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S1 Geometric Diffeomorphic Registration

Here we present the algorithmic details of the estimation framework introduced in Sec-
tion 3.

The space of smooth vector fields V , in the geometric registration model (5), is usually
constructed as a RKHS (Miller et al., 2015). In detail, let KV : R3 ˆ R3 Ñ R3ˆ3 be a
bounded symmetric positive definite function. KV is usually referred to as the kernel of
V and a typical choice for it is the Gaussian isotropic kernel, i.e. KVpx, yq “ expp´}x ´
y}22{p2σ

2
VqqId3ˆ3, with Id3ˆ3 denoting a 3ˆ 3 identity matrix and σV reflecting the rigidity

of the space. Define the pre-Hilbert space V0 “ spantKVp¨, xqω|x P R3, ω P R3u. Given
f, g P V0 we can write them as f “

řN
i“1KVp¨, xiqωi and g “

řN
i“1KVp¨, yiqzi. We thus

define the inner product between f and g to be xf, gyV “
řN
i,j“1 ω

T
i KVpxi, yjqzj. The

space pV , x¨, ¨yVq, defined as the closure of V0, is a (Reproducing Kernel) Hilbert space of
smooth vector fields.

For modeling purposes, the time-variant vector-field vt, introduced in Section 2.4, is
assumed to be of the form (see e.g. Vaillant et al., 2004)

vtp¨q “

kg
ÿ

k“1

KVpφvpt, ckq, ¨qαkptq, (17)

for a set of control points tck : k “ 1, . . . , kgu Ă R3 and the auxiliary variables tαkptq :
R Ñ R3u called momenta of the deformation. The control points tcku are commonly
chosen to be the nodes of the triangulated representation of the surface to be deformed.
φv denotes the solution of the ODE (3) given the time-variant vector field tvt : t P r0, 1su.
The associated deformation energy is defined to be

ż 1

0

}vt}
2
V “

ż 1

0

kg
ÿ

k,l“1

αkptq
TKVpφvpt, ckq, φvpt, clqqαlptq. (18)
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Denoting with ∇1 the gradient with respect to the first variable, the vector field vt
generating geodesics, with respect to the energy term

ş1

0
}vt}

2
V , can be characterized as the

solution of the coupled ODE system, known as the EPDiff equation (Miller et al., 2015)

$

&

%

Bckptq
dt

“
řkg
l“1KVpckptq, clptqqαlptq

Bαkptq
dt

“ ´1
2

´

řkg
l“1∇1KVpckptq, clptqqαlptqq

¯T

αkptq,
(19)

for a set of initial conditions tαk “ αkp0qu Ă R3, parameterizing the initial vector field v0.
This means that the energy minimizing vector fields, generating diffeomorphisms, can be
determined by (19) and fully controlled by the initial vector field

v0p¨q “

kg
ÿ

k“1

KVp¨, ckqαk,

parametrized in terms of the initial momentum vector tαk : k “ 1, . . . , kgu. Moreover,
along a geodesic path the instantaneous deformation energies }vt}V are constant, meaning

that the total deformation energy
ş1

0
}vt}

2
Vdt can be equivalently represented by the initial

deformation energy }v0}
2
V “

ř

k,l αkKVpck, clqαl.
Thanks to the finite dimensional representation underlying the element of the RKHS

V , the minimization of (5) can be cast in a finite dimensional setting and can be ap-
proached, for instance, with a gradient descent algorithm on the initial momentum vector
parametrizing the initial velocity field (see, among others, Vaillant et al., 2004).

The MATLAB toolkit fshapesTk (https://github.com/fshapes/fshapesTk) offers an
implementation of the described geometric registration algorithm, and its extension to
the fshape framework (Charlier et al., 2017).

S2 Registration of Functional Data on a two-dimensional

manifold

Here we cover further details of the functional registration algorithm, for functional data
whose domain is a two-dimensional manifold, introduced in Section 3.2. The main idea
of the proposed algorithm is to perform functional registration as compositions of small
diffeomorphisms, each parameterized by a stationary velocity field. This class of algo-
rithms are also known as Diffeomorphic Demons algorithms (Vercauteren et al., 2009a,b).
Diffeomorphic Demons were originally introduced for functions on Euclidean domains and
an extension to spherical domains has been proposed in Yeo et al. (2010). However, this
extension exploits spherical vector spline interpolation theory and cannot be extended
to a generic manifold. In the geometric registration problem, as detailed in Section S1,
smoothness is imposed by controlling the norm } ¨ }V of the functional space. In fact, in
R3, it is easy to define symmetric definite positive kernels from which we can straightfor-
wardly define V thanks to the RKHS machinery. This approach does not easily extend to
non-linear domains such as M0.

