Supplementary Materials

Supplementary Materials contain A) an application of the algorithm to analyze death cause data
in 367 towns in Taiwan, B) convergence analysis of the iterative scheme (2.11) and C) derivation

of the stopping criteria (2.13) and (2.14).



A Application: causes of death in 367 towns in Taiwan

The data contain yearly numbers of dead people in terms of their death causes in 367 towns in
Taiwan. They are collected over a 5-year period between 2008 and 2012. There are 29 death
causes in the data. The 29th cause is a combination of the main death causes for about 80 to
95% of dead people in each town. The rest of 28 causes are the “rare” death causes. By rare
we mean those occurring with small probabilities. The data are collected and compiled by the
Ministry of Health and Welfare and belong to Open Government Data project initiated by the

“

National Development Council of the Taiwanese government. Such a project aims to “... improve
inter-organization data exchange, improve administrative efficiency, satisfy requirements of the
people, and empower citizens to monitor government operations.” (Chen, 2012). More details on
Taiwanese government’s Open Government Data project can be found in Chen (2012). In addition,

the dataset used in this section can be found in Open Government Data (2012) and downloaded

from http://data.gov.tw/node/5965.

A.1 Model estimation

Our aim is to cluster towns that have a similar pattern in the rare death causes. To begin our
statistical modeling, we assume there are p 4+ 1 death causes. Let 7;, denote the probability of a
dead individual in town j who dies in cause a. We model the logarithm of the odds for the death

cause a against the death cause p 4+ 1 in town j by

log (FJ“) = Bja- (A1)

Tj(p+1)

From (A.1) we have

exp(Bia)

Mig = fora=1,2,---,p,
’ 14320 2 exp(Bja)

and mj, = [1+ Y7, _, exp(Bja)] ! for a = p+ 1. The parameter vector 8; = (8j1, Bj2,- , Bjp)
characterizes the distribution of death causes in town j. In this sense 3; is a profile of death causes

in town j. We assume there are m towns, and each town has c observations. Under the assumptions



given above, we can construct a likelihood function for parameter estimation. The minus logarithm

of the likelihood function is

1(B) = él(ﬁj)
_ z: <tz; { ali_lyjtalﬁja/ —njlog {1 + a/zp;:lexp(ﬁja')] }>,

where nj; = 257*_:11 Yjta’ is the number of deaths in observation ¢ in town j. The fused group lasso

estimate of 8 = (01, B2, -+, Bm) is defined by

B = arg min {Zl(ﬁj)+>\ > ||ﬁj—ﬁk|2}a (A.2)
sMm J:l

B1,B2, Gmen

where the comparison graph # is defined by

1= {0 5, 0) < b

Here d((Zj, ak) is a distance function, by, > 0 is a threshold value, and aj = ($j1, ¢A>j2, e ,ajp) is

a p-dimensional vector in which each nga is defined by

S
a‘ _ Zt=1 Yjta
ja = 5 )
Dot Yjtp+1

i.e. the empirical odds in favor of the death cause a relative to the death cause p + 1. In practice,
we define d(aj, ggk) = Hgg] — $k||oo, i.e. the supremum norm of the difference between ggj and glgk

The plot on the left hand side of Figure 1 shows the vector of empirical odds for the 367 towns.

We estimated 8 by the following methods:

(I) Fused group lasso estimation (FGL): Here S was estimated by (A.2). To define
the comparison graph H, we set by, equal to the median of the 367(367 — 1)/2 = 67161
pairs of d(@, ak) The definition led to by, = 0.012 with the number of edges in H equal to
33581. The plot on the right hand side of Figure 1 shows the histogram of the 67161 values

of d(aj, qASk) The red dash line in the plot indicates the median of the 67161 values of d(qASj, (Ek)

We carried out the FGL estimation under 20 tuning parameters values and selected the one



with the smallest value in Bayesian Information Criterion (BIC) to construct the estimated
similarity graph (defined in 3.7). Here nodes of the estimated similarity graph represent the
towns in our data. We carried out community detection on the estimated similarity graph to

find a partition of the towns. We called the resulting partition the FGL partition.

(II) MLE with k-means clustering (KMLE): We estimated (31, 82, , O separately
by the maximum likelihood estimation using data only from each corresponding town. We
then used R package “kmeans” to carry out k-means clustering on the maximum likelihood
estimates. We considered the number of clusters in the k-means clustering from k£ = 2 to
k = 366. This led to 365 partitions with different numbers of clusters. We evaluated BIC of
the cluster centers for the 365 partitions. We reported the result from the partition with the

smallest BIC value. We called the resulting partition the kMLE partition.

