraocular pressure in patients with primary open angle glaucoma. J Med Genet. 2003;40(11):842-4

17. Sripriya S, Nirmaladevi J, George R, Hemamalini A, Baskaran M, Prema R, Ve Ramesh S, Karthiyayini T, Amali J, Job S, et al. OPTN gene: profile of patients with glaucoma from India. Mol Vis. 2006;12:816-20

18. Wirtz MK, Samples JR, Rust K, Lie J, Nordling L, Schilling K, Acott TS, Kramer PL. GLC1F, a new primary open-angle glaucoma locus, maps to 7q35-q36. Arch Ophthalmol. 1999;117(2):237-41

19. Murakami K, Meguro A, Ota M, Shiota T, Nomura N, Kashiwagi K, Mabuchi F, Iijima H, Kawase K, Yamamoto T, et al. Analysis of microsatellite polymorphisms within the GLC1F locus in Japanese patients with normal tension glaucoma. Mol Vis. 2010;16:462-6

20. Pasutto F, Keller KE, Weisschuh N, Sticht H, Samples JR, Yang YF, Zenkel M, Schlotzer-Schrehardt U, Mardin CY, Frezzotti P, et al. Variants in ASB10 are associated with open-angle glaucoma. Hum Mol Genet. 2012;21(6):1336-49

21. Micheal S, Ayub H, Islam F, Siddiqui SN, Khan WA, Akhtar F, Qamar R, Khan MI, den Hollander AI. Variants in the ASB10 Gene Are Associated with Primary Open Angle Glaucoma. PLoS One. 2015;10(12):e0145005

22. Fingert JH, Roos BR, Solivan-Timpe F, Miller KA, Oetting TA, Wang K, Kwon YH, Scheetz TE, Stone EM, Alward WL. Analysis of ASB10 variants in open angle glaucoma. Hum Mol Genet. 2012;21(20):4543-8

23. Monemi S, Spaeth G, DaSilva A, Popinchalk S, Ilitchev E, Liebmann J, Ritch R, Heon E, Crick RP, Child A, et al. Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1. Hum Mol Genet. 2005;14(6):725-33

24. Weisschuh N, Wolf C, Wissinger B, Gramer E. Variations in the WDR36 gene in German patients with normal tension glaucoma. Mol Vis. 2007;13:724-9

25. Pasutto F, Mardin CY, Michels-Rautenstrauss K, Weber BH, Sticht H, Chavarria-Soley G, Rautenstrauss B, Kruse F, Reis A. Profiling of WDR36 missense variants in German patients with glaucoma. Invest Ophthalmol Vis Sci. 2008;49(1):270-4

26. Fan BJ, Wang DY, Cheng CY, Ko WC, Lam SC, Pang CP. Different WDR36 mutation pattern in Chinese patients with primary open-angle glaucoma. Mol Vis. 2009;15:646-53

27. Lee MK, Woo SJ, Kim JI, Cho SI, Kim H, Sung J, Seo JS, Kim DM. Replication of a glaucoma candidate gene on 5q22.1 for intraocular pressure in mongolian populations: the GENDISCAN Project. Invest Ophthalmol Vis Sci. 2010;51(3):1335-40

28. Mookherjee S, Chakraborty S, Vishal M, Banerjee D, Sen A, Ray K. WDR36 variants in East Indian primary open-angle glaucoma patients. Mol Vis. 2011;17:2618-27

29. Frezzotti P, Pescucci C, Papa FT, Iester M, Mittica V, Motolese I, Peruzzi S, Artuso R, Longo I, Mencarelli MA, et al. Association between primary open-angle glaucoma (POAG) and WDR36 sequence variance in Italian families affected by POAG. Br J Ophthalmol. 2011;95(5):624-6

30. Blanco-Marchite C, Sanchez-Sanchez F, Lopez-Garrido MP, Inigez-de-Onzono M, Lopez-Martinez F, Lopez-Sanchez E, Alvarez L, Rodriguez-Calvo PP, Mendez-Hernandez C, Fernandez-Vega L, et al. WDR36 and P53 gene variants and susceptibility to primary open-angle glaucoma: analysis of gene-gene interactions. Invest Ophthalmol Vis Sci. 2011;52(11):8467-78

31. Su HA, Li SY, Yang JJ, Yen YC. An Application of NGS for WDR36 Gene in Taiwanese Patients with Juvenile-Onset Open-Angle Glaucoma. Int J Med Sci. 2017;14(12):1251-6

32. Suriyapperuma SP, Child A, Desai T, Brice G, Kerr A, Crick RP, Sarfarazi M. A new locus (GLC1H) for adult-onset primary open-angle glaucoma maps to the 2p15-p16 region. Arch Ophthalmol. 2007;125(1):86-92

33. Mackay DS, Bennett TM, Shiels A. Exome Sequencing Identifies a Missense Variant in EFEMP1 Co-Segregating in a Family with Autosomal Dominant Primary Open-Angle Glaucoma. PLoS One. 2015;10(7):e0132529

34. Allingham RR, Wiggs JL, Hauser ER, Larocque-Abramson KR, Santiago-Turla C, Broomer B, Del Bono EA, Graham FL, Haines JL, Pericak-Vance MA, et al. Early adult-onset POAG linked to 15q11-13 using ordered subset analysis. Invest Ophthalmol Vis Sci. 2005;46(6):2002-5

35. Woodroffe A, Krafchak CM, Fuse N, Lichter PR, Moroi SE, Schertzer R, Downs CA, Duren WL, Boehnke M, Richards JE. Ordered subset analysis supports a glaucoma locus at GLC1I on chromosome 15 in families with earlier adult age at diagnosis. Exp Eye Res. 2006;82(6):1068-74

36. Wiggs JL, Lynch S, Ynagi G, Maselli M, Auguste J, Del Bono EA, Olson LM, Haines JL. A genomewide scan identifies novel early-onset primary open-angle glaucoma loci on 9q22 and 20p12. Am J Hum Genet. 2004;74(6):1314-20

37. Wiggs JL, Howell GR, Linkroum K, Abdrabou W, Hodges E, Braine CE, Pasquale LR, Hannon GJ, Haines JL, John SW. Variations in COL15A1 and COL18A1 influence age of onset of primary open angle glaucoma. Clin Genet. 2013;84(2):167-74

38. Sud A, Del Bono EA, Haines JL, Wiggs JL. Fine mapping of the GLC1K juvenile primary open-angle glaucoma locus and exclusion of candidate genes. Mol Vis. 2008;14:1319-26

39. Baird PN, Foote SJ, Mackey DA, Craig J, Speed TP, Bureau A. Evidence for a novel glaucoma locus at chromosome 3p21-22. Hum Genet. 2005;117(2-3):249-57

40. Pang CP, Fan BJ, Canlas O, Wang DY, Dubois S, Tam PO, Lam DS, Raymond V, Ritch R. A genome-wide scan maps a novel juvenile-onset primary open angle glaucoma locus to chromosome 5q. Mol Vis. 2006;12:85-92

41. Wang DY, Fan BJ, Chua JK, Tam PO, Leung CK, Lam DS, Pang CP. A genome-wide scan maps a novel juvenile-onset primary open-angle glaucoma locus to 15q. Invest Ophthalmol Vis Sci. 2006;47(12):5315-21

42. Fingert JH, Honkanen RA, Shankar SP, Affatigato LM, Ehlinger MA, Moore MD, Jampol LM, Sheffield VC, Stone EM, Alward WL. Familial cavitary optic disk anomalies: identification of a novel genetic locus. Am J Ophthalmol. 2007;143(5):795-800

43. Fingert JH, Robin AL, Stone JL, Roos BR, Davis LK, Scheetz TE, Bennett SR, Wassink TH, Kwon YH, Alward WL, et al. Copy number variations on chromosome 12q14 in patients with normal tension glaucoma. Hum Mol Genet. 2011;20(12):2482-94

44. Kawase K, Allingham RR, Meguro A, Mizuki N, Roos B, Solivan-Timpe FM, Robin AL, Ritch R, Fingert JH. Confirmation of TBK1 duplication in normal tension glaucoma. Exp Eye Res. 2012;96(1):178-80

45. Ritch R, Darbro B, Menon G, Khanna CL, Solivan-Timpe F, Roos BR, Sarfarzi M, Kawase K, Yamamoto T, Robin AL, et al. TBK1 gene duplication and normal-tension glaucoma. JAMA Ophthalmol. 2014;132(5):544-8

46. Awadalla MS, Fingert JH, Roos BE, Chen S, Holmes R, Graham SL, Chehade M, Galanopolous A, Ridge B, Souzeau E, et al. Copy number variations of TBK1 in Australian patients with primary open-angle glaucoma. Am J Ophthalmol. 2015;159(1):124-30 e1

47. Porter LF, Urquhart JE, O'Donoghue E, Spencer AF, Wade EM, Manson FD, Black GC. Identification of a novel locus for autosomal dominant primary open angle glaucoma on 4q35.1-q35.2. Invest Ophthalmol Vis Sci. 2011;52(11):7859-65

48. Stoilov I, Akarsu AN, Sarfarazi M. Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet. 1997;6(4):641-7

49. Melki R, Colomb E, Lefort N, Brezin AP, Garchon HJ. CYP1B1 mutations in French patients with earlyonset primary open-angle glaucoma. J Med Genet. 2004;41(9):647-51

50. Acharya M, Mookherjee S, Bhattacharjee A, Bandyopadhyay AK, Daulat Thakur SK, Bhaduri G, Sen A, Ray K. Primary role of CYP1B1 in Indian juvenile-onset POAG patients. Mol Vis. 2006;12:399-404