For this reason, here we rely on a construction of the space of smooth vector fields W
based, instead, on the definition of a differential operator encoding smoothness, as done
for instance in the planar 2D case in Beg et al. (2005). However, in the planar 2D case a
matrix operator for a vector field u : R2 Ñ R2 can be defined as the isotropic Laplacian
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operator
„

∆ 0
0 ∆



,

where ∆ is the Laplacian operator for real valued functions. The isotropic Laplacian
applies the Laplacian operator component-wise to a vector field in R2, exploiting the fact
that, in the Euclidean space R2 there is a global reference system. The introduction
of an analogous operator for vector fields on a manifold is not straightforward for the
main reason that nearby vectors, living on different tangent spaces, cannot be compared
component-wise, as they are expressed in different local basis. The definition of such
coordinate independent operator for vector fields requires additional notions of Rieman-
nian geometry. In particular, we rely on the Bochner-Laplacian, which is used to enforce
smoothness on the vector fields generating diffeomorphism on a manifold.

S2.1 Differential operators on tangent vectors

Recall that we denote with TpM0 the tangent space on the point p PM0 and with gp be

the metric on M0. Moreover we denote with TM0 “
9
Ť

pPM0
TpM0 the tangent bundle,

i.e. the disjoint union of tangent spaces. The space of smooth sections of the tangent
bundle TM0, i.e. the space of smooth vector fields on M0, is denoted with ΓpTM0q.

Given a tangent vector w P TpM0, a vector field u P ΓpTM0q and a smooth function
f : M0 Ñ R, a covariant derivative ∇ is an operator ∇wu P TpM0 that is linear in both
w and u and is such that it satisfies the Leibniz rule, namely

∇wpfuq “ dfpwqu` f∇wu.

For a manifold M0 embedded in an Euclidean space, by requiring that the affine con-
nection ∇ must preserve the metric and must be torsion free, we have that this can be
uniquely determined. Under these hypotheses, ∇ is called the Levi-Civita connection. In

Figure 12: The figure is a pictorial representation of the parallel transport of the striped
arrow from p1 to p2. Note that because of the different reference systems in p1 and p2,
expressing the vector as a linear combination of the basis element in Tp2M0 with the same
coefficients as in Tp1M0 would yield to a different result.

practice a connection defines a way to generalize parallel transport on a manifold. In fact,
the parallel transport of a vector u P TpM0 along a curve c can be defined as the collec-
tion of vectors along the curve c such that ∇c1psqu “ 0, where c1psq P TcpsqM0. A pictorial
representation of this is given in Figure 12. Finally, we can define the Bochner-Laplacian
operator, of a smooth section of v P ΓpTM0q, as

∆BL “ ∇˚∇ (20)
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where ∇˚ is the L2 adjoint of ∇.

S2.1.1 Functional Registration Model

Let now M,F : M0 Ñ R be respectively a ‘moving’ and ‘fixed’ image. We recall here the
objective function of the functional registration model (9), in terms of M and F :

EM0puq “
S
ÿ

j“1

`

F ppjq ´M ˝ s ˝ φuppjq
˘2
` λ}∆BLu}

2
L2pTM0q

, (21)

with tpj, j “ 1, . . . , Su Ă M0 the set of control points on the template and φu denoting
the solution of the ODE (8) for the vector field u, at time t “ 1.

Figure 13: On the left two views of a semi-circle image on the unit sphere, representing
the moving image M , while on the right two views of a C-shaped image on the unitary
sphere, representing the fixed image F .