To evaluate quality of a partition we used the Silhouette coefficient (Rousseeuw, 1987), which is
defined by
. . 1 V2j — V1;
Silhouette coefficient = <|{]CJ|>2}| jzlgm W) ,
where v1; = (16 = 17" pee, (Bia = dra)?s w2y = (m = 161 Yge, (Bia — Bra)?, Bia is the
empirical odds of death cause a for town j, C; is the cluster that town j belongs to, and m = 367

is the number of towns in our data.
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Figure 1: Left: Empirical odds of the 28 causes of death relative to cause of death 29; Right:

Distribution of the supremum norm of the pairwise difference.

A.2 Results

Plots in Figure 2 show results from our estimation. The red dash lines indicate the tuning parameter
value and the number of clusters corresponding to the smallest BIC value, for the FGL partition
and the KMLE partition, respectively. Plots on the bottom show the distributions of the estimated
cluster sizes. From the plots we can see the FGL partition has clusters with relatively smaller sizes
in comparison with the kMLE partition. Table 1 suggests that the FGL partition may provide a
better partition result since its Silhouette coefficient value is 0.746 in comparison with the kMLE
partition, which has a Silhouette coeflicient value equal to 0.295. In addition, the FGL partition has
a relatively larger number of clusters (33 clusters) in comparison with the kMLE partition, which

has 12 clusters in total.



1.00
I
1.00
L

095
I
095
L

085
L
085
L

075
I

075
L

BIC (Relative to the max value)
BIC (Relative to the max value)

065
I

50 100 150 200 0 100 200 300
Lambda k

S [ oe, 1 s
g . | R
E S e
. 1
\. ! »
o ! o 8
o S \ | g 3
[ y °
o 1
T | €
£ | ® g
o g G 2
4 3
3 8 . : o
s —
° \ I o .
[0} - | “ S 4
Qo
€ §4 | Q-
= |
= \ £
1 S s
8 |
_ \ ! z g
g |
8 BN |
-\
'\JI.—._-_-_. . o
T T T T
50 100 150 200
Lambda
Result from fused group lasso Result from the k-means clustering
(# of clusters = 33) (# of clusters = 12)
w0 _ 9 -
8 &
o g J
8 ]
> w | > w
g * g *
f= =4
o o
=} 3
o o
[ [
[g 5 e
w0 4 w 4
o d o J
T T T T T T | r T T T T T 1
0 20 40 60 80 100 120 10 20 30 40 50 60 70
Cluster size Cluster size

Figure 2: Results for the fused group lasso estimation and the MLE with k-means clustering. Left:
The fused group lasso estimation; Right: The MLE with k-means clustering; Top: Trace plots of
relative BIC against the tuning parameter A (left); against the number of clusters (right); Middle:
Scatter plots of the number of estimated parameters against the tuning parameter A (left); against
the number of clusters (right); Bottom: Histograms of the estimated cluster sizes. The plots show
that the fused group lasso (FGL) estimation produces a relatively larger number of clusters when

comparison with the clusters produced by the k-mean MLE (kKMLE) estimation.
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Method BIC 7 of clusters Silhouette coefficient

Maximum likelihood estimation (MLE)  165,264.5 367 0
Fused group lasso (FGL) 110,496.9 33 0.746
MLE with k-means clustering (kMLE) 108,079.2 12 0.295

Table 1: Performance results for partitions based on the three estimations.

B Convergence analysis

In this section we conduct convergence analysis on the sequence generated by the iterative scheme
(2.11). In particular, we focus on analyzing convergence of the objective function in (2.1) when
being evaluated at the ergodic average of the sequence. In addition, we will also analyze convergence
of the sequence itself by investigating whether the sequence can satisfy the linear constraints in the
primal problem (2.1) and the dual problem (See Section B.1). We first describe the dual of the
primal problem (2.1). This dual will serve as a conceptual tool for developing assumptions for
our convergence analysis. We then introduce notation definitions and two assumptions for the
convergence analysis before presenting the main results for convergence of the objective function

and convergence of the sequence.