51. Chakrabarti S, Devi KR, Komatireddy S, Kaur K, Parikh RS, Mandal AK, Chandrasekhar G, Thomas R. Glaucoma-associated CYP1B1 mutations share similar haplotype backgrounds in POAG and PACG phenotypes. Invest Ophthalmol Vis Sci. 2007;48(12):5439-44

52. Bhattacharjee A, Banerjee D, Mookherjee S, Acharya M, Banerjee A, Ray A, Sen A, Indian Genome Variation C, Ray K. Leu432Val polymorphism in CYP1B1 as a susceptible factor towards predisposition to primary open-angle glaucoma. Mol Vis. 2008;14:841-50

53. Kumar A, Basavaraj MG, Gupta SK, Qamar I, Ali AM, Bajaj V, Ramesh TK, Prakash DR, Shetty JS, Dorairaj SK. Role of CYP1B1, MYOC, OPTN, and OPTC genes in adult-onset primary open-angle glaucoma: predominance of CYP1B1 mutations in Indian patients. Mol Vis. 2007;13:667-76

54. Lopez-Garrido MP, Sanchez-Sanchez F, Lopez-Martinez F, Aroca-Aguilar JD, Blanco-Marchite C, Coca-Prados M, Escribano J. Heterozygous CYP1B1 gene mutations in Spanish patients with primary openangle glaucoma. Mol Vis. 2006;12:748-55

55. Pasutto F, Chavarria-Soley G, Mardin CY, Michels-Rautenstrauss K, Ingelman-Sundberg M, Fernandez-Martinez L, Weber BH, Rautenstrauss B, Reis A. Heterozygous loss-of-function variants in CYP1B1 predispose to primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2010;51(1):249-54
56. Patel HY, Richards AJ, De Karolyi B, Best SJ, Danesh-Meyer HV, Vincent AL. Screening glaucoma genes in adult glaucoma suggests a multiallelic contribution of CYP1B1 to open-angle glaucoma phenotypes. Clin Experiment Ophthalmol. 2012;40(4):e208-17

57. Wang Z, Li M, Li L, Sun H, Lin XY. Association of single nucleotide polymorphisms in the CYP1B1 gene with the risk of primary open-angle glaucoma: a meta-analysis. Genet Mol Res. 2015;14(4):17262-72
58. Micheal S, Ayub H, Zafar SN, Bakker B, Ali M, Akhtar F, Islam F, Khan MI, Qamar R, den Hollander AI. Identification of novel CYP1B1 gene mutations in patients with primary congenital and primary open-angle glaucoma. Clin Exp Ophthalmol. 2015;43(1):31-9

59. Wolf C, Gramer E, Muller-Myhsok B, Pasutto F, Reinthal E, Wissinger B, Weisschuh N. Evaluation of nine candidate genes in patients with normal tension glaucoma: a case control study. BMC Med Genet. 2009;10:91

60. Fan BJ, Liu K, Wang DY, Tham CC, Tam PO, Lam DS, Pang CP. Association of polymorphisms of tumor necrosis factor and tumor protein p53 with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2010;51(8):4110-6

61. Dong S, Yang J, Yu W, Kota P, Xia X, Xu H. No association of genetic polymorphisms in CYP1B1 with primary open-angle glaucoma: a meta- and gene-based analysis. Mol Vis. 2012;18:786-96

62. Abu-Amero KK, Sultan T, Al-Obeidan SA, Kondkar AA. Analysis of CYP1B1 sequence alterations in patients with primary open-angle glaucoma of Saudi origin. Clin Ophthalmol. 2018;12:1413-6

63. Huang X, Wang N, Xiao X, Li S, Zhang Q. A novel truncation mutation in GJA1 associated with open angle glaucoma and microcornea in a large Chinese family. Eye (Lond). 2015;29(7):972-7

64. Micheal S, Saksens NT, Hogewind BF, Khan MI, Hoyng CB, den Hollander AI. Identification of TP53BP2 as a Novel Candidate Gene for Primary Open Angle Glaucoma by Whole Exome Sequencing in a Large Multiplex Family. Mol Neurobiol. 2017

65. Hysi PG, Cheng CY, Springelkamp H, Macgregor S, Bailey JN, Wojciechowski R, Vitart V, Nag A, Hewitt AW, Hohn R, et al. Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma. Nat Genet. 2014;46(10):1126-30

66. Gharahkhani P, Burdon KP, Fogarty R, Sharma S, Hewitt AW, Martin S, Law MH, Cremin K, Bailey JN, Loomis SJ, et al. Common variants near ABCA1, AFAP1 and GMDS confer risk of primary open-angle glaucoma. Nat Genet. 2014;46(10):1120-5

67. Bailey JN, Loomis SJ, Kang JH, Allingham RR, Gharahkhani P, Khor CC, Burdon KP, Aschard H, Chasman DI, Igo RP, Jr., et al. Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nat Genet. 2016;48(2):189-94

68. Choquet H, Thai KK, Yin J, Hoffmann TJ, Kvale MN, Banda Y, Schaefer C, Risch N, Nair KS, Melles R, et al. A large multi-ethnic genome-wide association study identifies novel genetic loci for intraocular pressure. Nat Commun. 2017;8(1):2108

69. Choquet H, Paylakhi S, Kneeland SC, Thai KK, Hoffmann TJ, Yin J, Kvale MN, Banda Y, Tolman NG, Williams PA, et al. A multiethnic genome-wide association study of primary open-angle glaucoma identifies novel risk loci. Nat Commun. 2018;9(1):2278

70. Chen Y, Lin Y, Vithana EN, Jia L, Zuo X, Wong TY, Chen LJ, Zhu X, Tam PO, Gong B, et al. Common variants near ABCA1 and in PMM2 are associated with primary open-angle glaucoma. Nat Genet. 2014;46(10):1115-9

71. Springelkamp H, Iglesias AI, Mishra A, Hohn R, Wojciechowski R, Khawaja AP, Nag A, Wang YX, Wang JJ, Cuellar-Partida G, et al. New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics. Hum Mol Genet. 2017

72. Springelkamp H, Mishra A, Hysi PG, Gharahkhani P, Hohn R, Khor CC, Cooke Bailey JN, Luo X, Ramdas WD, Vithana E, et al. Meta-analysis of Genome-Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology. Genet Epidemiol. 2015;39(3):207-16

73. Khan MI, Micheal S, Akhtar F, Naveed A, Ahmed A, Qamar R. Association of ABO blood groups with glaucoma in the Pakistani population. Can J Ophthalmol. 2009;44(5):582-6

74. Lu Y, Vitart V, Burdon KP, Khor CC, Bykhovskaya Y, Mirshahi A, Hewitt AW, Koehn D, Hysi PG, Ramdas WD, et al. Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. Nat Genet. 2013;45(2):155-63

75. Springelkamp H, Hohn R, Mishra A, Hysi PG, Khor CC, Loomis SJ, Bailey JN, Gibson J, Thorleifsson G, Janssen SF, et al. Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process. Nat Commun. 2014;5:4883

76. Iglesias AI, Mishra A, Vitart V, Bykhovskaya Y, Hohn R, Springelkamp H, Cuellar-Partida G, Gharahkhani P, Bailey JNC, Willoughby CE, et al. Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases. Nat Commun. 2018;9(1):1864

77. Vitart V, Bencic G, Hayward C, Skunca Herman J, Huffman J, Campbell S, Bucan K, Navarro P, Gunjaca G, Marin J, et al. New loci associated with central cornea thickness include COL5A1, AKAP13 and AVGR8. Hum Mol Genet. 2010;19(21):4304-11

78. Vithana EN, Aung T, Khor CC, Cornes BK, Tay WT, Sim X, Lavanya R, Wu R, Zheng Y, Hibberd ML, et al. Collagen-related genes influence the glaucoma risk factor, central corneal thickness. Hum Mol Genet. 2011;20(4):649-58

79. Cornes BK, Khor CC, Nongpiur ME, Xu L, Tay WT, Zheng Y, Lavanya R, Li Y, Wu R, Sim X, et al. Identification of four novel variants that influence central corneal thickness in multi-ethnic Asian populations. Hum Mol Genet. 2012;21(2):437-45

80. Ulmer M, Li J, Yaspan BL, Ozel AB, Richards JE, Moroi SE, Hawthorne F, Budenz DL, Friedman DS, Gaasterland D, et al. Genome-wide analysis of central corneal thickness in primary open-angle glaucoma cases in the NEIGHBOR and GLAUGEN consortia. Invest Ophthalmol Vis Sci. 2012;53(8):4468-74

81. Mabuchi F, Tang S, Ando D, Yamakita M, Wang J, Kashiwagi K, Yamagata Z, Iijima H, Tsukahara S. The apolipoprotein E gene polymorphism is associated with open angle glaucoma in the Japanese population. Mol Vis. 2005;11:609-12

82. Fan BJ, Wang DY, Fan DS, Tam PO, Lam DS, Tham CC, Lam CY, Lau TC, Pang CP. SNPs and interaction analyses of myocilin, optineurin, and apolipoprotein E in primary open angle glaucoma patients. Mol Vis. 2005;11:625-31

83. Lam CY, Fan BJ, Wang DY, Tam PO, Yung Tham CC, Leung DY, Ping Fan DS, Chiu Lam DS, Pang CP. Association of apolipoprotein E polymorphisms with normal tension glaucoma in a Chinese population. J Glaucoma. 2006;15(3):218-22

84. Al-Dabbagh NM, Al-Dohayan N, Arfin M, Tariq M. Apolipoprotein E polymorphisms and primary glaucoma in Saudis. Mol Vis. 2009;15:912-9

85. Vickers JC, Craig JE, Stankovich J, McCormack GH, West AK, Dickinson JL, McCartney PJ, Coote MA, Healey DL, Mackey DA. The apolipoprotein epsilon4 gene is associated with elevated risk of normal tension glaucoma. Mol Vis. 2002;8:389-93

