
High dimensional surrogacy: computational aspects of an upscaled

analysis

Rudradev Senguptaa,c, Nolen Joy Perualilac, Ziv Shkedya,b, Przemyslaw Biecekd, Geert

Molenberghsa,b, Luc Bijnensa,c

aCenter for Statistics (CenStat), Hasselt University, Hasselt, Belgium

bInteruniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Belgium

cJanssen Pharmaceutical companies of Johnson and Johnson, Beerse, Belgium

dFaculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland

ARTICLE HISTORY

Compiled June 25, 2019

Supplementary Appendix

CONTACT Rudradev Sengupta. Email: rudradevsengupta@gmail.com

1. Introduction

This supplementary appendix contains additional materials related to the article. In Section 2,

we present the “prologue” and “epilogue” framework that allows to upscale the analysis to

larger datasets. In Section 3, we review the main steps in the R implementation of the master-

slave framework discussed in the paper.

2. The Prologue-Epilogue Framework

Figure SA1 illustrates how to run the joint model on a relatively large dataset that can lead to a

high average data-loading time. In this case, as we mentioned in Section 6 of the manuscript,

we recommend to use the “prologue-epilogue” setting within the worker framework.

Joint Model

Sequential
R code

Core 1

Joint Model

Parallelized
R code

Core 1

Parallelization

Core 2 Core k……..

prolog.sh

epilog.sh

Figure SA1.: Worker framework with prologue and epilogue.

3. Implementation of the Worker Framework in R

In this section, we give an overview of the R codes for the implementation of the data analysis

presented in the paper. Detailed code is available upon request.

2

3.1. For a Single Machine

For a single fingerprint feature, one can use the fitjm(), from IntegratedJM R package,

which uses the sequential for loop to fit the model for all the genes.

library(IntegratedJM)

jmRes <- fitJM(dat=X, responseVector=y, covariate=z,

methodMultTest=‘fdr’)

As mentioned in the manuscript in Section 4.2, we can use other R functions to do paral-

lelization. To use foreach() the source code of the R function fitJM() was customized

by replacing the for loop by a foreach loop and a parallel backend was registered by

using the makeCluster().

library(doParallel)

cl <- makeCluster(n) #n is the number of available cores

registerDoParallel(cl)

jmRes <- fitJMfe(dat=X, responseVector=y, covariate=z,

methodMultTest=‘fdr’)

For the clusterApply() and clusterApplyLB(), the function fitJM() was

modified to fit the joint model for a single gene and was renamed as fitOneJM().

J is the total number of genes

jmRes <- clusterApply(cl, 1:J, fun=fitOneJM, dat=X,

responseVector=y, covariate=z,

methodMultTest=’fdr’)

jmRes <- clusterApplyLB(cl, 1:J, fun=fitOneJM, dat=X,

responseVector=y, covariate=z,

methodMultTest=’fdr’)

3

3.2. For VSC Cluster

It is possible to use the similar functions as described above in a single node of the VSC

Cluster. In this section, we provide an overview of the code for the worker framework. The

code presented below was used for the setting where 190 genes were allocated to a jobitem

in the cluster (see Section 4.3 in the manuscript). Here as well, the function fitJM() was

modified and renamed as fitJMworker().

to get the values of the parallelization parameter

from the .csv file

args <- commandArgs(TRUE)

irun <- as.integer(args[1])

creating chunks of 190 genes

Genes = 190

begin = (irun-1)*Genes + 1

end = irun*Genes

if(end<3595){

X <- genematrix[begin:end,]

} else {

X <- genematrix[begin:3595,]

}

fitting the joint model

jmRes <- fitJMworker(dat=X, responseVector=y, covariate=z,

methodMultTest=‘fdr’)

4

	Introduction
	The Prologue-Epilogue Framework
	Implementation of the Worker Framework in R
	For a Single Machine
	For VSC Cluster

