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[bookmark: _Toc7876062]Principle of deformable image registration

DIR is an iterative process searching for the geometric correspondence between a “moving” and a “fixed” images. Figure S-1 presents the classical DIR workflow, which can be divided in two main steps: preprocessing (Step 1) and registration loop (Step 2). At each iteration of the registration loop, or optimization, the geometric transformation is updated and the moving image deformed accordingly. The goal is to find the transformation that corresponds to the optimal value of a metric comparing the fixed and transformed moving images (i.e. a similarity measure). 
This process can be expressed by the following formula:

where  (Step 2a) represents the resulting transformation that minimizes the cost function C based on the metric (Step 2b) comparing the fixed image (Ifixed) and the transformed moving image T(Imoving). “argmin” represents the optimization process which updates the transformation T to minimize C (Step 2c) until the convergence criteria are reached (e.g. maximum number of iterations or metric convergence) (Step 2d).
In the remainder of this section, we briefly describe each one of these steps. For more details, the reader may refer to DIR reviews [1-4] or software libraries implementing DIR methods [5, 6].
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[bookmark: _Toc495925870][bookmark: _Toc496526787][bookmark: _Toc496535323][bookmark: _Toc7876064]Preprocessing (Figure S-1.1a)

Preprocessing the input images is useful for focusing the registration process on the information presented in both images. This can be performed by extracting some specific features, either manually or automatically, such as salient anatomical points (e.g. nose tip, vessel bifurcation, calcification) or implanted markers, which will be used to guide the registration. The similarity between the images can also be improved by cropping or filtering them. Cropping the images enables them to be limited to common anatomical structures. This can also be achieved by automatically or manually segmenting a desired subpart of the images, such as the considered organs. Filtering the images can also improve the intensity consistency between both images, such as using a gradient filter to extract organ contours [7] or a sigmoid filter. Intensity correction or even the simulation of one imaging modality from another (e.g. computed tomography [CT] / cone beam CT [CBCT] registration) can also facilitate the comparison of the images [8]. Where applicable, the segmented regions can also be processed to describe their structure, e.g. using Euclidean distance maps [9-12] or Laplacian diffusion [13-15]. In some cases, segmented regions can be used to preprocess the underlying image and thus increase point correspondence between both images, e.g. by removing bowel gas [16-20] or applicator [21].
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The value of using a multi-scale or pyramidal outlook for image registration is to control the granularity of the registered information. Indeed, registration is an iterative process that needs both effective initialization and efficient optimization to tend to a unique solution within reasonable computation time. The aim of the multi-scale approach is therefore to decompose this process into multiple simpler tasks, starting from the coarsest information then refining the result by considering more and more details. Thus, from coarse-to-fine resolution, large-to-small (i.e. mostly linear-to-non-linear) deformations can be quantified, respectively at the boundary conditions of each level of registration. The multi-scale description of an image is based on its down-sampling to provide different levels of detail, from the finest (original image) to the coarsest. 
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0. [bookmark: _Toc495925873][bookmark: _Toc496526790][bookmark: _Toc496535326][bookmark: _Toc7876067]Transformation (Figure S-1.2a)