86. Ressiniotis T, Griffiths PG, Birch M, Keers S, Chinnery PF. The role of apolipoprotein E gene polymorphisms in primary open-angle glaucoma. Arch Ophthalmol. 2004;122(2):258-61
87. Saglar E, Yucel D, Bozkurt B, Ozgul RK, Irkec M, Ogus A. Association of polymorphisms in APOE, p53, and p21 with primary open-angle glaucoma in Turkish patients. Mol Vis. 2009;15:1270-6

88. Zetterberg M, Tasa G, Palmer MS, Juronen E, Teesalu P, Blennow K, Zetterberg H. Apolipoprotein E polymorphisms in patients with primary open-angle glaucoma. Am J Ophthalmol. 2007;143(6):1059-60
89. Lake S, Liverani E, Desai M, Casson R, James B, Clark A, Salmon JF. Normal tension glaucoma is not associated with the common apolipoprotein E gene polymorphisms. Br J Ophthalmol. 2004;88(4):491-3
90. Nowak A, Majsterek I, Przybylowska-Sygut K, Pytel D, Szymanek K, Szaflik J, Szaflik JP. Analysis of the expression and polymorphism of APOE, HSP, BDNF, and GRIN2B genes associated with the neurodegeneration process in the pathogenesis of primary open angle glaucoma. Biomed Res Int. 2015;2015:258281

91. Chiras D, Tzika K, Kokotas H, Oliveira SC, Grigoriadou M, Kastania A, Dima K, Stefaniotou M, Aspiotis M, Petersen MB, et al. Development of novel LOXL1 genotyping method and evaluation of LOXL1, APOE and MTHFR polymorphisms in exfoliation syndrome/glaucoma in a Greek population. Mol Vis. 2013;19:1006-16

92. Liao R, Ye M, Xu X. An updated meta-analysis: apolipoprotein E genotypes and risk of primary openangle glaucoma. Mol Vis. 2014;20:1025-36

93. Springelkamp H, Iglesias AI, Cuellar-Partida G, Amin N, Burdon KP, van Leeuwen EM, Gharahkhani P, Mishra A, van der Lee SJ, Hewitt AW, et al. ARHGEF12 influences the risk of glaucoma by increasing intraocular pressure. Hum Mol Genet. 2015;24(9):2689-99

94. Axenovich T, Zorkoltseva I, Belonogova N, van Koolwijk LM, Borodin P, Kirichenko A, Babenko V, Ramdas WD, Amin N, Despriet DD, et al. Linkage and association analyses of glaucoma related traits in a large pedigree from a Dutch genetically isolated population. J Med Genet. 2011;48(12):802-9

95. Ramdas WD, van Koolwijk LM, Ikram MK, Jansonius NM, de Jong PT, Bergen AA, Isaacs A, Amin N, Aulchenko YS, Wolfs RC, et al. A genome-wide association study of optic disc parameters. PLoS Genet. 2010;6(6):e1000978

96. Ramdas WD, van Koolwijk LM, Lemij HG, Pasutto F, Cree AJ, Thorleifsson G, Janssen SF, Jacoline TB, Amin N, Rivadeneira F, et al. Common genetic variants associated with open-angle glaucoma. Hum Mol Genet. 2011;20(12):2464-71

97. Mabuchi F, Sakurada Y, Kashiwagi K, Yamagata Z, Iijima H, Tsukahara S. Association between genetic variants associated with vertical cup-to-disc ratio and phenotypic features of primary open-angle glaucoma. Ophthalmology. 2012;119(9):1819-25

98. Fan BJ, Wang DY, Pasquale LR, Haines JL, Wiggs JL. Genetic variants associated with optic nerve vertical cup-to-disc ratio are risk factors for primary open angle glaucoma in a US Caucasian population. Invest Ophthalmol Vis Sci. 2011;52(3):1788-92

99. Nannini DR, Torres M, Chen YI, Taylor KD, Rotter JI, Varma R, Gao X. A Genome-Wide Association Study of Vertical Cup-Disc Ratio in a Latino Population. Invest Ophthalmol Vis Sci. 2017;58(1):87-95 **100**. Macgregor S, Hewitt AW, Hysi PG, Ruddle JB, Medland SE, Henders AK, Gordon SD, Andrew T, McEvoy B, Sanfilippo PG, et al. Genome-wide association identifies ATOH7 as a major gene determining human optic disc size. Hum Mol Genet. 2010;19(13):2716-24

101. Khor CC, Ramdas WD, Vithana EN, Cornes BK, Sim X, Tay WT, Saw SM, Zheng Y, Lavanya R, Wu R, et al. Genome-wide association studies in Asians confirm the involvement of ATOH7 and TGFBR3, and further identify CARD10 as a novel locus influencing optic disc area. Hum Mol Genet. 2011;20(9):1864-72

102. Venturini C, Nag A, Hysi PG, Wang JJ, Wong TY, Healey PR, Mitchell P, Hammond CJ, Viswanathan AC, Wellcome Trust Case Control Consortium BGG. Clarifying the role of ATOH7 in glaucoma endophenotypes. Br J Ophthalmol. 2014;98(4):562-6

103. Chen JH, Wang D, Huang C, Zheng Y, Chen H, Pang CP, Zhang M. Interactive effects of ATOH7 and RFTN1 in association with adult-onset primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2012;53(2):779-85

104. Philomenadin FS, Asokan R, N V, George R, Lingam V, Sarangapani S. Genetic association of SNPs near ATOH7, CARD10, CDKN2B, CDC7 and SIX1/SIX6 with the endophenotypes of primary open angle glaucoma in Indian population. PLoS One. 2015;10(3):e0119703

105. Thorleifsson G, Walters GB, Hewitt AW, Masson G, Helgason A, DeWan A, Sigurdsson A, Jonasdottir A, Gudjonsson SA, Magnusson KP, et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat Genet. 2010;42(10):906-9

106. Wiggs JL, Kang JH, Yaspan BL, Mirel DB, Laurie C, Crenshaw A, Brodeur W, Gogarten S, Olson LM, Abdrabou W, et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA. Hum Mol Genet. 2011;20(23):4707-13

107. Zanon-Moreno V, Ortega-Azorin C, Asensio-Marquez EM, Garcia-Medina JJ, Pinazo-Duran MD, Coltell O, Ordovas JM, Corella D. A Multi-Locus Genetic Risk Score for Primary Open-Angle Glaucoma (POAG) Variants Is Associated with POAG Risk in a Mediterranean Population: Inverse Correlations with Plasma Vitamin C and E Concentrations. Int J Mol Sci. 2017;18(11)

108. Nunes HF, Ananina G, Costa VP, Zanchin NIT, de Vasconcellos JPC, de Melo MB. Investigation of CAV1/CAV2 rs4236601 and CDKN2B-AS1 rs2157719 in primary open-angle glaucoma patients from Brazil. Ophthalmic Genet. 2018;39(2):194-9

109. Rong SS, Chen LJ, Leung CK, Matsushita K, Jia L, Miki A, Chiang SW, Tam PO, Hashida N, Young AL, et al. Ethnic specific association of the CAV1/CAV2 locus with primary open-angle glaucoma. Sci Rep. 2016;6:27837

110. Osman W, Low SK, Takahashi A, Kubo M, Nakamura Y. A genome-wide association study in the Japanese population confirms 9p21 and 14q23 as susceptibility loci for primary open angle glaucoma. Hum Mol Genet. 2012;21(12):2836-42

111. Dimasi DP, Burdon KP, Hewitt AW, Savarirayan R, Healey PR, Mitchell P, Mackey DA, Craig JE. Candidate gene study to investigate the genetic determinants of normal variation in central corneal thickness. Mol Vis. 2010;16:562-9

112. Trikha S, Saffari E, Nongpiur M, Baskaran M, Ho H, Li Z, Tan PY, Allen J, Khor CC, Perera SA, et al. A Genetic Variant in TGFBR3-CDC7 Is Associated with Visual Field Progression in Primary Open-Angle Glaucoma Patients from Singapore. Ophthalmology. 2015;122(12):2416-22

113. Dimasi DP, Burdon KP, Hewitt AW, Fitzgerald J, Wang JJ, Healey PR, Mitchell P, Mackey DA, Craig JE. Genetic investigation into the endophenotypic status of central corneal thickness and optic disc parameters in relation to open-angle glaucoma. Am J Ophthalmol. 2012;154(5):833-42 e2

114. Cao D, Jiao X, Liu X, Hennis A, Leske MC, Nemesure B, Hejtmancik JF. CDKN2B polymorphism is associated with primary open-angle glaucoma (POAG) in the Afro-Caribbean population of Barbados, West Indies. PLoS One. 2012;7(6):e39278

115. Hu Z, He C. CDKN2B gene rs1063192 polymorphism decreases the risk of glaucoma. Oncotarget. 2017;8(13):21167-76

116. Abu-Amero KK, Kondkar AA, Mousa A, Almobarak FA, Alawad A, Altuwaijri S, Sultan T, Azad TA, Al-Obeidan SA. Analysis of Cyclin-Dependent Kinase Inhibitor-2B rs1063192 Polymorphism in Saudi Patients with Primary Open-Angle Glaucoma. Genet Test Mol Biomarkers. 2016;20(10):637-41

117. Takamoto M, Kaburaki T, Mabuchi A, Araie M, Amano S, Aihara M, Tomidokoro A, Iwase A, Mabuchi F, Kashiwagi K, et al. Common variants on chromosome 9p21 are associated with normal tension glaucoma. PLoS One. 2012;7(7):e40107