B.1 The dual problem

The dual of the primal problem (2.1) is

ngagxf(r,g) = ngagx{—zlf(—p > fz‘j)— > )‘ia‘gfj(_p;.j)}
S ” i=1 “

JEN () (1,5)EH
subject to Tij +&i; =0 for (4,7) € H
7ij — &i = 0 for (i,7) € H. (B.1)

where I} (2) = maxg, {(z, 8;)—1i(8:) } and gj;(2) = maxa,,; {(2, @ij) —gij(i;) } are called the conjugate
function of 1;(68;) and g;;(c;j), respectively. The objective function L(7,¢) in (B.1) is called the
Lagrangian dual. Its derivation is done by evaluating the Lagrangian (2.2) with the primal minimizer

provided that the dual variables are fixed. Details of the derivation are given in Appendix D in



Supplementary Materials. Note that (B.1) is itself an optimization problem with respect to the
dual variables {7;;}(;,j)en and {&i;, ;i } i,j)en, and therefore here we will simply call (B.1) the dual
problem in subsequent analysis. The dual problem (B.1) is a constrained maximization problem
with a set of constraints 7,; + &;; = 0 and 7,; — &;; = 0 for (¢, j) € H. These constraints serve as
a guide for establishing the stopping criterion associated with the dual error (2.14) as they give us
information on how the dual variables should behave in order to achieve the optimal value of the

primal problem.

B.2 Assumptions

Before stating the assumptions for our convergence analysis, we give some notation definitions first.
Let t{A} be an indicator function such that :{A} = 0 if A is true and ¢{A} = oo otherwise. With

the definition of t{.A}, we can express the objective function in the primal problem (2.1) as

m

U(B,000) = > LB+ Y Mgilai)+ Y fawy =0 — 05}
j=1 (i,5)€H (i,5)eH
+Z Z W Bi = 0}, (B.2)
=1 jeN (i)

Similarly, we can express the objective function in the dual problem (B.1) as

w0 = {-Ee(-r 3 ) - 5 pi(-52)]

JEN (i (i,9)eM

B Z iy = =&ij} — Z Arij = &} (B.3)

(i,5)€H (i,5)€H

With definitions of (B.2) and (B.3), we considered the following two assumptions when conducting

the convergence analysis:

Assumption 1 (convexity assumption): Both [;(8;) and g¢;;(«;;) are convex and lower-

semicontinuous functions.

Assumption 2 (saddle point assumption): There exists a point (8*, a*,0*, 7%, £*) such

that

L(ﬁ*7a*a9*a7a 5) S L(B*,Oé*79*,7'*,f*) S L(B,Oé,677'*,§*>



for all (8, «,6,7,£), where L(8,a, 0, 7,€) is the Lagrangian defined in (2.2).

The point (8%, a*, 0%, 7%,£*) in Assumption 2 is called a saddle point of L(S, «, 0, 7,€). Assumption
1 will allow us to adopt nice properties of convex functions when conducting the convergence analysis
on the sequence generated by the BS-based iterative scheme (2.11). However, as a result of that,
the corresponding convergence results will only be applicable to situations when (2.11) is applied
to solve convex optimization problems. Assumptions 1 and 2 imply that there exists a point that
will solve the primal problem and the dual problem simultaneously. In addition, both the primal
objective (B.2) and the dual objective (B.3) will have the same value when being evaluated at that

point. To state the implication mathematically, we first define

qj;lraitmal = éné% \11(67 «, 0)7 (B4)
Vi = max¥(r.). (B.5)

Under Assumptions 1 and 2, the first three elements of the saddle point (8%, a*, 6*) will minimize
(2.1) while the last two elements (7*,£*) will maximize (B.1). In addition, the primal-dual gap will

be zero at (8*,a*, 0%, 7%,£%), ie.

Uotima = W(B", 0%, 07) = W(r, €") = WG

primal — dual’

Assumptions 1 and 2 had been previously adopted by Shefi and Teboulle (2014) in proving rates of

ergodic convergence for ADMM-type algorithms in solving convex optimization problems.