Transformation aims to deform the moving image to make it correspond as closely as possible to the fixed image. When considering DIR, the transformation is generally represented as a deformation vector field (DVF), i.e. a set of vectors, defined on the fixed image space, with a displacement vector corresponding to each voxel. This transformation maps each voxel of the fixed image to the corresponding position in the moving image.
Generally, the transformations are method-dependent. Two main classes of transformations are used (Figure S-2): parametric and non-parametric. In the parametric method, the transformation is based on a limited number of control points, defined either regularly (e.g. using an overlying grid) or arbitrarily (e.g. using salient points). The non-parametric method is directly based on a DVF defined on each voxel. In this case, in order to generate realistic deformations, the DVF is smoothed to regularize it, e.g. prevent discontinuities like physically unrealistic deformations. Fluid or elastic deformations are then simulated [22].
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The metric measures the similarity between the fixed and transformed images. The choice of metric is crucial since this is the criterion that guides the optimization of the geometric transformation. The literature presents a very large number of metrics and their variants, which can be divided into two main groups. Feature-based metrics use geometric characteristics (e.g. points, curves, surfaces, or volumes) previously extracted in both images (Step 1a - preprocessing), generally relying on the geometric distance (e.g. Euclidean) between identical characteristics in both images. Intensity-based metrics, on the other hand, directly use voxel intensity. In the context of mono-modality registration, the sum of squared differences (assuming one given voxel has the same intensity in both images) and the cross-correlation coefficient (assuming a linear relationship between the intensities in both images) [23] are the most often used metrics. In multimodality registration, metrics based on statistic similarity are preferred, such as mutual information [24] measuring the statistical relationship of the intensities between the two images. Multi-metric approaches can be also used to guide the process [4]. 
To compare the intensities of the fixed and deformed images, they have to be defined at the same locations. Thus, the intensities of the deformed image are generally interpolated at the voxel location in the fixed image. For example, a linear interpolation provides a smooth result by combining the neighbouring intensities. 
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The role of the optimizer is to adjust the geometric transformation in order to improve the metric value (increase or decrease the value, depending on the definition of the metric). The more complex the desired transformation, the larger the research space. Several optimization methods have been considered in the literature. The most classical optimizer is the gradient descent where the optimum is iteratively searched for by locally following the direction corresponding to the negative of the gradient of the metric values (i.e. the direction downwards). A rigorous setting of the gradient step is crucial to optimize computation time and stability. Recently, adaptive approaches have managed to iteratively modify this “searching” step in the optimization space. Different optimization methods have been derived from the classical gradient descent, considering other mathematical aspects (e.g. approximation of the derivative, random selection) [25]. 
The multi-scale approach proves useful for stabilizing the optimization. Starting from the lowest resolution, the transformation is optimized and initializes the optimization at higher resolutions until the highest has been reached (Figure S-1.1b). This procedure aims at simplifying the optimization process so as to facilitate the search for the optimum value. Thus, the problem-solving capacity generally becomes more efficient and faster. 
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The optimization loops until a stopping criterion is reached. Two main stopping criteria can be used and combined: the number of iterations and the metric value convergence. Setting a maximum number of iterations prevents the optimization from looping indefinitely. Finally, the DVF is built from the “optimal” transformation and sampled on the fixed image coordinates. This DVF, representing the correspondence of the fixed image to the moving image domain, can be used to deform the moving image anatomy and spatially-linked information (delineations, dose). 
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DIR methods encounter difficulties depending on the image characteristics. Noise adds intensity information that is not related to patient anatomy, thus misleading DIR methods. Artefacts caused by either image acquisition (e.g. distortion, aliasing, motion) or patient prosthesis (resulting to distortions or star-burst artefacts) disturb the image intensities. Different fields of view (FOV) between the two images can likewise hamper their alignment and restrict the DVF to where they intersect [26]. 
The estimation of the deformation between two images is inherently an ill-posed problem, meaning that the solution is not unique. Indeed, based on the image intensity, a given point in a homogeneous region may be mapped to multiple points (non-unicity of the solution, Figure S-3d). Thereby, physical properties of the tissues or deformation vector field characteristics should be considered in order to estimate coherent transformations. Several constraints (e.g. manual landmarks) can be exploited to guide the estimation of the DVF [27].
DIR methods may encounter difficulties depending on organ or tissue characteristics. For some anatomical areas, sliding between tissues may occur (e.g. between the lungs and thoracic cage, Figure S-3a) [28]. More complex regularization methods (e.g. combination of transformations of different organs) have been proposed [29-35] in order to handle these situations. 
Furthermore, the same tissues should always be present in both images, yet matter disappearance or appearance can occur, creating a challenge, e.g. gas appearance or disappearance in the bowel (Figure S-3b) or tumour shrinkage. This may require specific methods to be implemented (e.g. preprocessing to identify and remove gas [20]), or otherwise the estimated DVF results in unrealistic deformations. 
The last difficulty with DIR methods consists in achieving good parametrization of the registration process based on the context (e.g. localization, application, imaging modality), with the aim to obtain good convergence of the optimization. For example, local large deformations can be difficult to estimate (Figure S-3c) due to inappropriate metric or optimization parameters. If the optimization gradient step is too small or large, the process can either converge to local minima, never converge, or converge very slowly. To deal with these large deformations, each organ can be registered separately based on their delineations. All organ DVFs can thereafter be fused to generate a global DVF (e.g. using weighting by distance) [9, 36].
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Several DIR methods using the general workflow detailed above have been proposed in the literature, with the most commonly-used in radiotherapy presented below (Table S-1).

