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In this supplement, we extend the results obtained for risk-averse exponential utility in the
paper titled Risk-Sensitive Control of Branching Processes to risk-seeking exponential utility and
to (risk-averse and risk-seeking) power utility with multiplicative rewards. To start with, we express
the risk-seeking exponential utility of a reward w as u(w) = eM for some parameter A > 0 and
define the wtility operator T, of action a as
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for any scalar U > 0 (with U 0=1forU > 0). Theorem 1 of the main paper remains valid after
replacing D, by 7,, and the expected disutility C, by the expected utility U,.
We define the optimal utility operator T as
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for U > 0. Like the optimal disutility operator D, the optimal utility operator 7 is continuous and

increasing. The following theorem is the risk-seeking counterpart of Theorem 2 of the main paper.

Theorem 5. The mazimum expected N -period utility T™N1 converges monotonically to 0 < U =
SUD,c g Ur where A = {(ap)pn>1 : an € A}. If U < o0, then there exists a stationary mazimum-

expected-utility policy ™ = (an)n>1 with an, = a* for alln > 1 and a* € A such that U = To-U.

Proof. The optimal-utility operator 7 is increasing, implying that either 71 < 1 and 7V1 con-
verges down to U < 1, or 71 > 1 converges up to U > 1. Since TN1 > 0 for every N, U > 0 in
both cases. Also, TV1 > UX for all 7, taking limit superior of both sides ensures that U > U, for
all 7. Now suppose U < oco. The finiteness of the action set guarantees the existence of a* € A
with U = ToxU. As U > U, for all m, U > Uy,~.

If U <1, then U = TXU < TN1 and taking limit gives U < Ug+, hence U = U,+. On the other
hand, if U > 1, then 71 > 1 and U is the least of the fixed points of 7 that are greater than or
equal to 1. To see why the latter statement holds, first note that the continuity of 7 implies that

U = TU,; secondly, for any other fixed point U’ > 1, the monotonicity of 7 implies TV1 < TNU’,



and taking limit of both sides leads to U < U’. The optimal utility operator 7 is maximum of
polynomials with nonnegative coefficients, so it is convex on (0,00). The function 7V — V must
be positive and decreasing on the interval [1,U), since T1—1>0=TU — U and U is the smallest
value greater than one satisfying 7V — V = 0. Then for a sufficiently small e > 0, TV = T+ V for
all V e [U—¢,U], so T,+V — V is positive and decreasing on the interval [U — e, U). The convexity
of T+ implies T,V —V > 0 for all V< U. Hence U must be the smallest nonnegative fixed point
of T4+ and is greater than 1, so U, = U. 0

The results with risk-seeking exponential utility allow extending the theory to power utility
functions. To show this, we consider the power utility function u(w) = w* with parameter A > 0

for w > 0 and multiplicative rewards such that the reward collected over periods n =1,..., N is

where 7F represents the action assigned to individual &k in period n. The expected power utility of
these rewards given the initial population size Z; = z is then
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meaning that the expected power utility of multiplicative rewards equals the expected risk-seeking
exponential utility of additive logarithmic rewards. Consequently, we can apply the results stated

in this section to the problem with power utility.