118. Nakano M, Ikeda Y, Tokuda Y, Fuwa M, Omi N, Ueno M, Imai K, Adachi H, Kageyama M, Mori K, et al. Common variants in CDKN2B-AS1 associated with optic-nerve vulnerability of glaucoma identified by genome-wide association studies in Japanese. PLoS One. 2012;7(3):e33389

119. Burdon KP, Macgregor S, Hewitt AW, Sharma S, Chidlow G, Mills RA, Danoy P, Casson R, Viswanathan AC, Liu JZ, et al. Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet. 2011;43(6):574-8

120. Wiggs JL, Yaspan BL, Hauser MA, Kang JH, Allingham RR, Olson LM, Abdrabou W, Fan BJ, Wang DY, Brodeur W, et al. Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet. 2012;8(4):e1002654

121. Shiga Y, Nishiguchi KM, Kawai Y, Kojima K, Sato K, Fujita K, Takahashi M, Omodaka K, Araie M, Kashiwagi K, et al. Genetic analysis of Japanese primary open-angle glaucoma patients and clinical characterization of risk alleles near CDKN2B-AS1, SIX6 and GAS7. PLoS One. 2017;12(12):e0186678
122. Gibson J, Griffiths H, De Salvo G, Cole M, Jacob A, Macleod A, Yang Y, Menon G, Cree A, Ennis S, et al. Genome-wide association study of primary open angle glaucoma risk and quantitative traits. Mol Vis. 2012;18:1083-92

123. Hoehn R, Zeller T, Verhoeven VJ, Grus F, Adler M, Wolfs RC, Uitterlinden AG, Castagne R, Schillert A, Klaver CC, et al. Population-based meta-analysis in Caucasians confirms association with COL5A1 and ZNF469 but not COL8A2 with central corneal thickness. Hum Genet. 2012;131(11):1783-93

124. Gao X, Gauderman WJ, Liu Y, Marjoram P, Torres M, Haritunians T, Kuo JZ, Chen YD, Allingham RR, Hauser MA, et al. A genome-wide association study of central corneal thickness in Latinos. Invest Ophthalmol Vis Sci. 2013;54(4):2435-43

125. Gao X, Nannini DR, Corrao K, Torres M, Chen YI, Fan BJ, Wiggs JL, International Glaucoma Genetics C, Taylor KD, Gauderman WJ, et al. Genome-wide association study identifies WNT7B as a novel locus for central corneal thickness in Latinos. Hum Mol Genet. 2016

126. Desronvil T, Logan-Wyatt D, Abdrabou W, Triana M, Jones R, Taheri S, Del Bono E, Pasquale LR, Olivier M, Haines JL, et al. Distribution of COL8A2 and COL8A1 gene variants in Caucasian primary open angle glaucoma patients with thin central corneal thickness. Mol Vis. 2010;16:2185-91

127. Pasquale LR, Loomis SJ, Weinreb RN, Kang JH, Yaspan BL, Bailey JC, Gaasterland D, Gaasterland T, Lee RK, Scott WK, et al. Estrogen pathway polymorphisms in relation to primary open angle glaucoma: an analysis accounting for gender from the United States. Mol Vis. 2013;19:1471-81

128. Hoffmann TJ, Tang H, Thornton TA, Caan B, Haan M, Millen AE, Thomas F, Risch N. Genome-wide association and admixture analysis of glaucoma in the Women's Health Initiative. Hum Mol Genet. 2014;23(24):6634-43

129. Nag A, Venturini C, Small KS, International Glaucoma Genetics C, Young TL, Viswanathan AC, Mackey DA, Hysi PG, Hammond C. A genome-wide association study of intra-ocular pressure suggests a novel association in the gene FAM125B in the TwinsUK cohort. Hum Mol Genet. 2014;23(12):3343-8
130. van Koolwijk LM, Ramdas WD, Ikram MK, Jansonius NM, Pasutto F, Hysi PG, Macgregor S, Janssen SF, Hewitt AW, Viswanathan AC, et al. Common genetic determinants of intraocular pressure and primary open-angle glaucoma. PLoS Genet. 2012;8(5):e1002611

131. Kondkar AA, Azad TA, Almobarak FA, Kalantan H, Sultan T, Al-Obeidan SA, Abu-Amero KK. Polymorphism rs11656696 in GAS7 Is Not Associated with Primary Open Angle Glaucoma in a Saudi Cohort. Genet Test Mol Biomarkers. 2017;21(12):754-8

132. Blue Mountains Eye S, Wellcome Trust Case Control C. Genome-wide association study of intraocular pressure identifies the GLCCI1/ICA1 region as a glaucoma susceptibility locus. Hum Mol Genet. 2013;22(22):4653-60

133. Izzotti A, Bagnis A, Sacca SC. The role of oxidative stress in glaucoma. Mutat Res. 2006;612(2):105-14

134. Yildirim O, Ates NA, Tamer L, Oz O, Yilmaz A, Atik U, Camdeviren H. May glutathione S-transferase M1 positive genotype afford protection against primary open-angle glaucoma? Graefes Arch Clin Exp Ophthalmol. 2005;243(4):327-33

135. Abu-Amero KK, Morales J, Mohamed GH, Osman MN, Bosley TM. Glutathione S-transferase M1 and T1 polymorphisms in Arab glaucoma patients. Mol Vis. 2008;14:425-30

136. Rocha AV, Talbot T, Magalhaes da Silva T, Almeida MC, Menezes CA, Di Pietro G, Rios-Santos F. Is the GSTM1 null polymorphism a risk factor in primary open angle glaucoma? Mol Vis. 2011;17:1679-86
137. Huang W, Wang W, Zhou M, Chen S, Zhang X. Association of glutathione S-transferase polymorphisms (GSTM1 and GSTT1) with primary open-angle glaucoma: an evidence-based meta-analysis. Gene. 2013;526(2):80-6

138. Lavaris A, Gazouli M, Brouzas D, Moschos MM. Polymorphism Analysis of GSTM1 and OPA1 Genes in Greek Patients with Primary Open-angle Glaucoma. In Vivo. 2016;30(4):473-7

139. Stamenkovic M, Lukic V, Suvakov S, Simic T, Sencanic I, Pljesa-Ercegovac M, Jaksic V, Babovic S, Matic M, Radosavljevic A, et al. GSTM1-null and GSTT1-active genotypes as risk determinants of primary open angle glaucoma among smokers. Int J Ophthalmol. 2018;11(9):1514-20

140. Juronen E, Tasa G, Veromann S, Parts L, Tiidla A, Pulges R, Panov A, Soovere L, Koka K, Mikelsaar AV. Polymorphic glutathione S-transferase M1 is a risk factor of primary open-angle glaucoma among Estonians. Exp Eye Res. 2000;71(5):447-52

141. Unal M, Guven M, Devranoglu K, Ozaydin A, Batar B, Tamcelik N, Gorgun EE, Ucar D, Sarici A. Glutathione S transferase M1 and T1 genetic polymorphisms are related to the risk of primary openangle glaucoma: a study in a Turkish population. Br J Ophthalmol. 2007;91(4):527-30

142. Malik MA, Gupta V, Shukla S, Kaur J. Glutathione S-transferase (GSTM1, GSTT1) polymorphisms and JOAG susceptibility: A case control study and meta-analysis in glaucoma. Gene. 2017;628:246-52

143. Majsterek I, Markiewicz L, Przybylowska K, Gacek M, Kurowska AK, Kaminska A, Szaflik J, Szaflik JP. Association of MMP1-1607 1G/2G and TIMP1 372 T/C gene polymorphisms with risk of primary open angle glaucoma in a Polish population. Med Sci Monit. 2011;17(7):CR417-21

144. Markiewicz L, Majsterek I, Przybylowska K, Dziki L, Waszczyk M, Gacek M, Kaminska A, Szaflik J, Szaflik JP. Gene polymorphisms of the MMP1, MMP9, MMP12, IL-1beta and TIMP1 and the risk of primary open-angle glaucoma. Acta Ophthalmol. 2013;91(7):e516-23

145. Micheal S, Yousaf S, Khan MI, Akhtar F, Islam F, Khan WA, den Hollander AI, Qamar R, Ahmed A. Polymorphisms in matrix metalloproteinases MMP1 and MMP9 are associated with primary open-angle and angle closure glaucoma in a Pakistani population. Mol Vis. 2013;19:441-7

146. He M, Wang W, Han X, Huang W. Matrix metalloproteinase-1 rs1799750 polymorphism and glaucoma: A meta-analysis. Ophthalmic Genet. 2016:1-6

147. Zhang Y, Wang M, Zhang S. Association of MMP-9 Gene Polymorphisms with Glaucoma: A Meta-Analysis. Ophthalmic Res. 2016;55(4):172-9

148. Thakur N, Kupani M, Pandey RK, Mannan R, Pruthi A, Mehrotra S. Genetic association of -1562C>T polymorphism in the MMP9 gene with primary glaucoma in a north Indian population. PLoS One. 2018;13(2):e0192636

149. Suh W, Won HH, Kee C. The Association of Single-Nucleotide Polymorphisms in the MMP-9 Gene with Normal Tension Glaucoma and Primary Open-Angle Glaucoma. Curr Eye Res. 2018;43(4):534-8
150. Tunny TJ, Richardson KA, Clark CV, Gordon RD. The atrial natriuretic peptide gene in patients with familial primary open-angle glaucoma. Biochem Biophys Res Commun. 1996;223(2):221-5

151. Ayub H, Khan MI, Micheal S, Akhtar F, Ajmal M, Shafique S, Ali SH, den Hollander AI, Ahmed A, Qamar R. Association of eNOS and HSP70 gene polymorphisms with glaucoma in Pakistani cohorts. Mol Vis. 2010;16:18-25

