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Risk-Seeking Exponential Utility and Power Utility

In this supplement, we extend the results obtained for risk-averse exponential utility in the

paper titled Risk-Sensitive Control of Branching Processes to risk-seeking exponential utility and

to (risk-averse and risk-seeking) power utility with multiplicative rewards. To start with, we express

the risk-seeking exponential utility of a reward w as u(w) = eλw for some parameter λ > 0 and

define the utility operator Ta of action a as

TaU =
∑
x∈X

q(x|a)eλr(x,a)Ux,

for any scalar U ≥ 0 (with U0 = 1 for U ≥ 0). Theorem 1 of the main paper remains valid after

replacing Da by Ta, and the expected disutility Ca by the expected utility Ua.

We define the optimal utility operator T as

T U = max
a∈A

{∑
x∈X

q(x|a)eλr(x,a)Ux

}
,

for U ≥ 0. Like the optimal disutility operator D, the optimal utility operator T is continuous and

increasing. The following theorem is the risk-seeking counterpart of Theorem 2 of the main paper.

Theorem 5. The maximum expected N -period utility T N1 converges monotonically to 0 ≤ U =

supπ∈A∞ Uπ where A∞ = {(an)n≥1 : an ∈ A}. If U <∞, then there exists a stationary maximum-

expected-utility policy π∗ = (an)n≥1 with an = a∗ for all n ≥ 1 and a∗ ∈ A such that U = Ta∗U .

Proof. The optimal-utility operator T is increasing, implying that either T 1 ≤ 1 and T N1 con-

verges down to U < 1, or T 1 > 1 converges up to U ≥ 1. Since T N1 ≥ 0 for every N , U ≥ 0 in

both cases. Also, T N1 ≥ UNπ for all π, taking limit superior of both sides ensures that U ≥ Uπ for

all π. Now suppose U < ∞. The finiteness of the action set guarantees the existence of a∗ ∈ A

with U = Ta∗U . As U ≥ Uπ for all π, U ≥ Ua∗ .

If U ≤ 1, then U = T Na∗ U ≤ T Na∗ 1 and taking limit gives U ≤ Ua∗ , hence U = Ua∗ . On the other

hand, if U > 1, then T 1 > 1 and U is the least of the fixed points of T that are greater than or

equal to 1. To see why the latter statement holds, first note that the continuity of T implies that

U = T U ; secondly, for any other fixed point U ′ ≥ 1, the monotonicity of T implies T N1 ≤ T NU ′,
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and taking limit of both sides leads to U ≤ U ′. The optimal utility operator T is maximum of

polynomials with nonnegative coefficients, so it is convex on (0,∞). The function T V − V must

be positive and decreasing on the interval [1, U), since T 1− 1 > 0 = T U −U and U is the smallest

value greater than one satisfying T V − V = 0. Then for a sufficiently small ε > 0, T V = Ta∗V for

all V ∈ [U − ε, U ], so Ta∗V − V is positive and decreasing on the interval [U − ε, U). The convexity

of Ta∗ implies Ta∗V − V > 0 for all V < U . Hence U must be the smallest nonnegative fixed point

of Ta∗ and is greater than 1, so Ua∗ = U . �

The results with risk-seeking exponential utility allow extending the theory to power utility

functions. To show this, we consider the power utility function u(w) = wλ with parameter λ > 0

for w > 0 and multiplicative rewards such that the reward collected over periods n = 1, . . . , N is

N∏
n=1

Zn∏
k=1

r(Xk
n+1, π

k
n),

where πkn represents the action assigned to individual k in period n. The expected power utility of

these rewards given the initial population size Z1 = z is then

UNπ (z) = E

( N∏
n=1

Zn∏
k=1

r(Xk
n+1, π

k
n)

)λ
| Z1 = z, π

 = E
[
eλ

∑N
n=1

∑Zn
k=1 ln r(X

k
n+1,π

k
n) | Z1 = z, π

]
,

meaning that the expected power utility of multiplicative rewards equals the expected risk-seeking

exponential utility of additive logarithmic rewards. Consequently, we can apply the results stated

in this section to the problem with power utility.
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