The term M ˝ s ˝φu in such equation is then linearized with respect to u. This results
in the approximation

M ˝ s ˝ φu «M ˝ s` Lu,

where Lu is a first order approximation of M ˝ s ˝ φu ´M ˝ s. In practice Lu is chosen to
be of the form

Luppq “ gppJppq, uppqq, p PM0,

with Jppq P TpM0 for all p P M0. Two classical choices for J , in the planar case, are
J “ ∇DpM ˝ sq and J “ 1

2
p∇DpM ˝ sq `∇DpF qq (Vercauteren et al., 2009b), where ∇D

denotes a discrete estimate of the gradient. Plugging the linearized term in (21) we obtain
the objective function

EM0puq “
S
ÿ

j“1

`

F ppjq ´ pM ˝ sqppjq ´ gpjpJppjq, uppjqq
˘2
` λ}∆BLu}

2
L2pTM0q

. (22)

The minimization of (21) can be achieved by iteratively minimizing the associated
problem (22) and updating the current deformation s with sÑ s ˝ φu, with φu denoting
the solution of the ODE (8) at time t “ 1.
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S2.2 Problem reformulation

To minimize the objective function in (22) we opt for a finite elements discretization
approach. Finite element discretization has been previously applied to the discretization
of FDA problems on manifolds, for instance, in Ettinger et al. (2016) and Lila et al.
(2016). Here, we extend the methodology to the estimation of smooth vector fields on a
generic two-dimensional manifold. To this end, we first reformulate the minimization of
(22) in terms of the Euler-Lagrange equation associated to this minima problem.

Define now the space of smooth vector fields on the template to be W “ tu P

L2pTM0q|∆BLu P L
2pTM0qu. Let the vector field u P W , in the functional (22), be

perturbed by an ε amount along the arbitrary direction ϕ PW . The minimization prob-
lem is reformulated by imposing the Gateaux derivative BϕEM0puq of the energy functional
to be 0 for all ϕ PW .

This leads to the problem reformulation: find û PW such that

S
ÿ

j“1

gpjpϕppjq, Jppjqqgpjpûppjq, Jppjqq ` λx∆BLϕ,∆BLûyL2 “

S
ÿ

j“1

gpjpϕppjq, JppjqqpF ppjq ´M ˝ sppjqq

(23)

for every ϕ PW . Moreover, equation (23) can be reformulated as the problem of finding

pf̂ , ĥq PW ˆ L2pTM0q that satisfies
$

’

&

’

%

x∆BLû, vyL2 ´ xĥ, vyL2 “ 0

λxĥ,∆BLϕyL2 `
S
ř

j“1
gpj pϕppjq, Jppjqqgpj pûppjq, Jppjqq “

S
ř

j“1
gpj pϕppjq, JppjqqpF ppjq ´M ˝ sppjqq

(24)

for all pϕ, vq PWˆL2pTM0q. In this last reformulation, we have introduced the auxiliary
function ĥ, which has been imposed to be equal, in a weak sense, to ∆BLû. Now, asking
the auxiliary function v and the test functions ϕ to be such that v, ϕ P W1 “ tu P
L2pTM0q|∇u P L2pT ˚M0 b TM0qu, and by exploiting the definition of the Bochner-
Laplacian, we can rewrite the problem only in terms of the connection operator ∇, and
consequently be able to formulate it in a finite dimensional space involving only first order
polynomials, as done in equation (26).

S2.3 Vector Finite Element discretization

Here we introduce a linear finite element space for vector fields on a triangulated surface,
where we seek for the discrete solution of the problem (24). To this end, consider the
triangulated surface MT

0 , approximated representation of the manifold M0. MT
0 is not

a smooth surface, so it is not even clear what the tangent space on a vertex of the
triangulation is. For this reason, we use elements of computer graphics to define an
interpolation basis on the triangulated surface, as done for instance in Zhang et al. (2006);
Knöppel et al. (2013).

Let now ξ1, . . . , ξK be the vertices of MT
0 . For each vertex ξk consider the subset of

MT
0 composed by the triangles adjacent to ξk, that we call here one-ring. Following the

approach in Knöppel et al. (2013), the one-ring surface is idealized by normalizing the
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sum of the angles incident to the vertex ξk to add up to 2π, i.e. by ‘flattening’ the vertex
and uniformly distributing that curvature to the flat triangles of the one-ring. To the
vertex ξk they associate a unit vector basis pe1k, e

2
kq representing a reference orientation, so

that an element of the tangent vector uk P TξkMT
0 will be represented by its coefficients

uk P R2 respect to the local basis. Then, an interpolation basis can be defined on the
idealized one-ring of the vertex ξk by parallel transporting through geodesics pe1k, e

2
kq to

the interior points of the one-ring and by scaling them with a piecewise linear function
which takes value 1 on ξk and 0 one the other vertices of the one-ring (see Knöppel et al.,
2013, for details).

