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A Identifiability Constraints
Notice that for F ∗(x, t) = F (x, t)+g(t), where

∫
T g(t) dt = 0 we have

∫
T F

∗(x, t) dt =
∫
T F

∗(x, t) dt
and thus we must impose constraints to ensure identifiability. If no constraints were used, the
function g(t) would be chosen to maximize the penalized log-likelihood given in Section 3.2 and
g(t) would be regularized by the difference penalties we use. The penalties alone are not enough
to ensure identifiability, however. One possibility is to simply use a ridge penalty as in Marx and
Eilers (1998). Due to the difference penalty used, functions of t in the null space of the penalty
are polynomials of degree dt − 1. Therefore dt − 1 constraints are necessary for identifiability.
Instead of incorporating these constraints as we did for the constraint 1TZ[,−1]θ = 0, which would
require reparameterizing in terms of parametric and nonparametric components, we use the QR
and singular value decomposition to numerically identify rank deficiency as outlined in Section
3.2.

For fixed smoothing parameters, different identifiability constraints yield the same predictions
and the same estimated F̂ (·, ·) up to a constant, though different estimates for the variance of the
estimated surface (and therefore different confidence bands) will be obtained. The GCV score is
also invariant to the constraints used. It is possible to switch to an alternative set of constraints
after fitting our model using a pivoted QR decomposition along the lines of Wood et al. (2012).

B How to fit an FGAM in mgcv
Let X denote an N × J matrix of the observed measurements of the functional predictor, where
N is the number of sampled curves and J is the number of measurements for each curve. Let T
denote the N × J matrix of observation times for the predictor curves. Let L denote the N × J
matrix of quadrature weights to use in our numerical integration of the surface F (x, t) and let y
be the N -vector of observed response values. The simplest FGAM (using all the package defaults)
and without an intercept is specified in mgcv by

gam(y~te(X,T,by=L)-1),
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where te specifies a tensor product smooth. The -1 is included so that no intercept is fit and this
is done here to simplify the notation. The variables in the by argument to te are treated as the
covariates in a varying coefficient model. To make this association more explicit, a generalized
varying coefficient model has the form (e.g., see Wood 2006b, p. 169)

g(µi) = θ0 + f1(xi1)xi2 + f2(xi3, xi4)xi5 + f3(xi6)xi7 + . . .

As a special case, consider

g(µi) = θ0 + f(xi1, xi2)xi3 + f(xi1, xi2)xi4 + . . .+ f(xi1, xi2)xi,J+2,

so each covariate, xi3, xi4, . . . , xi,J+2 has the same bivariate varying coefficient. Now suppose
we have xi1 ≡ Xi(tj), xi2 ≡ tij ≡ tj , xip ≡ lij ≡ lj; p = j + 2; j = 1, . . . , J where the lj’s are
quadrature weights. Note that mgcv treats both variables t and l as if they depend on i = 1, . . . , N
though they do not for the FGAM. We now arrive at

g(µi) = θ0 +
J∑

j=1
f(xi1, xi2)xi,j+2 = θ0 +

J∑
j=1

f{Xi(tj), tj}lj ≈ θ0 +
∫
T
f{Xi(t), t} dt,

so mgcv is fitting the model

E(Yi|Xi) =
J∑

j=1
F (xij, tij)lij =

J∑
j=1

Kx∑
k=1

Kt∑
m=1

θkmB
X
k (xij)BT

m(tij)lij,

where as in the paper, BX
k (·) denotes the kth B-spline for the x-axis and Kx is the dimension of

the basis for X (with equivalent definitions for the t-axis).
The matrix BT which consists of J ×Kx blocks of size N ×Kt each is formed in mgcv. The

(i, j) entry in the (m,n) block of BT is given by BX
n (xim)BT

j (tim). The design matrix used for the
smooth is then the NJ ×KxKt matrix

D = diag[vec(L)]BT

The package enforces one constraint at this point because the row sums of the by variable matrix
are constant (L1 = 0). The constraint is 1TDθ = 0. How to implement this constraint during
fitting and every other detail of the estimation procedure used by mgcv is outlined in Section 3.2
of the paper.

The default smoothing method for a tensor product smooth in mgcv is cubic regression splines,
so the bs argument to te must be specified as ’ps’ for P-splines to be used. The m argument to
mgcv specifies both the order of the spline and the order of the penalty. For P-splines, m can be
specified as a list with length equal to the number of marginal bases. The argument k is a vector
specifying the dimension of each marginal basis.

As an example, say we have an N -vector of responses y, the N×J matrix of observed functional
predictors X with observation times occurring at equally spaced points in [0, 1], and that wish to
use the midpoint rule aka rectangle method for approximating the integral. If we wish to use 10
cubic basis functions for the x-axis, 15 4th order basis functions for the t-axis, a second order
difference penalty for the x-axis and a third order difference penalty for the t-axis, then the code
to fit the FGAM with intercept is as follows
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T=matrix( seq(0,1,l=J) ,N,J)
L=matrix(1/J,N,J)
fit=gam( y~te(X,T,by=’L’,bs=’ps’,k=c(10,15),m=list(c(2,2),c(4,3))) )

Note that in the documentation for P-spline smooths in mgcv (see ?p.spline), it is noted that a
smooth term of the form

s(x,bs="ps",m=c(2,3))

”specifies a 2nd order P-spline basis (cubic spline), with a third order difference penalty...” Though
it is not standard for a cubic spline to be called 2nd order, this does seem to be what is implemented
within mgcv and so we follow along with this specification.

Additional functional predictors are added by including additional te terms. Responses from
other exponential family distributions are handled in the exact same way as the glm function in
R.
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