152. Lin HJ, Tsai CH, Tsai FJ, Chen WC, Tsai SW, Fan SS. Distribution of oxidation enzyme eNOS and myeloperoxidase in primary open angle glaucoma. J Clin Lab Anal. 2005;19(2):87-92

153. Emam WA, Zidan HE, Abdulhalim BE, Dabour SA, Ghali MA, Kamal AT. Endothelial nitric oxide synthase polymorphisms and susceptibility to high-tension primary open-angle glaucoma in an Egyptian cohort. Mol Vis. 2014;20:804-11

154. Kang JH, Wiggs JL, Rosner BA, Haines J, Abdrabou W, Pasquale LR. Endothelial nitric oxide synthase gene variants and primary open-angle glaucoma: interactions with hypertension, alcohol intake, and cigarette smoking. Arch Ophthalmol. 2011;129(6):773-80

155. Xiang Y, Dong Y, Li X, Tang X. Association of Common Variants in eNOS Gene with Primary Open Angle Glaucoma: A Meta-Analysis. J Ophthalmol. 2016;2016:1348347

156. Jeoung JW, Kim DM, Oh S, Lee JS, Park SS, Kim JY. The Relation Between Endothelial Nitric Oxide Synthase Polymorphisms and Normal Tension Glaucoma. J Glaucoma. 2017;26(11):1030-5

157. Logan JF, Chakravarthy U, Hughes AE, Patterson CC, Jackson JA, Rankin SJ. Evidence for association of endothelial nitric oxide synthase gene in subjects with glaucoma and a history of migraine. Invest Ophthalmol Vis Sci. 2005;46(9):3221-6

158. Weiss J, Frankl SA, Flammer J, Grieshaber MC, Hollo G, Teuchner B, Haefeli WE. No difference in genotype frequencies of polymorphisms of the nitric oxide pathway between Caucasian normal and high tension glaucoma patients. Mol Vis. 2012;18:2174-81

159. Kang JH, Wiggs JL, Rosner BA, Hankinson SE, Abdrabou W, Fan BJ, Haines J, Pasquale LR. Endothelial nitric oxide synthase gene variants and primary open-angle glaucoma: interactions with sex and postmenopausal hormone use. Invest Ophthalmol Vis Sci. 2010;51(2):971-9

160. Magalhaes da Silva T, Rocha AV, Lacchini R, Marques CR, Silva ES, Tanus-Santos JE, Rios-Santos F. Association of polymorphisms of endothelial nitric oxide synthase (eNOS) gene with the risk of primary open angle glaucoma in a Brazilian population. Gene. 2012;502(2):142-6

161. Kang JH, Wiggs JL, Haines J, Abdrabou W, Pasquale LR. Reproductive factors and NOS3 variant interactions in primary open-angle glaucoma. Mol Vis. 2011;17:2544-51

162. Liao Q, Wang DH, Sun HJ. Association of genetic polymorphisms of eNOS with glaucoma. Mol Vis. 2011;17:153-8

163. Pasutto F, Matsumoto T, Mardin CY, Sticht H, Brandstatter JH, Michels-Rautenstrauss K, Weisschuh N, Gramer E, Ramdas WD, van Koolwijk LM, et al. Heterozygous NTF4 mutations impairing neurotrophin-4 signaling in patients with primary open-angle glaucoma. Am J Hum Genet. 2009;85(4):447-56

164. Vithana EN, Nongpiur ME, Venkataraman D, Chan SH, Mavinahalli J, Aung T. Identification of a novel mutation in the NTF4 gene that causes primary open-angle glaucoma in a Chinese population. Mol Vis. 2010;16:1640-5

165. Chen LJ, Ng TK, Fan AH, Leung DY, Zhang M, Wang N, Zheng Y, Liang XY, Chiang SW, Tam PO, et al. Evaluation of NTF4 as a causative gene for primary open-angle glaucoma. Mol Vis. 2012;18:1763-72
166. Liu Y, Liu W, Crooks K, Schmidt S, Allingham RR, Hauser MA. No evidence of association of heterozygous NTF4 mutations in patients with primary open-angle glaucoma. Am J Hum Genet. 2010;86(3):498-9; author reply 500

167. Rao KN, Kaur I, Parikh RS, Mandal AK, Chandrasekhar G, Thomas R, Chakrabarti S. Variations in NTF4, VAV2, and VAV3 genes are not involved with primary open-angle and primary angle-closure glaucomas in an indian population. Invest Ophthalmol Vis Sci. 2010;51(10):4937-41

168. Aung T, Ocaka L, Ebenezer ND, Morris AG, Krawczak M, Thiselton DL, Alexander C, Votruba M, Brice G, Child AH, et al. A major marker for normal tension glaucoma: association with polymorphisms in the OPA1 gene. Hum Genet. 2002;110(1):52-6

169. Yu-Wai-Man P, Stewart JD, Hudson G, Andrews RM, Griffiths PG, Birch MK, Chinnery PF. OPA1 increases the risk of normal but not high tension glaucoma. J Med Genet. 2010;47(2):120-5
170. Guo Y, Chen X, Zhang H, Li N, Yang X, Cheng W, Zhao K. Association of OPA1 polymorphisms with

NTG and HTG: a meta-analysis. PLoS One. 2012;7(8):e42387

171. Woo SJ, Kim DM, Kim JY, Park SS, Ko HS, Yoo T. Investigation of the association between OPA1 polymorphisms and normal-tension glaucoma in Korea. J Glaucoma. 2004;13(6):492-5

172. Powell BL, Toomes C, Scott S, Yeung A, Marchbank NJ, Spry PG, Lumb R, Inglehearn CF, Churchill AJ. Polymorphisms in OPA1 are associated with normal tension glaucoma. Mol Vis. 2003;9:460-4
173. Mabuchi F, Tang S, Kashiwagi K, Yamagata Z, Iijima H, Tsukahara S. The OPA1 gene polymorphism is associated with normal tension and high tension glaucoma. Am J Ophthalmol. 2007;143(1):125-30
174. Gasten AC, Ramdas WD, Broer L, van Koolwijk LM, Ikram MK, de Jong PT, Aulchenko YS, Wolfs RC,

Hofman A, Rivadeneira F, et al. A genetic epidemiologic study of candidate genes involved in the optic nerve head morphology. Invest Ophthalmol Vis Sci. 2012;53(3):1485-91

175. Nakano M, Ikeda Y, Taniguchi T, Yagi T, Fuwa M, Omi N, Tokuda Y, Tanaka M, Yoshii K, Kageyama M, et al. Three susceptible loci associated with primary open-angle glaucoma identified by genome-wide association study in a Japanese population. Proc Natl Acad Sci U S A. 2009;106(31):12838-42

176. Chen LJ, Tam PO, Leung DY, Fan AH, Zhang M, Tham CC, Chiang SW, Fan BJ, Wang N, Pang CP. SNP rs1533428 at 2p16.3 as a marker for late-onset primary open-angle glaucoma. Mol Vis. 2012;18:1629-39
177. Kondkar AA, Sultan T, Almobarak FA, Kalantan H, Abu-Amero KK, Al-Obeidan SA. Plexin domain containing 2 (PLXDC2) gene polymorphism rs7081455 may not influence POAG risk in a Saudi cohort. BMC Res Notes. 2018;11(1):733

178. Kim K, Heo DW, Kim S, Kim JS, Kim CS, Kang C. Expansive marker analysis replicating the association of glaucoma susceptibility with human chromosome loci 1q43 and 10p12.31. Eur J Hum Genet. 2014;22(3):409-13

179. Matovinovic E, Kho PF, Lea RA, Benton MC, Eccles DA, Haupt LM, Hewitt AW, Sherwin JC, Mackey DA, Griffiths LR. Genome-wide linkage and association analysis of primary open-angle glaucoma endophenotypes in the Norfolk Island isolate. Mol Vis. 2017;23:660-5

180. Kuo JZ, Zangwill LM, Medeiros FA, Liebmann JM, Girkin CA, Hammel N, Rotter JI, Weinreb RN. Quantitative Trait Locus Analysis of SIX1-SIX6 With Retinal Nerve Fiber Layer Thickness in Individuals of European Descent. Am J Ophthalmol. 2015;160(1):123-30 e1

181. Sang J, Jia L, Zhao B, Wang H, Zhang N, Wang N. Association of three single nucleotide polymorphisms at the SIX1-SIX6 locus with primary open angle glaucoma in the Chinese population. Sci China Life Sci. 2016;59(7):694-9

182. Kondkar AA, Azad TA, Almobarak FA, Kalantan H, Sultan T, Alsabaani NA, Al-Obeidan SA, Abu-Amero KK. Polymorphism rs10483727 in the SIX1/SIX6 Gene Locus Is a Risk Factor for Primary Open Angle Glaucoma in a Saudi Cohort. Genet Test Mol Biomarkers. 2018;22(1):74-8

183. Rong SS, Lu SY, Matsushita K, Huang C, Leung CKS, Kawashima R, Usui S, Tam POS, Young AL, Tsujikawa M, et al. Association of the SIX6 locus with primary open angle glaucoma in southern Chinese and Japanese. Exp Eye Res. 2018;180:129-36

184. Writing Committee for the Normal Tension Glaucoma Genetic Study Group of Japan Glaucoma S, Meguro A, Inoko H, Ota M, Mizuki N, Bahram S. Genome-wide association study of normal tension glaucoma: common variants in SRBD1 and ELOVL5 contribute to disease susceptibility. Ophthalmology. 2010;117(7):1331-8 e5

185. Mabuchi F, Sakurada Y, Kashiwagi K, Yamagata Z, Iijima H, Tsukahara S. Association between SRBD1 and ELOVL5 gene polymorphisms and primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2011;52(7):4626-9