What is important to this work is that the outlined procedure leads to a basis of K
functions, whose kth function has support localized on the triangles adjacent to ξk, and
that we denote here with the function ψk “ pψ

1
k, ψ

2
kq, with ψ1

k and ψ2
k vector fields on MT

0 .
For this basis functions the FE matrices xψk,ψk1yL2 and x∇ψk,∇ψk1yL2 are provided.

We can finally define the FE function space Wh to be

Wh “
 

uh “
K
ÿ

k“1

ψ1kuk|uk P R2
(

. (25)

Figure 14: From left to right, the estimated vector fields, and associated deformations
of M , at 4 different iterations of the functional registration algorithm. The target is the
C-shaped image F .

The solution in the restricted space Wh is finally given by the discrete approximations
ûh, ĥh PWh, obtained by solving
$

’

&

’

%

x∇ûh,∇ϕhyL2 ´ xĥh, ϕhyL2 “ 0

λx∇ĥh,∇vhyL2 `
S
ř

j“1
gpj pvhppjq, Jppjqqgpj pûppjq, Jppjqq “

S
ř

j“1
gpj pvhppjq, JppjqqpF ppjq ´M ˝ sppjqq

(26)

for all ϕh, vh PWh.
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Figure 15: From left to right, evolution of the flow through the ODE (8) for a fixed vector
field. The vector field is obtained by the minimization of the linearized objective function
(22) at the 8th iteration.

Exploiting the representation (25) of functions in Wh we can rewrite (26) as a linear
system as follows. Let û be a 2K vector obtained from the vectorization of the set
coefficients tuiu. In the same way let ĥ be the vectorization of the coefficients of ĥh in
(26). Now, introduce the 2K ˆ S matrix Θ1 and the 2K ˆ 2K matrix Θ2, such that

v1Θ1z “
S
ÿ

j“1

gpjpvhppjq, JppjqqpF ppjq ´M ˝ sppjqq

v1Θ2û “
S
ÿ

j“1

gpjpvhppjq, Jppjqqgpjpûppjq, Jppjqq,

with z the vector of length S such that its jth element is pF ppjq´M ˝sppjqq and v the 2K
vector obtained from the vectorization of the set coefficients of vh. These sparse matrices
are defined in Section S2.4, together with the 2K ˆ 2K mass and stiffness matrices R0

and R1, such that

ĥ1R0ϕ “ xĝh, ϕhyL2

ĥ1R1v “ x∇ĝh,∇vhyL2 ,

where ϕ is a 2K vector obtained from the vectorization of the set coefficients ϕh.
Finally, the coefficients û, ĥ, of ûh, ĥh are given by the solution of the linear system

„

Θ2 λR1

λR1 ´λR0

 „

û

ĥ



“

„

Θ1z
0



, (27)

where 0 is a 2K length zero-vector.
The coefficients tûku extracted from their vectorization û in (27) represent the ap-

proximated tangent vectors on the vertices tξku. They are then linearly interpolated to
define a solution on MT

0 . This linear piecewise solution on MT
0 is then used to generate a

diffeomorphic transformation through the ODE (8), which is itself approximated with the
Euler method. At each step of the Euler method the image of the solution is re-projected
on MT

0 . Finally, the current registration is updated by composition with the newly esti-
mated deformation as s Ð s ˝ φû, where φû denotes the solution of the time t “ 1 given
by the Euler method.

In Figure 13, we show an example of a moving image M , which is a semicircle indicator
function, and a fixed image F , which is a C-shaped indicator function. They both live on
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the same spherical domain. This example tries to replicate the C-shaped planar registra-
tion problem, where image registration algorithms are usually tested, as for instance done
in Vercauteren et al. (2009a). In Figure 14 we show the vector fields estimated at four
different iterations of the Algorithm 1. While in Figure 15, for one particular iteration,
we show the evolution of the flow generated by the ODE (8). In this specific example, the
domain is chosen to be spherical for visualization purposes, however it can be any smooth
two-dimensional manifold, as for instance, in Section 4. The performances of the algo-
rithm, with these synthetic data, are excellent. In fact, only 12 iterations are necessary
to register the semicircled indicator function to the C-shaped indicator function.

