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C Additional Simulation Results

Here we consider additional scenarios for the two-dimensional simulations described in Section 3 in the

main manuscript. We examine two additional cases: first, the coefficient function contains a large, rect-

angular predictive region on the boundary of the image in which all regression coefficients are equal;

second, we examine the impact of registration error on the estimated coefficient image.

C.1 Large, Homogeneous Predictive Region

We construct predictors as in Section 3, using a principal components decomposition of observed 50⇥ 50

axial slices to generate simulated images XS
i =

P50
k=1 cik�k. Here � = {�1, . . . ,�50} are eigen-images

with accompanying eigenvalues � = {�1, ...,�50}, and PC loadings ci are generated ci ⇠ N [0, diag(�)].

The coefficient function � contains a single rectangular (30⇥15) predictive region in which the regression

coefficients �l are uniformly equal to 1. As in Section 3, we choose three signal-to-noise ratios �2
y

�2
✏

=

3, 1, 1/3.

I = 100 I = 500

�

2
y/�

2
✏ = 3 1 1/3 3 1 1/3

GMRF - 2D
MSE1 0.172 0.273 0.472 0.079 0.117 0.185
MSE0 0.006 0.019 0.044 0.005 0.007 0.012
Computation 104.4 101.7 104.8 169.5 167.8 165.6

EX. - 2D
MSE1 0.462 0.651 0.778 0.370 0.455 0.550
MSE0 0.026 0.026 0.030 0.003 0.007 0.020
Computation 86.2 92.8 88.9 141.9 143.9 141.5

FPCR - 2D
MSE1 0.175 0.256 0.363 0.103 0.133 0.192
MSE0 0.034 0.040 0.046 0.026 0.029 0.034
Computation 0.4 0.4 0.4 1.8 1.8 1.8

Table C.1: Average mean squared error separated by true predictive and non-predictive location, signal-
to-noise ratio, sample size, predictor dimension, and estimation technique (“GMRF” labels the Gaussian
MRF prior, “EX” labels the exchangeable prior, and “FPCR” the functional approach). Average computa-
tion time (in seconds) to fit the model is also shown.
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For each signal-to-noise ratio we generate 500 datasets for both I = 100 and I = 500 and apply

the proposed method, the related scalar-on-image model with an exchangeable prior on the regression

coefficients, and the FPCR approach. Tuning parameters are chosen using the first simulated dataset, and

the results below may not be fully representative of the performance of the three methods.

Table C.1 shows the MSE taken over all simulated datasets for each combination of sample size and

signal-to-noise ratio. The proposed method provides good estimates of the coefficient image in both

predictive and non-predictive regions, and performance improves as sample size increases and as signal-

to-noise ratio increases. The proposed method substantially outperforms the related approach that uses

an exchangeable prior distribution: given the homogeneity of the predictive region, encouraging spatial

smoothness improves estimation. The proposed method often outperforms the FPCR approach as well,

with the exception of I = 100 and �2
y

�2
✏

= 1/3. While these approaches are much more comparable in

terms of MSE here than in the bump-and-slab setting considered in Section 3, there remain significant

qualitative differences in estimated coefficient images. As Figure C.1 shows, estimated coefficient images

for the proposed method contain many locations that are shrunk entirely to zero due to the sparsity

constraint. On the other hand, the FPCR method does not impose sparsity, but induces sparsity both

through penalization and a basis representation that avoids voxel-by-voxel estimation.

Figure C.1: Plot of typical estimated coefficient images from the simulation with a large, homogeneous
predictive region. Estimates from the proposed method (labelled “BVS”) and the FPCR method are
shown, along with the corresponding MSE1 and MSE0. The true coefficient is shown in black.
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C.2 Impact of Registration Errors

In this simulation we construct simulated predictors to illustrate the effect of registration error on the

proposed procedure. To do so, we modify the previous method for constructing predictors in the fol-

lowing way. From the observed data we extract 56 ⇥ 56 axial slices and perform a principal compo-

nents decomposition of these images. Simulated images are constructed using XS
i =

P50
k=1 cik�k, where

� = {�1, . . . ,�50} are eigen-images with accompanying eigenvalues � = {�1, ...,�50}, and PC loadings ci

are generated ci ⇠ N [0, diag(�)]. The coefficient function � is defined as in Section 3 using bivariate nor-

mal density functions and is applied to the middle 50⇥50 component of each 56⇥56 simulated predictor

to generate outcomes. As in Section 3, we choose three signal-to-noise ratios �2
y

�2
✏

= 3, 1, 1/3.

I = 100 I = 500

�

2
y/�

2
✏ = 3 1 1/3 3 1 1/3

GMRF - 2D
MSE1 2.511 3.053 3.781 1.576 1.712 2.214
MSE0 0.065 0.082 0.218 0.136 0.110 0.143
Computation 112.8 111.7 111.9 163.5 164.9 164.4

EX. - 2D
MSE1 2.731 3.126 3.744 1.977 2.182 2.584
MSE0 0.233 0.194 0.385 0.110 0.120 0.227
Computation 96.8 95.0 95.3 148.9 147.8 147.2

FPCR - 2D
MSE1 2.928 3.753 4.635 1.902 2.151 2.784
MSE0 0.091 0.058 0.027 0.133 0.123 0.099
Computation 0.4 0.4 0.4 2.1 2.1 2.1

Table C.2: Average mean squared error separated by true predictive and non-predictive location, signal-
to-noise ratio, sample size, predictor dimension, and estimation technique (“GMRF” labels the Gaussian
MRF prior, “EX” labels the exchangeable prior, and “FPCR” the functional approach). Average computa-
tion time (in seconds) to fit the model is also shown.

To simulate registration errors, the “observed” predictors in each simulation are 50 ⇥ 50 images that

are off-center components of the complete 56⇥ 56 generated images; the predictors are randomly shifted

horizontally and vertically by {�3,�2,�1, 0, 1, 2, 3} voxels with probability {.1, .1, .2, .2, .2, .1, .1}. Thus,

each observed predictor is shifted from the true generating image by a random amount. We also note that

due to the size of predictive regions in the coefficient image, these registration errors are substantial.

Table C.2 shows the MSE taken over all simulated datasets for each combination of sample size and

signal-to-noise ratio. A comparison with Table 1 comparison, which provides results for the same simula-
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tion design without registration error, unsurprisingly indicates that all methods have higher MSEs in the

presence of registration error. Moreover, the results indicate that the proposed method outperforms the

competing approaches in terms of MSE for predictive regions. The FPCR has comparable and sometimes

lower MSE on non-predictive regions; as Figure C.2 shows, this is due to additional regions declared pre-

dictive by the proposed method as well as general oversmoothing by the FPCR method. As expected,

performance improves for all methods as signal strength rises and as sample size increases.

Figure C.2: Plot of typical estimated coefficient images from the simulation with registration errors. Es-
timates from the proposed method (labelled “BVS”) and the FPCR method are shown, along with the
corresponding MSE1 and MSE0. The true coefficient is shown in black.
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