In addition, since (77,£*) solves the dual problem (B.1), the values 7 = {7} jyen and §* =
165555} i,5)en must be bounded (Otherwise we can assign arbitrary values for the dual variables
to make (B.3) as large as possible). As a result of that, there should exist sequences {vi;}i j)en,

{wij}(iyj)eﬂ and {wji}(i,j)eﬂ such that ||7';;||2 < < 00, ||§;-*j||2 < wj; < oo and |‘€;H2 <wj; < 00

for all (,7) € H. For practical purposes, we define

D= {(va) Tiglle < vig, [1€ill2 < wig, [[§5ill2 < wji}- (B.6)



B.3 Theoretical results

Below we provide the main results from our convergence analysis on the sequence generated by
the iterative scheme (2.11). The first result states that under Assumptions 1 and 2, the objective

function in (2.1) evaluated at the ergodic average

e (L ). o

T T

where (8], al) is generated by (2.11), will approach to the optimal value defined in (B.4) with a

rate proportional to r—1, where 7 is the iteration counter for running (2.11).

Theorem B.1. Under Assumptions 1 and 2, we have

T T pF**
{ Zl e & 7" Z Al]gl] e & T)} ‘l,gf")itmal S 0 ’ (BS)

(1,7)EH

where WP s defined in (B.4) and

primal
* % * 1 *
B = Z D% =B+ 5 Do 60 —65) — a3

i=1jEN (i) (i,)€H
+ Z 1163, — 035115 + Z 1163, — 653115
(i.5)€H (,5)EH
1
ryma (30 - miBY Y Il -6lB) (8.9)
T,£€D &
(1,5)€EH i=1 jeN (i)

and D is defined in (B.6).

The second result states that the sequence generated by (2.11) will gradually satisfy the primal

constraints in (2.1) and the dual constraints in (B.1) as the iteration counter r increases.

Theorem B.2. Under Assumptions 1 and 2, we have

. 2F
Ar = Z > 18- 03113 </ 7,0, (B.10)
i=1 jeN (i)
. 2F
Ay = > lag = (05— 0513 < 70 (B.11)
(4,5)€H
AFY
AL = Z l€r; + 75113 < TO (B.12)
(4,5)€H
AFY
Ay o= 0 gl < (B.13)
(4,7)EH

10



where

m

] ] 1 .
Foo= 53 SN - sl 116 - 6% — a3

i=1jeN (i) (1.5)€EH

+ > 6% =051+ >0 1169 — 05113

(i,4)EH (i,5)eH

T D L A Z > lle —&5lis. (B.14)
(,5)EH i=1 jEN(3)

In Section 3 we provide simulation experiments to examine the results stated in Theorem B.1

and Theorem B.2.

C Derivation of the stopping criteria (2.13) and (2.14)

Below we derive the stopping criteria (2.13) and (2.14). First note that since 5] 7' minimizes the
objective function in (2.4), it should satisfy the following equation:
0=Vl BT +pN @IS —p Y (05— &) (C.1)
JEN(3)

On the other hand, from (2.9) we have £/, = 527*'1 — (BZH — 9;"'1). Plugging in this relation into
(C.1) yields

0 = 5r+1 +p Z 9r+1 _ gr _’_é-rJrl)’
€N (3)

which implies 3 *1 is also a solution to the following optimization problem:

minimizeg, Li(Bi)+p z <9:j‘*‘1 — 05+ fffl, Bi) . (C.2)
1eEN (1)

Similarly since Oz;?—l minimizes the objective function in (2.5), it should satisfy the following equa-

tion:
0 € Aijdgij(ai; ™) + plaff™ — (07 — 05;) + 7], (C.3)
r _ _r+1 r+1 r+1 r41 . . . . . .
From (2.8) we have 7/, = 7,7 — [a;;"" — (0;;7" — 07;7")]. Plugging in this relation into (C.3) yields

¥ v]

0 € NjOgy(ag;™) + pl(07 — 057) — (07 — 05,) + 77,

ZJ

11



+

which implies ;" is also a solution to the following optimization problem:

minimize,,, Xijgij(aij) + p <(92-Tj+1 - 9;-;'1) (07 — 03%;) + ZTJ'H, @ij) - (C.4)

Now assume (5*, a*,0*) solves the primal problem (2.1). Then from (C.2) and (C.4) we should

have

le(ﬁlJrl Z )\l]gl] T+1
=1

(1,5)EH
< D LB+ Y Nigilaly)
i=1 (i,5)€H
—py o D (OG-0 =B = e D (AT -8 (C5)
i=14eN(4) i=14eN(4)
o X (e = - 0 - dharf — i)
(i,4)EH
— (i ol — o) > (C.6)