Finally, it could be argued that being the proposed approximation of the vector field
û only piecewise linear, and not of higher regularity, this could lead to deformations
that are not diffeomorphic. However, the use of reasonably fine triangulated meshes MT

0

should solve the problem. After all, in practice, even for higher regularity vector fields,
the computer resolution of the ODE relies on a finite number of sampled values from the
vector field, and thus on a non smooth vector field.

S2.4 Finite element matrices

Assume, for simplicity, that the points tpju coincide with the nodes tξk : 1, . . . , Ku of the
mesh MT

0 . The non-zero entries of the matrices Θ1 and Θ2 are

tΘ1u2k,k “ gξkpJpξkq, e
k
1q,

tΘ1u2k`1,k “ gξkpJpξkq, e
k
2q

and

tΘ2u2k,2k “ g2ξkpJpξkq, e
k
1q, tΘ2u2k,2k`1 “ gξkpJpξkq, e

k
1qgξkpJpξkq, e

k
2q,

tΘ2u2k`1,2k “ gξkpJpξkq, e
k
1qgξkpJpξkq, e

k
2q, tΘ2u2k`1,2k`1 “ g2ξkpJpξkq, e

k
2q

with the matrices indexed from zero and k “ 0, . . . , K ´ 1. The computation of the
entries gξkpJpξkq, e

k
1q can be performed by representing the tangent vectors Jpξkq and ek1

as vectors in R3 and computing the R3 Euclidean scalar product between them, as in fact
the manifold M0, and its associated triangulated mesh MT

0 , are embedded in R3. The
entries of the 2K ˆ 2K matrices R0 and R1 in (26) are computed in (Knöppel et al.,
2013, Section 6.1.1), for the purpose of computing eigen-vectors of the Bochner-Laplacian
operator.

S2.5 Boundary Conditions

The deformations generated by the functional registration algorithm are by definition
constrained to be maps with their image on the template surface, since the ODE (8) is
defined on the manifold itself. However, if the template is a manifold with a boundary, as
in the simulations performed in Section S3, the vector might generate deformations that
transport the functions outside the boundary. This can be avoided by imposing homo-
geneous Dirichlet boundary conditions on the estimated vector field. Dirichlet boundary
conditions can be implemented in different ways. Here, we opt for applying them after the
linear system (27) has been built. In particular given a boundary node k, we add a large
constant M to the entries 2k, 2k and 2k ` 1, 2k ` 1 of the left hand side matrix and set
to 0 the entries 2k and 2k` 1 of the right hand side vector. As a consequence, the vector
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fields estimated from the modified linear system will smoothly vanish as approaching the
boundary.

S3 Analysis of a synthetic dataset

In this section, we validate the estimation framework introduced in Section 3, by per-
forming a study on a dataset generated from Model 1. We thus proceed with defining the
unknown quantities of such model. We will not use different notation for the theoretical
objects and their respective computer representations, unless necessary.

Thus, we denote with M0, the template temporal lobe shown in Figure 16. We set

Figure 16: On the left, a template of the temporal lobe M0 with an associated cortical
thickness map µ. On the right, the function ψF1 used to generate subject-specific functional
variability.

the deformation operator ϕ to be the diffeomorphic deformation operator introduced in
Section 2.4. We then choose two orthonormal vector fields ψG1 , ψ

G
2 P V , visualized in

Figure 17 as the deformations ϕ˘cψG
1
, ϕ˘cψG

2
applied to the template M0, where c P R

is a constant regulating the norm of the two orthonormal vector fields, for visualization
purposes. The vector field ψG1 encodes a change in the length of the temporal lobe, while
the vector field ψG2 encodes a change in the size of temporal lobe.

We set the mean function µ P L2pM0q, to be the thickness maps in Figure 17, which is
a sharpened version of the cross-sectional average thickness of 100 real subjects. Note that
despite it being computed from real data, this plays the role of an unknown quantity of
the model. Further details on the real data are left to Section 4. Moreover, we introduce
localized functional variability through the single mode of variation ψF1 P L

2pM0q, this
also visualized in Figure 16.