0. [bookmark: _Toc495925879][bookmark: _Toc496526796][bookmark: _Toc496535332][bookmark: _Toc7876073]Demons registration

One of the most popular DIR method is the Demons algorithm [37], which is a non-parametric method since that the displacement of each voxel is computed. The regularization is simply performed by smoothing the DVF at each iteration. The Demons DVF corresponds to a “force” directed in accordance with the intensity differences between the two images. This method actually corresponds to minimizing the intensity difference between images using a gradient descent [22]. Thus, the algorithm is adapted to images with the same intensity range (i.e. same imaging modality). Otherwise, intensity correspondences can be adjusted by preprocessing [38] or iterative correction [39]. Since the first proposed algorithm by Thirion [37], Demons registration has progressively been improved, especially in terms of convergence, by integrating an “active” force that also considers the moving image gradient [40], and DVF invertibility (i.e. nonsingularity), called diffeomorphism [41]. 
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Free-form deformation (FFD) [42] is a generic parametric method relying on estimating the transformation based on a limited set of control points defined by a regular grid that is superimposed on the image. The vector displacements are iteratively optimized according to the metric. A dense DVF is then obtained by B-spline interpolation [42]. Splines are smooth functions used for coarse vector interpolation based on control points. The FFD model has the advantage of providing a smooth deformation with only few parameters. As shown by Zagorchev [43], who evaluated multiple transformation functions, the control points used for the parametric methods should be homogeneously distributed and limited in number. In multi-resolution approaches, the parameters are up-sampled using B-spline to represent the transformation in the higher scale. A recent method enriched the B-spline basis function during this up-sampling process in order to integrate desired discontinuities, such as sliding [44]. 
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Contrary to the previous methods which are directly based on image intensities, the geometric approach consists of extracting anatomical or geometric salient points or surfaces in order to characterize the structures to be registered. This is particularly useful when both images exhibit very different intensities, such as when registering different imaging modalities (e.g. CT with magnetic resonance imaging [MRI]). Salient feature-based registration (SFBR) is a common geometric approach involving three steps: (i) salient features are extracted and refined using filtering, down-sampling, intensity, or topology analysis; (ii) the salient points of both images are matched using similarity of neighbourhoods; (iii) a dense DVF is then estimated by interpolating the salient point pairs (e.g. with basis- or thin-plate splines [45]). 
Geometric methods can also be based on morphing transformation [46]. Other methods use multiple-attribute extraction for inter- and intra-modality registration in variant cases [47, 48]. Manual landmark-based approaches can similarly be used, though involve heavy workloads, since many landmarks have to be considered for a precise DVF to be generated [49]. 
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Biomechanical model-based registration is inspired by the physical properties of the registered organs. Considering two images to register, a finite element model (FEM) of the considered organ(s) to be deformed is generated from segmentations. These properties can be divided into three main groups with varying complexity: (i) linear elastic modelling considers that the material returns to its original position after being stressed. Properties of the soft tissue are then represented by Hooke’s law, which is defined by two constants: the modulus of elasticity (Young’s modulus) and compression parameter (Poisson’s ratio); (ii) the hyperelastic model considers soft tissues to be rubber-like material adopting non-linear behaviour based on the strain-energy density and the material stretchiness; (iii) the viscoelastic model takes into consideration both viscous and elastic properties, with a time-dependent strain. After selecting the mechanical law, the corresponding parameter values have to be set. Since it is generally impossible to identify these values for each individual patient, some generic values are usually used. Next, boundary conditions are assigned between both images, corresponding to prescribed displacements (e.g. resulting from a previous DIR). Finally, a finite element analysis (i.e. numerical optimization) is performed and aimed to extract the resulting displacement, stress, and strain of each element of the meshes. 

