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Details on Monte Carlo simulation of torsional twisting motion of polyaromatic molecules 

For the calculation of time evolution of the spin state, a Schrödinger equation with a time-dependent 

Hamiltonian was solved numerically for fine time step t as  
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The Hamiltonian consists of time-independent and time-dependent part as  
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former of which includes the Zeeman interaction, effective hyperfine (HF) couplings between two 

nuclear spins (I1 = I2 = 1/2) and each of electron, and effective Hamiltonian for recombination 

reaction as  
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a1eff and a2eff were calculated by Weller’s equation (eq. 9 and 10 in the main text) from the reported 

HF couplings of PTZ cation and PDI anion radicals (a1eff / = 1.03 mT, a2eff / = 0.24 mT). The 

effective Hamiltonians for singlet and triplet recombination (5th and 6th terms) cause the same effect 

as respective Haberkorn operators for the Liouville equation (eq. 5 in the main text). The 

recombination rate constants for singlet and triplet manifolds were taken from reported values 

obtained by the kinetic simulation of the MFE on the PTZ−FL2−PDI molecule (krecS = 6 ×105 s−1, 

krecT = 1.2 ×107 s−1)[1]. Only time-dependent interaction assumed here is the 2J coupling as 
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where 2J(t) was statistically sampled by Monte Carlo method as described later. 

MARY spectra (Figure 4b in the main text) was simulated assuming the singlet electron spin 

state with the nuclear spin states j (Z = 4) as the initial spin state as 
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The yield of the excited triplet state generated by the recombination of the radical pair was calculated 

as 
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For the calculation of the ST coherence (Figure 4c in the main text), the coherently mixed 

state was used as the initial spin state as 
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 The spin coherence at each time was evaluated as 
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In this case, only the fluctuating 2J coupling (eq. 4) was used for the calculation, so that its effect on 

the spin state can be visualised. 

The phenomenological ST dephasing term cannot be introduced into the present Schrödinger 

equation, but it is assumed to be induced by the fluctuation of the 2J coupling. Effect of conventional 

relaxation (T1 and T2) due to anisotropic HF interactions were also ignored. This is because the 

previous study with Liouville equation[1] indicates that the microsecond-order conventional 

relaxations do not affect the linewidth of the MARY spectra, and their effect is seen only in the high 

field region. 

2J(t) was calculated according to the eq. 22 in the main text from the fluctuating dihedral 

angles as 
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where N is the number of the repeating bridge unit (N = 2 for PTZ−FL2−PDI). Time evolution of the 

dihedral angles is calculated by Monte Carlo molecular dynamics (MD) simulation reported by 

Berlin et al.[2]. Change in the angle in the very fine time step tMD is calculated by the motion 

equation  
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where diff is a random angle, the mean square value of which is described as 
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The potential curves for DB, BB, and BA were taken from the literature values for the same 

molecule obtained by DFT calculations.[3] Utor for BB and BA respectively exhibit highest energy 

barriers of 0.15 and 0.5 eV in the totally flat conformation ( = 0 and ). A high potential barrier of 

~3 eV was assumed for DB. BB exhibits a second barrier of ~0.1 eV at  = /2 resulting in the 

potential minimum at  ~ /4 and 3/4, whereas the second barriers for DB and BA are very small, 

and the potential minimum is at around  ~ /2. 



The MD simulation starts from a randomly sampled  values assuming Boltzmann 

distribution. Small tMD was used for the MD calculation so that 2Drot×tMD = 0.002. The product of 

cos2 
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was calculated from the three  trajectories, which gives the time dependent 2J coupling as 2J(t) = 

2J0 f(t). After coarse graining the f(t) trajectory, t = 40 ps was used for the spin dynamics 

simulation since fluctuations at much higher frequency than the state-mixing frequency is 

unimportant. It turned out that statistical average for 1000 trajectories was enough to obtain well-

converged results. 

Figure S2-1 shows an example of single f(t) trajectory for PTZ-FL2-PDI at Drot = 5.0 × 108 

s−1, which is the smallest value for the calculations in Figure 4c. However, the time scale of the 

modulation is very short, which likely results in motional narrowing of the 2J-resonance spectra. 

This feature is seen in Figure 4c in the main text, where larger Drot results in slower ST-dephasing 

(narrower linewidth for MARY spectra). 
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Figure S2-1. An example of trajectory for the 
product of cos2 at Drot =5.0 × 108 s−1. 
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