We then generate n “ 50 FoSs pM1, Y1q, . . . , pMn, Ynq by

$

’

&

’

%

Mi “ ϕai1ψG
1 `ai2ψ

G
2
˝M0,

Xi “ µ` δai2ψ
F
1 ,

Yi “ Xi ˝ ϕ
´1
ai1ψG

1 `ai2ψ
G
2
,

(28)

where ai1, ai2 are independent random variables distributed as ail „ Np0, σ2
l q, with σ1 “ 15

and σ2 “ 10. The constant δ “ 0.1 determines the scale that relates variations in the
functional term δai2ψ

F
1 and variations in the geometric term ai2ψ

G
2 . Finally, normally
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Figure 17: From left to right, first and second geometric modes of variation of the gener-
ated FoSs, here visualized as ϕ˘cψG

1
˝M0, ϕ˘cψG

2
˝M0, where c P R is a constant regulating

the magnitude for visualization purposes.

distributed noise with variance σ “ 0.3, is added to each node of the mesh where the
function is observed. The generative model proposed here is a simplistic implementation
of the one proposed in Model 1, with vi “ ai1ψ

G
1 ` ai2ψ

G
2 and Zi “ ai2ψ

F
1 .

The generative model (28) seeks to reproduce a situation where the FoSs have two
modes of geometric variation. The first one is a mode of variation which is not correlated
with a variation in the functions. The second one, which encodes the size of the temporal
temporal lobe, has an effect on the function, formalized with a linear relation between
the scores of the second geometric mode of variation ψG2 and the scores of the functional
mode of variation ψF1 . The generated FoSs are such that larger temporal lobe have larger
cortical thickness in proximity of the central gyrus of the cerebral cortex, independently
of the first geometric mode of variation. We hope to recover this relation through the
approximation pipeline introduced in Section 3.

Figure 18: On the left, the template M0 with an estimated vector field v̂i P V generating
the diffeomorphic deformation ϕv̂i that registers the template to the ith subject surface.
Next, the evolution of the flow generating the diffeomorphic deformations φv̂ipt, ¨q through
the ODE (3), which registers the template to the target surface at time t “ 1.
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Figure 19: Two vector fields estimated from the functional registration algorithm, gen-
erating, for two different subjects, the flow which aligns two different functions to the
cross-sectional mean function.

In particular, we perform non-landmarked diffeomorphic registration of the template
to the single surfaces, resulting in the estimated vector fields tv̂i : i “ 1, . . . , nu. The ith
vector field v̂i is such that ϕv̂i ˝M0 resembles the geometry Mi of the ith FoS, with ϕ
the diffeomorphic deformation operator. In Figure 18, we show an estimated vector field
v̂i P V and the ODE’s (3) flow φv̂ipt, ¨q, generated from the estimated vector field, which
deforms the template to match the target.

The estimated diffeomorphic deformations tϕv̂i “ φv̂ip1, ¨qu are then used to transport
the functions tYiu on the template surface, thus leading to the estimates tX̂iu. Sub-
sequently, the cross-sectional mean map of tX̂iu is computed and each function X̂i is
iteratively registered to it through the functional registration algorithm presented in Sec-
tion 3.2. In Figure 19, we show the template surface, with the tangential vector fields
that generate the deformations that align two different functions to the cross-sectional
mean function.

At each iteration of the functional registration algorithm, the cross-sectional mean and
the first 2 functional PCs, from the functionally aligned versions of tX̂iu, are computed.
The results are shown in Figure 20. We can notice that while the cross-sectional mean
does not change from iteration to iteration of the functional registration algorithm, the
estimates of the PC functions do. In particular, the first PC function is supposed to
capture ψF1 . However, where no functional registration is applied, the first estimated PC
component is a mix of the ψF1 and fictitious variability due to misalignment, while the
second PC function is a flat and corrupted version of ψF1 . After only one iteration of
the functional registration algorithm, the estimated first PC function starts resembling
the shape of ψF1 , shifting the misalignment component to the second PC function. With
the subsequent iteration the first estimated PC function becomes a sharper estimation of
ψF1 , while the misalignment component disappears also from the second component, in
favour of a flat PC function, which is a regularized PC function of the noise added to the
functions.