[bookmark: _Toc495925883][bookmark: _Toc496526800][bookmark: _Toc496535336][bookmark: _Toc7876077]Hybrid methods

Hybrid methods have recently been proposed to take advantage of different DIR approaches. Their goal is to improve regularization, precision, and rapidity. The hybrid process can be applied either during optimization, by generating a DVF from different information (e.g. intensities, structures, landmarks), or afterward, by fusing the different DVFs resulting from the different methods. The idea is to compensate for errors introduced by each algorithm [50-59]. Another approach consists in constraining the update of the demons’ DVF by the gradient of the salient points-based registration, with the aim to reduce the discontinuity provided by the largest deformations [60]. 

The main idea behind the principle of DIR is not evolving, yet more complex and advanced methods have emerged. In conclusion, there is no “universal” DIR method that proves efficient in all situations. Depending on image modality, image quality, anatomical localization, deformation magnitude, and patient anatomy, a variety of specific methods have been proposed. Certain challenges are particularly prohibitive for certain methods, like the consideration of very large deformations, tissue sliding or matter appearance/disappearance. For this purpose, both research and commercial applications are leaning towards hybrid and biomechanical models. 
[bookmark: _Toc495925888][bookmark: _Toc496526805][bookmark: _Toc496535341]
[bookmark: _Toc7876078]DIR evaluation

The clinical application of DIR requires precise quantification of the uncertainties related to the DIR algorithms. Several complementary DIR evaluation methods have been reported in the literature. 

0. [bookmark: _Toc495925889][bookmark: _Toc496526806][bookmark: _Toc496535342][bookmark: _Toc7876079]Visual evaluation 