186. Takano Y, Shi D, Shimizu A, Funayama T, Mashima Y, Yasuda N, Fukuchi T, Abe H, Ideta H, Zheng X, et al. Association of Toll-like receptor 4 gene polymorphisms in Japanese subjects with primary openangle, normal-tension, and exfoliation glaucoma. Am J Ophthalmol. 2012;154(5):825-32 e1

187. Navarro-Partida J, Alvarado Castillo B, Martinez-Rizo AB, Rosales-Diaz R, Velazquez-Fernandez JB, Santos A. Association of single-nucleotide polymorphisms in non-coding regions of the TLR4 gene with primary open angle glaucoma in a Mexican population. Ophthalmic Genet. 2017;38(4):325-9

188. Shibuya E, Meguro A, Ota M, Kashiwagi K, Mabuchi F, Iijima H, Kawase K, Yamamoto T, Nakamura M, Negi A, et al. Association of Toll-like receptor 4 gene polymorphisms with normal tension glaucoma. Invest Ophthalmol Vis Sci. 2008;49(10):4453-7

189. Navarro-Partida J, Martinez-Rizo AB, Ramirez-Barrera P, Velazquez-Fernandez JB, Mondragon-Jaimes VA, Santos-Garcia A, Benites-Godinez V. Association of Toll-like receptor 4 single-nucleotide polymorphisms Asp299Gly and Thr399Ile with the risk of primary open angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 2017;255(5):995-1001

190. Abu-Amero KK, Kondkar AA, Mousa A, Azad TA, Sultan T, Osman EA, Al-Obeidan SA. Analysis of tolllike receptor rs4986790 polymorphism in Saudi patients with primary open angle glaucoma. Ophthalmic Genet. 2016:1-5

191. Mousa A, Kondkar AA, Al-Obeidan SA, Azad TA, Sultan T, Osman EA, Abu-Amero KK. Lack of Association Between Polymorphism rs4986791 in TLR4 and Primary Open-Angle Glaucoma in a Saudi Cohort. Genet Test Mol Biomarkers. 2016;20(9):556-9

192. Suh W, Kim S, Ki CS, Kee C. Toll-like receptor 4 gene polymorphisms do not associate with normal tension glaucoma in a Korean population. Mol Vis. 2011;17:2343-8

193. Chen Y, Hughes G, Chen X, Qian S, Cao W, Wang L, Wang M, Sun X. Genetic Variants Associated With Different Risks for High Tension Glaucoma and Normal Tension Glaucoma in a Chinese Population. Invest Ophthalmol Vis Sci. 2015;56(4):2595-600

194. Sharma S, Burdon KP, Chidlow G, Klebe S, Crawford A, Dimasi DP, Dave A, Martin S, Javadiyan S, Wood JP, et al. Association of genetic variants in the TMCO1 gene with clinical parameters related to glaucoma and characterization of the protein in the eye. Invest Ophthalmol Vis Sci. 2012;53(8):4917-25 **195**. Ozel AB, Moroi SE, Reed DM, Nika M, Schmidt CM, Akbari S, Scott K, Rozsa F, Pawar H, Musch DC, et al. Genome-wide association study and meta-analysis of intraocular pressure. Hum Genet. 2014;133(1):41-57

196. Kondkar AA, Mousa A, Azad TA, Sultan T, Alawad A, Altuwaijri S, Al-Obeidan SA, Abu-Amero KK. Polymorphism rs7555523 in transmembrane and coiled-coil domain 1 (TMCO1) is not a risk factor for primary open angle glaucoma in a Saudi cohort. J Negat Results Biomed. 2016;15(1):17

197. Bozkurt B, Mesci L, Irkec M, Ozdag BB, Sanal O, Arslan U, Ersoy F, Tezcan I. Association of tumour necrosis factor-alpha -308 G/A polymorphism with primary open-angle glaucoma. Clin Experiment Ophthalmol. 2012;40(4):e156-62

198. Lin HJ, Tsai FJ, Chen WC, Shi YR, Hsu Y, Tsai SW. Association of tumour necrosis factor alpha -308 gene polymorphism with primary open-angle glaucoma in Chinese. Eye (Lond). 2003;17(1):31-4
199. Razeghinejad MR, Rahat F, Kamali-Sarvestani E. Association of TNFA -308 G/A and TNFRI +36 A/G gene polymorphisms with glaucoma. Ophthalmic Res. 2009;42(3):118-24

200. Xin X, Gao L, Wu T, Sun F. Roles of tumor necrosis factor alpha gene polymorphisms, tumor necrosis factor alpha level in aqueous humor, and the risks of open angle glaucoma: a meta-analysis. Mol Vis. 2013;19:526-35

201. Hamid MA, Moemen L, Labib H, Helmy H, Elsergany T. Risk of open angle glaucoma due to tumor necrosis factor alpha gene polymorphisms. Electron Physician. 2016;8(2):1978-83

202. Tikunova E, Ovtcharova V, Reshetnikov E, Dvornyk V, Polonikov A, Bushueva O, Churnosov M. Genes of tumor necrosis factors and their receptors and the primary open angle glaucoma in the population of Central Russia. Int J Ophthalmol. 2017;10(10):1490-4

203. Mossbock G, Weger M, Moray M, Renner W, Haller-Schober EM, Mattes D, Schmut O, Wegscheider B, El-Shabrawi Y. TNF-alpha promoter polymorphisms and primary open-angle glaucoma. Eye (Lond). 2006;20(9):1040-3

204. Lee YH, Song GG. TNF-alpha -308 A/G and -238 A/G polymorphisms and susceptibility to glaucoma: a meta-analysis. Genet Mol Res. 2015;14(2):4966-77

205. Wang CY, Shen YC, Wei LC, Lin KH, Feng SC, Yang YY, Chiu CH, Tsai HY. Polymorphism in the TNF-alpha(-863) locus associated with reduced risk of primary open angle glaucoma. Mol Vis. 2012;18:779-85
206. Guo Y, Zhang H, Chen X, Yang X, Cheng W, Zhao K. Association of TP53 polymorphisms with primary open-angle glaucoma: a meta-analysis. Invest Ophthalmol Vis Sci. 2012;53(7):3756-63

207. Nowak A, Przybylowska-Sygut K, Szymanek K, Szaflik J, Szaflik J, Majsterek I. The relationship of TP53 and GRIN2B gene polymorphisms with risk of occurrence and progression of primary open-angle glaucoma in a Polish population. Pol J Pathol. 2014;65(4):313-21

208. Gupta S, Chatterjee S, Chandra A, Maurya OPS, Mishra RN, Mukherjee A, Mutsuddi M. TP53 codon 72 polymorphism and the risk of glaucoma in a north Indian cohort: A genetic association study. Ophthalmic Genet. 2018;39(2):228-35

209. Fan BJ, Chen X, Sondhi N, Sharmila PF, Soumittra N, Sripriya S, Sacikala S, Asokan R, Friedman DS, Pasquale LR, et al. Family-Based Genome-Wide Association Study of South Indian Pedigrees Supports WNT7B as a Central Corneal Thickness Locus. Invest Ophthalmol Vis Sci. 2018;59(6):2495-502

210. Lu Y, Dimasi DP, Hysi PG, Hewitt AW, Burdon KP, Toh T, Ruddle JB, Li YJ, Mitchell P, Healey PR, et al. Common genetic variants near the Brittle Cornea Syndrome locus ZNF469 influence the blinding disease risk factor central corneal thickness. PLoS Genet. 2010;6(5):e1000947

211. Azad TA, Edward NB, Kondkar AA, Kalantan H, Altuwaijri S, Sultan T, Al-Mobarak FA, Al-Obeidan SA, Abu-Amero KK. Polymorphism rs547984 on human chromosome 1q43 is not associated with primary open angle glaucoma in a Saudi cohort. J Negat Results Biomed. 2017;16(1):12

212. Kondkar AA, Edward NB, Kalantan H, Al-Kharashi AS, Altuwaijri S, Mohamed G, Sultan T, Azad TA, Abu-Amero KK. Lack of association between polymorphism rs540782 and primary open angle glaucoma in Saudi patients. J Negat Results Biomed. 2017;16(1):3

213. Liu H, Yang ZK, Li Y, Zhang WJ, Wang YT, Duan XC. ABCB1 variants confer susceptibility to primary open-angle glaucoma and predict individual differences to latanoprost treatment. Biomed Pharmacother. 2016;80:115-20

214. Inagaki Y, Mashima Y, Fuse N, Funayama T, Ohtake Y, Yasuda N, Murakami A, Hotta Y, Fukuchi T, Tsubota K. Polymorphism of beta-adrenergic receptors and susceptibility to open-angle glaucoma. Mol Vis. 2006;12:673-80

215. Hashizume K, Mashima Y, Fumayama T, Ohtake Y, Kimura I, Yoshida K, Ishikawa K, Yasuda N, Fujimaki T, Asaoka R, et al. Genetic polymorphisms in the angiotensin II receptor gene and their association with open-angle glaucoma in a Japanese population. Invest Ophthalmol Vis Sci. 2005;46(6):1993-2001

216. Buentello-Volante B, Elizondo-Olascoaga C, Miranda-Duarte A, Guadarrama-Vallejo D, Cabral-Macias J, Zenteno JC. Association study of multiple gene polymorphisms with the risk of adult-onset primary open-angle glaucoma in a Mexican population. Exp Eye Res. 2013;107:59-64

217. Cuchra M, Szaflik JP, Przybylowska-Sygut K, Gacek M, Kaminska A, Szaflik J, Majsterek I. The role of the 148 Asp/Glu polymorphism of the APE1 gene in the development and progression of primary open angle glaucoma development in the Polish population. Pol J Pathol. 2013;64(4):296-302