Subsequently, we perform fPCA on the estimated vector fields tv̂iu representing the
overall deformation, due to both geometric and functional registration. In Figure 21 we
show the estimated main modes of variation before the functional registration has been
applied. By comparison with Figure 17, we can see that the first two PCs capture the
main geometric modes of variations introduced in the generative process of the FoSs.
The estimated geometric PC function do not change, in a visible manner, from iteration
to iteration of the functional registration algorithm, because the functional registration
brings only small deformations.

11



Figure 20: From left to right, the mean and first two functional PC functions estimates
of the functions, computed after 0, 1, 2 and 10 iterations of the functional registration
algorithm.

We finally plot, in Figure 22, the scores associated to the PCs describing the geometric
variability and those describing the functional variability, for the estimated quantity with-
out functional registration and after seven iterations of the functional registration. Note
that without performing functional registration, not only is the first functional mode of
variation a spurious version of the true underlying component, but this is also correlated
to the geometric mode of variations, which might lead to misleading conclusions. Func-
tional registration removes from the first PC the misalignment effect, bringing to light
the true underlying linear dependence between the functional mode of variation and the
second geometric mode of variation.

In practice, the above procedure is particularly useful if the discovered PCs have bio-
logical interpretations. However, in practice, the discovered PCs tend to vary, depending
for instance on the pre-registration method applied or on the scalar product adopted
to impose orthogonality between the PC functions. For these reasons, if the aim is to
study the relation between geometry and function, we advocate CCA (see Section 3.4).
We perform a CCA on the estimated scores of the geometric and functional variability,
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Figure 21: From left to right, the first two geometric PC functions computed on the space
of initial vector fields. These are visualized as ϕ

˘cψ̂G
j
˝M0, where ψ̂Gj is the estimated jth

geometric PC function.

Figure 22: From left to right, scatter plots of the scores obtained from the fPCA on the
function and the geometric fPCA, respectively without and with functional registration.
After functional registration, these show only the linear dependence imposed between the
first PC function on the functions ψF1 and the second geometric PC function ψG2 . Without
functional registration, also the spurious PC function, due to misalignment, is correlated
with the first geometric PC function.

after seven iterations of the functional registration algorithm. In detail, we construct a
n ˆ 3 matrix XF with the scores of the first three components of the fPCA applied to
the functions. Moreover, we construct a n ˆ 5 matrix XG with the scores of the first
five components of the fPCA applied to the deformations. The lth canonical correlation
component is the pair of vectors ŵF,l P R3 and ŵG,l P R5. The resulting main mode of
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Figure 23: First main mode of co-variation of geometric and functional components of
the CCA analysis, representing the most correlated linear combinations of the first four
geometric modes of variation and first three functional modes of variation. From left to
right, this is visualized by plotting the FoS in (16) for a sequence of constants c.

co-variation pŵG, ŵF q “ pŵG,1, ŵF,1q is visualized in Figure 23 as

#

MCCA “ ϕc ψ̂G
CCA

˝M0,

YCCA “ c ψ̂FCCA ˝ ϕ
´1c ψ̂GCCA,

with ψ̂GCCA “
ř3
j“1 ŵ

G
j ψ̂

G
j and ψ̂FCCA “

ř5
j“1 ŵ

F
j ψ̂

F
j , where pψ̂Gj q and pψ̂Fj q are the estimated

functional and geometric PC components. c P R is a constant varied for visualization
purposes in an interval containing 0. As we can see in Figure 23, the dependence between
the magnitude and the thickening of the function is captured.

Moreover, we test for the statistical significance of the obtained modes of co-variation.
Specifically, we test the hypotheses

H l
0 : ρ̂1 ‰ 0, ρ̂2 ‰ 0, . . . , . . . , ρ̂l ‰ 0, ρ̂l`1 “ . . . “ 0, (29)

with ρ̂l “ corrpXGŵG,l,XF ŵF,lq. According to a likelihood ratio test, with the Bartlett χ2

approximation of the test statistic distribution (see Johnson and Wichern, 2007, Chap-
ter 10.6), only the sample correlation between the first canonical correlation variables,
i.e. XGŵG,1 and XF ŵF,1, is significantly different from zero (p-value 5e ´ 19), while for
l “ 2, 3 we get p-values 0.7759 and 0.9587 respectively.