The most natural way to evaluate DIR performance is to compare the reference and deformed images visually. Of the many visualization methods, most are based on fusing the reference and deformed images (Figure S-4a). For example, checkerboards enable verification of the contour alignment, and the overlay of one image on another with a colored transparency effect enables salient information from each image to be displayed while the alignment is evaluated. When considering image registration using the same modality, absolute image intensity differences reveal the areas that have large intensity differences, and are thus sources of potential misregistration. In addition, visualizing the DVF overlapped on the images as a 2D vector or a deformed grid can help to detect local irregularities (i.e. vector/grid folding). The same DVF can be used to propagate the reference contours on the fixed image to identify misalignment between the contours and the image content. Modern tools tend to integrate and render such visual information within a single framework to simplify the DIR evaluation [61].
While all of these evaluation methods are simple and qualitative, they suffer from not being able to quantify the uncertainties or detect small uncertainties (e.g. below 2 mm). 
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Standard quantitative evaluation methods are based on a comparison between the reference contours, which are usually delineated by experts, and the propagated (i.e. deformed) contours. For each considered organ, the contour of the moving image is propagated using the estimated DVF and then compared with the fixed image reference contour. This comparison is performed using either overlap-based or surface distance-based scores. Figure S-4b illustrates several well-known scores. The DSC is the most commonly used score in the literature, followed by the Jaccard index and the overlap coefficient, with all three considering the relationship between the union and the intersection of the two delineations. These scores range from zero, which corresponds to no overlap and thus a poor registration result, to one, which corresponds to a perfect overlap and thus a good result. It can be difficult to interpret these values given that they are dependent on the organ volumes (e.g. the DSC is higher for larger organs because of the smaller relative change). Thus, the expected DSC should be higher for larger organs (e.g. the lung) than for smaller organs (e.g. the prostate).
The Hausdorff distance measures the maximum Euclidean distance between two contours. This is defined by considering, for each point of one delineation’s surface, the closest point on the second delineation’s surface. The mean distance to agreement (DTA) corresponds to the mean of the distances between the points of one structure to those of another. 
The main drawback of these delineation-based scores is that they do not consider the estimated local displacements. Thus, local registration errors (e.g. displacements along the surface of the organs) may be not detected if they have no influence on the propagated delineation. Moreover, these scores may be dependent on the volumes of the considered organs. When manual delineations are performed, it is important to account for intra- and inter-observer variability [62]. Compared to volume-based scores, surface-based scores provide a better assessment of the local uncertainties, but are insufficient for quantifying the local DIR accuracy [63]. Moreover, a surface representation may be more accurate because it does not rely on the underlying image resolution; this is especially true for small structures [64]. Finally, these delineation-based scores do not characterize the local DVF accuracy. Therefore, they are effective when used for delineation propagation, but are unsuitable for applications requiring local accuracy, such as dose monitoring.
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The point-to-point error measures the distance between a point propagated by the DVF and a ground-truth point. Landmarks are either placed manually in the images by an expert or implanted (e.g. polymer or gold markers, surgical tools, calcifications) to provide information on the “true” displacement, thus enabling the target registration error (TRE) to be measured (Figure S-4c) [65]. Manually or automatically determined landmarks have previously been used to denote the center of mass of the parotid glands for H&N, gold markers for prostate, and the top of the uterus and uterus midline for cervical cancer [66]. For example, in H&N, 14 landmarks have been used to evaluate the accuracy of 10 DIR methods, and the TRE of inter-individual variability appeared to be similar to the DIR performance [67, 68]. For the parotid gland, the mean error was approximately 2 mm [68]. Nevertheless, using landmarks has demonstrated that DIR cannot be used for tumors because of their complex deformations and matter disappearance [69]. 
Although evaluation methods based on manual landmarks enable a local evaluation of the DVF, they rely on the ability to identify landmarks in the images. This process can be very time consuming [70] and challenging owing to the poor contrast in soft tissues, homogeneous intensity regions, artefacts, or poor image resolution. More sophisticated approaches based on feature extraction can identify a large number of landmarks, enabling both the uncertainties and workload to be reduced [71, 72]. 

[bookmark: _Toc495925892][bookmark: _Toc496526809][bookmark: _Toc496535345][bookmark: _Toc7876082]Deformation vector field (DVF) evaluation

DVF analysis allows us to characterize the local or global behavior of the deformation. For example, the DVF consistency can be measured by comparing the results of two deformations that have different paths. Indeed, DIR methods do not always ensure inverse consistency, i.e. the results differ according to the order in which the images are registered. This metric is termed the inverse consistency error (ICE) or transitivity error (TE) when two or more images are considered, respectively [73-75]. The ICE is defined as the Euclidean distance between the points mapped by the forward and reverse transformations. Figure S-4d represents the transitivity by showing the registration of image “1” towards images “2” and then “3,” which should be equivalent to the registration of image “1” directly towards image “3.” Following a similar idea, the distance discordance metric (DDM) measures the backward distances of the distributed voxels from multiple registered images to a single fixed image [76]. This metric allows the local uncertainties/variability of DIR to be quantified based on at least four observations. This requirement limits its use to specific clinical applications. To compare two DIR methods on the same observation, the target registration discrepancy (TRD)has been proposed to quantify the vector distance between two points warped from the same reference point by at least two DIR algorithms [55].
Another measurement method is based on the Jacobian matrix, which is computed from the DVF of the neighborhood of any given point. The determinant of this matrix reflects the voxel-wise volumetric change according to the DVF. A Jacobian determinant with a value greater than (less than) one represents a volume expansion (compression). Values of zero or less correspond to self-folding, which results from the crossing of the vectors of the DVF, primarily owing to poor regularization of the DVF. This implies that the original image would not be recovered by the inverse transformation. Figure S-4e shows a schematic of the Jacobian determinant in the context of vector crossing. 
The harmonic energy measures the local DVF deviation based on an affine transformation, with its value inversely related to the smoothness of the DVF [77]. Similarly, another method measures the unbalanced energy produced by the DVF at each node of an organ mesh by considering the material heterogeneity in terms of its elasticity (i.e. Young’s modulus) [78, 79]. A value is then assigned to each node and each corresponding voxel of the image to represent the error induced by the DVF in terms of the precision and energy preservation. 
In total, the evaluation of the local DVF behavior enables the detection of irregularities that could affect the deformed image quality. Such metrics have been measured for dose warping, revealing some ambiguity in the assessment of the accumulated dose [75], and should be used to validate DIR for this purpose [80]. While interpreting the results is often complex, this characterization does not always testify to the local accuracy of the DIR method. However, the DDM and HE metrics have been shown to be good predictors of DIR errors greater than 2 mm [81]. 