218. Nowak A, Szaflik JP, Gacek M, Przybylowska-Sygut K, Kaminska A, Szaflik J, Majsterek I. BDNF and HSP gene polymorphisms and their influence on the progression of primary open-angle glaucoma in a Polish population. Arch Med Sci. 2014;10(6):1206-13

219. Carbone MA, Chen Y, Hughes GA, Weinreb RN, Zabriskie NA, Zhang K, Anholt RR. Genes of the unfolded protein response pathway harbor risk alleles for primary open angle glaucoma. PLoS One. 2011;6(5):e20649

220. Ayub H, Micheal S, Akhtar F, Khan MI, Bashir S, Waheed NK, Ali M, Schoenmaker-Koller FE, Shafique S, Qamar R, et al. Association of a polymorphism in the BIRC6 gene with pseudoexfoliative glaucoma. PLoS One. 2014;9(8):e105023

221. Fang Kho P, Lea RA, Benton MC, Eccles D, Haupt LM, Hewitt AW, Sherwin JC, Mackey DA, Griffiths LR. Expression QTL analysis of glaucoma endophenotypes in the Norfolk Island isolate provides evidence that immune-related genes are associated with optic disc size. J Hum Genet. 2018;63(1):83-7
222. Liu T, Xie L, Ye J, He X. Family-based analysis identified CD2 as a susceptibility gene for primary

open angle glaucoma in Chinese Han population. J Cell Mol Med. 2014;18(4):600-9

223. Lin HJ, Tsai FJ, Hung P, Chen WC, Chen HY, Fan SS, Tsai SW. Association of E-cadherin gene 3'-UTR C/T polymorphism with primary open angle glaucoma. Ophthalmic Res. 2006;38(1):44-8

224. Kaurani L, Vishal M, Kumar D, Sharma A, Mehani B, Sharma C, Chakraborty S, Jha P, Ray J, Sen A, et al. Gene-rich large deletions are overrepresented in POAG patients of Indian and Caucasian origins. Invest Ophthalmol Vis Sci. 2014;55(5):3258-64

225. Collins DW, Gudiseva HV, Chavali VRM, Trachtman B, Ramakrishnan M, Merritt WT, III, Pistilli M, Rossi RA, Blachon S, Sankar PS, et al. The MT-CO1 V83I Polymorphism is a Risk Factor for Primary Open-Angle Glaucoma in African American Men. Invest Ophthalmol Vis Sci. 2018;59(5):1751-9

226. Jeoung JW, Seong MW, Park SS, Kim DM, Kim SH, Park KH. Mitochondrial DNA variant discovery in normal-tension glaucoma patients by next-generation sequencing. Invest Ophthalmol Vis Sci. 2014;55(2):986-92

227. Costa NB, Silva CT, Frare AB, Silva RE, Moura KK. Association between CYP1A1m1 gene polymorphism and primary open-angle glaucoma. Genet Mol Res. 2014;13(4):10382-9

228. Fourgeux C, Martine L, Bjorkhem I, Diczfalusy U, Joffre C, Acar N, Creuzot-Garcher C, Bron A, Bretillon L. Primary open-angle glaucoma: association with cholesterol 24S-hydroxylase (CYP46A1) gene polymorphism and plasma 24-hydroxycholesterol levels. Invest Ophthalmol Vis Sci. 2009;50(12):5712-7 **229**. Chandra A, Abbas S, Raza ST, Singh L, Rizvi S, Mahdi F. Polymorphism of CYP46A1 and PPARgamma2 Genes in Risk Prediction of Primary Open Angle Glaucoma Among North Indian Population. Middle East Afr J Ophthalmol. 2016;23(2):172-6

230. Mossbock G, Weger M, Faschinger C, Schmut O, Renner W, Wedrich A, Zimmermann C, El-Shabrawi Y. Role of cholesterol 24S-hydroxylase gene polymorphism (rs754203) in primary open angle glaucoma. Mol Vis. 2011;17:616-20

231. Ishikawa K, Funayama T, Ohtake Y, Kimura I, Ideta H, Nakamoto K, Yasuda N, Fukuchi T, Fujimaki T, Murakami A, et al. Association between glaucoma and gene polymorphism of endothelin type A receptor. Mol Vis. 2005;11:431-7

232. Mabuchi F, Sakurada Y, Kashiwagi K, Yamagata Z, Iijima H, Tsukahara S. Involvement of genetic variants associated with primary open-angle glaucoma in pathogenic mechanisms and family history of glaucoma. Am J Ophthalmol. 2015;159(3):437-44 e2

233. Mabuchi F, Sakurada Y, Kashiwagi K, Yamagata Z, Iijima H, Tsukahara S. Estrogen receptor beta gene polymorphism and intraocular pressure elevation in female patients with primary open-angle glaucoma. Am J Ophthalmol. 2010;149(5):826-30 e1-2

234. Liu Y, Gibson J, Wheeler J, Kwee LC, Santiago-Turla CM, Akafo SK, Lichter PR, Gaasterland DE, Moroi SE, Challa P, et al. GALC deletions increase the risk of primary open-angle glaucoma: the role of Mendelian variants in complex disease. PLoS One. 2011;6(11):e27134

235. Shin HY, Park SW, Jung SH, Park HY, Jung KI, Chung YJ, Park CK. No Evidence of Association of Heterozygous Galactosylceramidase Deletion With Normal-Tension Glaucoma in a Korean Population. J Glaucoma. 2016;25(5):e504-6

236. Nakamura K, Ota M, Meguro A, Nomura N, Kashiwagi K, Mabuchi F, Iijima H, Kawase K, Yamamoto T, Nakamura M, et al. Association of microsatellite polymorphisms of the GPDS1 locus with normal tension glaucoma in the Japanese population. Clin Ophthalmol. 2009;3:307-12

237. Malinowska K, Kowalski M, Szaflik J, Szaflik JP, Majsterek I. The role of Cat -262C/T, GPX1 Pro198Leu and Sod1+35A/C gene polymorphisms in a development of primary open-angle glaucoma in a Polish population. Pol J Pathol. 2016;67(4):404-10 **238**. Silva CT, Costa NB, Silva KS, Silva RE, Moura KK. Association between primary open angle glaucoma and genetic polymorphisms GSTM1/GSTT1 in patients from Goiania Central-West Region of Brazil. Genet Mol Res. 2014;13(4):8870-5

239. Lu Y, Shi Y, Yin J, Huang Z. Are glutathione S-transferase polymorphisms (GSTM1, GSTT1) associated with primary open angle glaucoma? A meta-analysis. Gene. 2013;527(1):311-5

240. Basu K, Sen A, Ray K, Ghosh I, Datta K, Mukhopadhyay A. Genetic association and gene-gene interaction of HAS2, HABP1 and HYAL3 implicate hyaluronan metabolic genes in glaucomatous neurodegeneration. Dis Markers. 2012;33(3):145-54

241. Shi D, Funayama T, Mashima Y, Takano Y, Shimizu A, Yamamoto K, Mengkegale M, Miyazawa A, Yasuda N, Fukuchi T, et al. Association of HK2 and NCK2 with normal tension glaucoma in the Japanese population. PLoS One. 2013;8(1):e54115

242. Tosaka K, Mashima Y, Funayama T, Ohtake Y, Kimura I, Glaucoma Gene Research G. Association between open-angle glaucoma and gene polymorphism for heat-shock protein 70-1. Jpn J Ophthalmol. 2007;51(6):417-23

243. Tsai FJ, Lin HJ, Chen WC, Chen HY, Fan SS. Insulin-like growth factor-II gene polymorphism is associated with primary open angle glaucoma. J Clin Lab Anal. 2003;17(6):259-63

244. Wang CY, Shen YC, Lo FY, Su CH, Lee SH, Lin KH, Tsai HY, Kuo NW, Fan SS. Polymorphism in the IL-1alpha (-889) locus associated with elevated risk of primary open angle glaucoma. Mol Vis. 2006;12:1380-5

245. How AC, Aung T, Chew X, Yong VH, Lim MC, Lee KY, Toh JY, Li Y, Liu J, Vithana EN. Lack of association between interleukin-1 gene cluster polymorphisms and glaucoma in Chinese subjects. Invest Ophthalmol Vis Sci. 2007;48(5):2123-6

246. Li J, Feng Y, Sung MS, Lee TH, Park SW. Association of Interleukin-1 gene clusters polymorphisms with primary open-angle glaucoma: a meta-analysis. BMC Ophthalmol. 2017;17(1):218

247. Oliveira MB, de Vasconcellos JPC, Ananina G, Costa VP, de Melo MB. Association between IL1A and IL1B polymorphisms and primary open angle glaucoma in a Brazilian population. Exp Biol Med (Maywood). 2018;243(13):1083-91

248. Park S, Jamshidi Y, Vaideanu D, Bitner-Glindzicz M, Fraser S, Sowden JC. Genetic risk for primary open-angle glaucoma determined by LMX1B haplotypes. Invest Ophthalmol Vis Sci. 2009;50(4):1522-30
249. Wu M, Zhu XY, Ye J. Associations of polymorphisms of LOXL1 gene with primary open-angle glaucoma: a meta-analysis based on 5,293 subjects. Mol Vis. 2015;21:165-72

250. Zanon-Moreno V, Zanon-Moreno L, Ortega-Azorin C, Asensio-Marquez EM, Garcia-Medina JJ, Sanz P, Pinazo-Duran MD, Ordovas JM, Corella D. Genetic polymorphism related to exfoliative glaucoma is also associated with primary open-angle glaucoma risk. Clin Experiment Ophthalmol. 2015;43(1):26-30 **251**. Sun W, Sheng Y, Weng Y, Xu CX, Williams SE, Liu YT, Hauser MA, Allingham RR, Jin MJ, Chen GD. Lack of association between lysyl oxidase-like 1 polymorphisms and primary open angle glaucoma: a meta-analysis. Int J Ophthalmol. 2014;7(3):550-6

