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1 Appendix

We need the following additional terminology: A gropmajorizes (minorizes) another group”
if X =Y (X =Y). AgroupX is amajorant (minorant) of X U A whered = UF_| A; if X £ A,
(X £ A)Yi=1..F.

Proof of Theorem 1.
We prove by contradiction. Assume there exists a unioff dflocks inV” in the optimal solution
labeledM = M; U ... U My that get broken by the cut, with/; and My as the minorant and
majorant block inM, and M} and M as the groups i/, below and above the cut. Define
as the union of all blocks i that lie “below” the algorithm cutl/ as the union of all blocks in
V that lie “above” the algorithm cut. Further defing: C £ (AY C U) as the union of blocks
along the algorithm cut such that: -~ ME (AY < MV). Figure[l depicts an example of these
definitions whered? = Al = AU = AL = {3} for simplicity.

We first prove thatv,;, > wy. First, consider the casé¢Y = {}. By convexity of f;(-) and
summing over group/Y, we have
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Definition of the weight operator gives
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Finally, by the definition of the algorithm cut in (11) since block exists below\/V to affect

isotonicity,
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so thatw,,v > wy. Sincel); is a block, we havev,;. > w,,v, and then
leL > leU > Wy = Wy > Wy

For the caseAY +# {}, we havew,, > way > wy with the first inequality due to optimality
and the second follows directly the proof above replacifig by AY. A proof for wy, < wy
follows a similar argument focusing ol %. Putting this together gives,;, > wy > wyy,,
which contradicts thafl/; and My are blocks in the global solution, since by assumption then
wy, < war,. The casdy = 1 is also trivially covered by the above arguments. We corelit

the algorithm cannot cut any blocka

Proof of Theorem 2:
The proof is by induction. The base case, i.e., first itemtishere all points form one group
is trivial. The first cut is made by solving linear program Yisthich constrains the solution to
maintain isotonicity.

Assuming that iteratioir (and all previous iterations) provides an isotonic solitiwe prove
that iterationt + 1 must also maintain isotonicity. Figuré 2 helps illustrdte situation described
here. LetG be the group split at iteratioh 4+ 1 and denoted (B) as the group under (over) the
cut. LetA = {X : X is agroup at iteratiok + 1, 3i € X such thati, j) € Z for somej € A}
(i.,e., X € A borderA from below).

Consider iteratiork + 1. DenoteX = {X € A : wy < wx} (i.e., X € X violates isotonicity
with A). The splitinG causes the fit in nodes it to decrease. Proof that
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Figure 1: lllustration of proof of Theorem 1. Black lines aegte blocks. The diagonal red line through the
center demonstrates a cut of AlgorithmA is the union of blue blocks below the cut atids the union of
green blocks above the cut. White blocks are blocks that@enpally split by Algorithm 1. These blocks
are split intoM{, ..., M¥ below the cut and/Y, ..., MY above the cut. In the proofy; = ML u MY

Vi = 1...5. The proof shows, for example, that if the algorithm splifs into M{ and M{ according to
the defined cut in (11), then there must be no isotonicityatioh when creating blocks from/{ and MV
However, sincél/; is assumed to be a block, there must exist an isotonicitytiai between\/{* and MV,
providing a contradiction.

follows the proof of (15) in Theorem 1 above so that > wg. We will prove that when the fits
in A decrease, there can be no groups befothat become violated by the new fits4g i.e., the
decreased fits inl cannot be such that' # {}.

We first prove thatt = {} by contradiction. Assum&” # {}. Denotek, < k + 1 as the
iteration at which the last of the groupsAn denotedD, was split fromG and suppose at iteration
ko, G was part of a larger groufl and D was part of a larger group. It is important to note that
XNFUH)={}VX € X\ D at iterationk, because by assumption all groups¥n\ D were
separated fromd before iterationi. Thus, at iteratiork,, D is the only group borderingl that
violates isotonicity.

Let Dy denote the union oD and all groups inF’ that majorizeD. By construction,Dy,
is a majorant inF. Hencewp, < wpyy by Algorithm 1 andw, < wp, by definition since
wp, > wp > wa. AlSo by construction, any seéf € H that minorizesd haswx < w4 (each set
X that minorizesA besidesD such thatvy < w, has already been split front). Hence we can
denoteA,, as the union ofd and all groups i that minorizeA and we havev, > w,, and Ay



is a minorant inH. SinceA; C H at iterationi, we have
Wrug < W4a, <wWa < Wp, < WryH

which is a contradiction, and hence the assumptiog {} is false. The first inequality is because
the algorithm left4d, in H whenF was split fromH, and the remaining inequalities are due to the
above discussion. Hence the split at iteratibrs 1 could not have caused a break in isotonicity.

A similar argument can be made to show that the increased fitddes inB does not cause
any isotonic violation. The proof is hence completed by ttthn. m

Figure 2: lllustration of proof of Theorem 2 showing the defirsets at iteratioh + 1. G is the set divided
at iterationk + 1 into A (all blue area) and3 (all green area). The group borderidgfrom below denoted
by X; (also referred to a® in the proof) is in violation withA. At iterationk, GG is part of the larger group
H and X is part of the larger group’. At iteration kg, groupsF and H are separated. The proof shows
that whenA and B are split at iteratiork + 1, no group such aX’; wherewy, > wy4 could have existed.
In the picture, X; must have been separated at an iterakipr: & + 1, but the proof, through contradiction,
shows that this cannot occur.



	Appendix