[bookmark: _Toc495925893][bookmark: _Toc496526810][bookmark: _Toc496535346][bookmark: _Toc7876083]Physical and numerical phantoms

The evaluation criteria discussed above have the main limitation that they are not based on a reference DVF. Hence, they focus the evaluation on some restricted criteria (global matching of specific regions, local matching of some specific points, specific characteristics of the DVF). In contrast, phantoms can be used to represent an anatomy with known deformations. These ground-truth deformations can be compared with those estimated by a DIR algorithm (Figure S-4f). Two types of deformable phantoms are currently available: physical and numerical phantoms. 
Physical deformable phantoms are real phantoms that are scanned before and after deformation. Their purpose is to represent different shapes, either mimicking human organs or not. Basic shapes can be simulated by using balloons, sponges [82, 83], porcine bladders [84, 85], or deformable gels [86, 87], and may even be 3D printed [88, 89]. More complex shapes can be represented by combining different materials to represent an anthropomorphic phantom in which each material provides a particular X-ray attenuation [82, 89-92]. The flexibility of the materials combined with a physical constraint (e.g. the insertion of a balloon) allows for the phantom to be deformed [90]. The ground-truth deformations are usually measured using radiopaque [85, 89, 93] or nonradiopaque markers that are visible under optical cameras [90-92, 94]. A cadaver has also been employed to simulate different anatomical deformations [95]. Finally, while enriching the phantom setup with radiosensitive gels [86, 87] or diodes [90], dose monitoring applications can be evaluated in terms of dosimetric accuracy [89, 96, 97]. Such phantoms are especially useful for “end-to-end” tests.
Numerical phantoms rely on the design of numerical objects and the simulation of their deformations. The geometry of the phantom is based on the images or set of delineations from a real patient, or on typical geometry. The phantom is deformed either manually, based on biomechanical laws [83, 98-100] or using a model of deformations (e.g. cardiac or respiratory movements) [101, 102], or based on a ground truth DIR method [81, 103] to provide the reference DVF. Finally, the corresponding images must be simulated. Once the whole workflow has been implemented, an infinite number of configurations can be simulated to mimic realistic behavior. 
[bookmark: _Toc491444994][bookmark: _Toc491688203]In both cases, although physical and numerical phantoms are powerful tools, they are still difficult to build and limited in terms of representing complex human shapes, realistic clinical behavior (e.g. treatment response), and tissue heterogeneity [92]. Many steps in the generation of physical or numerical phantom can be challenging. For physical phantoms, the quality of the phantom images and the nature of the deformations are limited by the choice of materials. For numerical phantoms, the choice of the biomechanical properties of each organ could prove to be challenging and time consuming. Phantoms can, however, provide information on selecting the most adequate algorithm depending on the clinical site [104]. Numerical phantoms are particularly appropriate for evaluating DIR because of their ability to simulate anthropomorphic geometries, the high complexity of the simulated deformations, and the ability to control the resulting image quality (e.g. noise, artefacts) [105]. Moreover, they can easily be shared among clinical centers. For example, the IMSIMQA™ (OSL, UK) software provides a library of numerical phantoms that have configurable deformations [106, 107]. Open-source phantom libraries are also available online [108-110], facilitating the evaluation of commercial or homemade DIR algorithms [111, 112]. 
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