252. Anastasopoulos E, Coleman AL, Wilson MR, Sinsheimer JS, Yu F, Katafigiotis S, Founti P, Salonikiou A, Pappas T, Koskosas A, et al. Association of LOXL1 polymorphisms with pseudoexfoliation, glaucoma, intraocular pressure, and systemic diseases in a Greek population. The Thessaloniki eye study. Invest Ophthalmol Vis Sci. 2014;55(7):4238-43

253. Chen H, Chen LJ, Zhang M, Gong W, Tam PO, Lam DS, Pang CP. Ethnicity-based subgroup meta-analysis of the association of LOXL1 polymorphisms with glaucoma. Mol Vis. 2010;16:167-77
254. Kasim B, Irkec M, Alikasifoglu M, Orhan M, Mocan MC, Aktas D. Association of LOXL1 gene polymorphisms with exfoliation syndrome/glaucoma and primary open angle glaucoma in a Turkish population. Mol Vis. 2013;19:114-20

255. Vishal M, Sharma A, Kaurani L, Alfano G, Mookherjee S, Narta K, Agrawal J, Bhattacharya I, Roychoudhury S, Ray J, et al. Genetic association and stress mediated down-regulation in trabecular

meshwork implicates MPP7 as a novel candidate gene in primary open angle glaucoma. BMC Med Genomics. 2016;9:15

256. Kaminska A, Banas-Lezanska P, Przybylowska K, Gacek M, Majsterek I, Szaflik J, Szaflik JP. The protective role of the -735C/T and the -1306C/T polymorphisms of the MMP-2 gene in the development of primary open-angle glaucoma. Ophthalmic Genet. 2014;35(1):41-6

257. Ghanbari M, Iglesias AI, Springelkamp H, van Duijn CM, Ikram MA, Dehghan A, Erkeland SJ, Klaver CCW, Meester-Smoor MA, International Glaucoma Genetics C. A Genome-Wide Scan for MicroRNA-Related Genetic Variants Associated With Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci. 2017;58(12):5368-77

258. Chatzikyriakidou A, Founti P, Melidou A, Minti F, Bouras E, Anastasopoulos E, Pappas T, Haidich AB, Lambropoulos A, Topouzis F. MicroRNA-related polymorphisms in pseudoexfoliation syndrome, pseudoexfoliative glaucoma, and primary open-angle glaucoma. Ophthalmic Genet. 2018;39(5):603-9
259. Junemann AG, von Ahsen N, Reulbach U, Roedl J, Bonsch D, Kornhuber J, Kruse FE, Bleich S. C677T variant in the methylentetrahydrofolate reductase gene is a genetic risk factor for primary open-angle glaucoma. Am J Ophthalmol. 2005;139(4):721-3

260. Gupta S, Bhaskar PK, Bhardwaj R, Chandra A, Chaudhry VN, Chaudhry P, Ali A, Mukherjee A, Mutsuddi M. MTHFR C677T predisposes to POAG but not to PACG in a North Indian population: a case control study. PLoS One. 2014;9(7):e103063

261. Al-Shahrani H, Al-Dabbagh N, Al-Dohayan N, Arfin M, Al-Asmari M, Rizvi S, Al-Asmari A. Association of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism with primary glaucoma in Saudi population. BMC Ophthalmol. 2016;16(1):156

262. Zhao R, Yin D, Wang E, Si B. The effect of MTHFR ala222val polymorphism on open-angle glaucoma: a meta-analysis. Ophthalmic Genet. 2015;36(1):27-30

263. Abu-Amero KK, Morales J, Bosley TM. Mitochondrial abnormalities in patients with primary openangle glaucoma. Invest Ophthalmol Vis Sci. 2006;47(6):2533-41

264. Banerjee D, Banerjee A, Mookherjee S, Vishal M, Mukhopadhyay A, Sen A, Basu A, Ray K.
Mitochondrial genome analysis of primary open angle glaucoma patients. PLoS One. 2013;8(8):e70760
265. Sundaresan P, Simpson DA, Sambare C, Duffy S, Lechner J, Dastane A, Dervan EW, Vallabh N,
Chelerkar V, Deshpande M, et al. Whole-mitochondrial genome sequencing in primary open-angle
glaucoma using massively parallel sequencing identifies novel and known pathogenic variants. Genet
Med. 2015;17(4):279-84

266. Akiyama M, Yatsu K, Ota M, Katsuyama Y, Kashiwagi K, Mabuchi F, Iijima H, Kawase K, Yamamoto T, Nakamura M, et al. Microsatellite analysis of the GLC1B locus on chromosome 2 points to NCK2 as a new candidate gene for normal tension glaucoma. Br J Ophthalmol. 2008;92(9):1293-6

267. Funayama T, Mashima Y, Ohtake Y, Ishikawa K, Fuse N, Yasuda N, Fukuchi T, Murakami A, Hotta Y, Shimada N, et al. SNPs and interaction analyses of noelin 2, myocilin, and optineurin genes in Japanese patients with open-angle glaucoma. Invest Ophthalmol Vis Sci. 2006;47(12):5368-75

268. Acharya M, Mookherjee S, Bhattacharjee A, Thakur SK, Bandyopadhyay AK, Sen A, Chakrabarti S, Ray K. Evaluation of the OPTC gene in primary open angle glaucoma: functional significance of a silent change. BMC Mol Biol. 2007;8:21

269. Inagaki Y, Mashima Y, Funayama T, Ohtake Y, Fuse N, Yasuda N, Fukuchi T, Murakami A, Hotta Y. Paraoxonase 1 gene polymorphisms influence clinical features of open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 2006;244(8):984-90

270. Zhou G, Liu B. Single nucleotide polymorphisms of metabolic syndrome-related genes in primary open angle glaucoma. Int J Ophthalmol. 2010;3(1):36-42

271. Nag A, Venturini C, Hysi PG, Arno M, Aldecoa-Otalora Astarloa E, Macgregor S, Hewitt AW, Young TL, Mitchell P, Viswanathan AC, et al. Copy number variation at chromosome 5q21.2 is associated with intraocular pressure. Invest Ophthalmol Vis Sci. 2013;54(5):3607-12

272. Saracaloglu A, Demiryurek S, Okumus S, Oztuzcu S, Bozgeyik I, Coskun E, Aksoy U, Kaydu E, Erbagci I, Gurler B, et al. Toward Novel Diagnostics for Primary Open-Angle Glaucoma? An Association Study of Polymorphic Variation in Ras Homolog Family Member (A, B, C, D) Genes RHOA, RHOB, RHOC, and RHOD. OMICS. 2016;20(5):290-5

273. Fernandez-Martinez L, Letteboer S, Mardin CY, Weisschuh N, Gramer E, Weber BH, Rautenstrauss B, Ferreira PA, Kruse FE, Reis A, et al. Evidence for RPGRIP1 gene as risk factor for primary open angle glaucoma. Eur J Hum Genet. 2011;19(4):445-51

274. Zanon-Moreno V, Asensio-Marquez EM, Ciancotti-Oliver L, Garcia-Medina JJ, Sanz P, Ortega-Azorin C, Pinazo-Duran MD, Ordovas JM, Corella D. Effects of polymorphisms in vitamin E-, vitamin C-, and glutathione peroxidase-related genes on serum biomarkers and associations with glaucoma. Mol Vis. 2013;19:231-42

275. Fujikawa K, Iwata T, Inoue K, Akahori M, Kadotani H, Fukaya M, Watanabe M, Chang Q, Barnett EM, Swat W. VAV2 and VAV3 as candidate disease genes for spontaneous glaucoma in mice and humans. PLoS One. 2010;5(2):e9050

276. Lv Y, Yao Q, Ma W, Liu H, Ji J, Li X. Associations of vitamin D deficiency and vitamin D receptor (Cdx-2, Fok I, Bsm I and Taq I) polymorphisms with the risk of primary open-angle glaucoma. BMC Ophthalmol. 2016;16(1):116

277. Lin HJ, Chen WL, Chen TH, Kung YJ, Wan L. Vascular Endothelial Growth Factor -460 C/T BstUI Gene Polymorphism is associated with Primary Open Angle Glaucoma. Biomedicine (Taipei). 2014;4:4
278. Yousaf S, Khan MI, Micheal S, Akhtar F, Ali SH, Riaz M, Ali M, Lall P, Waheed NK, den Hollander AI, et al. XRCC1 and XPD DNA repair gene polymorphisms: a potential risk factor for glaucoma in the Pakistani population. Mol Vis. 2011;17:1153-63

279. Szaflik JP, Cuchra M, Przybylowska-Sygut K, Dziki L, Kurowska AK, Gacek M, Drzewoski J, Szaflik J, Majsterek I. Association of the 399Arg/Gln XRCC1, the 194 Arg/Trp XRCC1, the 326Ser/Cys OGG1, and the 324Gln/His MUTYH gene polymorphisms with clinical parameters and the risk for development of primary open-angle glaucoma. Mutat Res. 2013;753(1):12-22

280. Cuchra M, Markiewicz L, Mucha B, Pytel D, Szymanek K, Szemraj J, Szaflik J, Szaflik JP, Majsterek I. The role of base excision repair in the development of primary open angle glaucoma in the Polish population. Mutat Res. 2015;778:26-40

281. Guven M, Unal M, Batar B, Eroglu E, Devarnoglu K, Tamcelik N, Ucar D, Sarici A. Polymorphisms of DNA repair genes XRCC1 and XPD and risk of primary open angle glaucoma (POAG). Mol Vis. 2007;13:12-7