S4 Further Simulations

As previously mentioned, the functional registration algorithm introduced in Section 3.2
is not the only option to account for functional information in the registration process.
Here we compare our methodology to the joint functional and geometric registration
algorithm proposed in Charon and Trouvé (2014), where the shape similarity functional
(7) is extended to include a functional similarity term.

Suppose now that the template mesh MT
0 is equipped with a functional object µT :

MT
0 Ñ R, which in first instance can be the cross-sectional mean of the functions X̂i

estimated after the geometric registration described in Section 3.1. We briefly recall the
notation in Section 3.1, introduced to define (7). We define KZ : R3 ˆ R3 Ñ R3ˆ3 to be
a Gaussian isotropic kernel of variance σZ , i.e. KZpx, yq “ expp´}x ´ y}22{p2σ

2
ZqqId3ˆ3,

with Id3ˆ3 denoting a 3ˆ 3 identity matrix. Additionally, we introduce a scalar Gaussian
kernel KF : Rˆ RÑ R of the form KFpx, yq “ expp´px´ yq2{p2σ2

Fqq.
Moreover, we denote with cplq and ηplq, respectively, the center point and the normal

vector of the lth triangle of the mesh ϕvi ˝MT
0 . Instead, we denote with cipqq and ηipqq,

respectively, the center point and the normal vector of the qth triangle of the mesh MT
i .
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Figure 24: From left to right, the mean and first two functional PC functions estimates of
tX̂iu estimated by using the registration maps computed by solving (5) with the extended
matching function in (30), for different choices of σF .

Additionally, we introduce yplq, denoting the functional value µT , associated to the mesh
ϕvi ˝MT

0 , at the center point of the lth triangle. We denote with yipqq the functional
value associated to the ith FoSs at the center point of the qth triangle of the mesh Mi.

Let the triangles of the mesh ϕvi ˝MT
0 be indexed by l and g and the triangles in MT

i

be indexed by q and r. The shape similarity functional (7) can be extended to include
functional informations as follows (Charon and Trouvé, 2014).

D2
`

pϕvi ˝MT
0 , µ

T
˝ ϕ´1vi q, pM

T
i , Y

T
i q

˘

“
ÿ

l

ÿ

g

KFpyplq, ypgqqKZpcplq, cpgqqηplq ¨ ηpgq

´ 2
ÿ

l

ÿ

q

KFpyplq, yipqqqKZpcplq, cipqqqηplq ¨ ηipqq

`
ÿ

q

ÿ

r

KFpyipqq, yiprqqKZpcipqq, ciprqqηipqq ¨ ηiprq,

(30)

with ¨ denoting the scalar product in R3. Each term now, measures not only differences
in geometry but also differences in the functional values between the template and the
target FoS.

Subsequently, given the FoSs tpMT
i , Y

T
i qu generated as described in Section S3, we

perform the landmark-free geometric registration by minimizing the objective function in
(5), with the shape similarity functional (7), which is equivalent to the similarity functional
(30) with σF “ `8. Thanks to the estimated registration maps we can estimate the
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functions tX̂iu and compute the cross-sectional mean function µT . Subsequently a second
registration step can be performed, by minimizing the objective function in (5) but this
time with the similarity functional (30). We have performed this for different choice of
σF . The smaller σF , the more we are weighting the functional matching term as opposed
to the geometric matching term.

In Figure 24 we show the results of the fPCA applied to the functions tX̂iu for different
choices of σF . These need to be compared with the results in Figure 20, obtained by
applying the iterative functional registration algorithm in Section 3.2. On the left panel
of Figure 24 we can see the mean and first two PC functions estimated when functional
information is ignored, which coincide with the one showed on the left panel of Figure 20,
as they are computed in the same way. On the other two panels of Figure 24 we can see the
mean and first two PC functions estimated when functional information is introduced.
As we can see the estimated first PC function resembles the true underlying first PC
function, but some fictitious variability is left on the second estimated PC function.

Trying to further decrease σF , to remove the residual fictitious variability, resulted in
estimated registration maps failing to bring the template in geometric correspondence to
the target surface. Such problem has been the limiting factor in successfully applying
the same method to the data in the real application, where the differences in geometries
between the template and the target FoSs are much bigger. In fact, this is one of the
motivations underlying the introduction of the functional registration algorithm in Sec-
tion 3.2, where the ‘moving’ functions are instead ‘constrained’ to lie in the predefined
geometry.
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