We first consider the last term of (C.5). Note that

SO G -a) = X g - Y (gL - )

i=1ieN (i) (i,5)EH (t,5)EH
= 2 G A+ X G AT - )
(1,5)€EH (i,j)eH
IR R DU AR AR
(i,5)EH (i,5)EH
_ Z <é—7’+1 _’_TrJrl’ﬁ;H»l _ ﬁ;k> + Z <§;z+1 o T[j+17ﬁ;‘+1 _ B;k>
(i,4)eH (i,j)eH
+ > (LB =B = (85 - B)) - (C.7)
(i,j)EH

Now adding the last term of (C.7) to the last term of (C.6) yields

ST =Bt =B =B+ Y. (T ap Tt —a)

(1,7)EH (2,7)€EH
= Y (e =0 =0 + (05T =05 — (87T = BT — (af; — (BT = B)))) -
(2,7)EH

12



Since (8%, a*, ") solves the primal problem (2.1), we should have o}, — (8; —37) = o; — (0;; - 0},) =

0. Therefore adding the last term of (C.5) to the last term of (C.6) and using the result (C.8) yields

Z Z <§f]+175:+1 * Z <r+1 r+1 ;k]>

i=14eN (i) (t,7)€EH
= DG A+ 3 (G T )
(2,7)EH (i,4)EH
+ 3 (L an = O = O 4 (6 = B (BT — 6
(i,J)€EH
(C.9)
The result (C.9) implies that
{Zli(ﬁfﬂ 3 Njgiila ’”“} {Z + > Nijgijlay) }<p(G1+G2+G3+G4)
i=1 (i,)EH i=1 (i,5)€H
where
@ =Y % |0’“+1—0T|2<||/37"+1 ,8|2+||ar+1—a:;|2),
1= lje_/\f )
G o= 3 N+ I8 = Bl
(i,5)EH
Gy = S € = I8 = 8 lle,
(i,5)EH
G = 3 (I (w“ w;;“—f);;“)|2+|/3:+1—9:;1||2+||6;‘+1—9;;*1”2).
(i,5)EH

Here G; and G4 have terms involving sequence differences associated with the primal variables
{Bi}i2y and {ayj} j)en and auxiliary variables {6;;,0;i}( j)ex While Go and G3 have terms in-
volving sequence differences associated with the dual variables {7;;} ¢ jyen and {&ij, &Gt )en-

These results imply we can use

3 (wf“ 0l 16T —

(4,7)EH

BT =05l + 1185 = 05 2 + Mg, — (057 = 9}'T1)||2>
< 5QH\/13€primal

and

> (w*l T |+ (e - T“lz> < 2q3/Pedual

(i,9)eH

as stopping criteria for the iterative scheme (2.11).

13



D Derivation of the objective function in (B.1)
The Lagrangian “dual” of the Lagrangian (2.2) is defined as

L(r,¢) = (énll’l L(B,a,0,71,8). (D.1)

It is a function of the dual variables (7,¢). By collecting terms involving 3, « and 6, respectively,

we can express the Lagrangian dual (D.1) as

Z(T,f) = Hlénz |:lz(61)+ Z p<€ijaﬁ7, :|—|—H1Hl Z |: ij9ij azg +p<7-1]7az]>
=1

JEN(4) (i,7)eEH
+p - n'lein l:_ Z <7-177 Z Z glja ij :| (D2>
(2,7)EH J=1jeN(i

It is a linear combination of three terms involving objective functions evaluated at their minimizers.

We can further express the first term of (D.2) as
m

nlgn;[li(ﬁi)Jr > P<§ijvﬁi>] = Zmlyn{ <ﬁ“p 2 5”>]

FEN(4) JEN(3)

- Eloel g o)l
= _éz;(—p > gy-j). (D-3)

JEN (i)
Similarly, We can express the second term of (D.2) as

min > |:)\ijgij(aij)+p<7'ij,oéij>:| = ) min [)‘ijgij(aij)+P<Tz‘j»Oéij>}

Qij

(i) €M (6. e
- Z —)\ij{max [<aij,—p)\nj> _gij(aij)]}
(i.j)eM o &
PTij
i .
- 2 Mg ( Aij )
(i,5)EH

In addition, we can express the third term of (D.2) as

[ X o )

(i,7)€H J=1jeN (1)
= p-mn [— Do T by + D (i) — Y (i) — Y <§ji>9ji>:|
(4,7)EH (i,5)€EH (4,5)EH (4,5)EH
= 0r Z mln 0ij, —(7ij + &ij)) + Z n{;nn( jis Tig = &ji) - (D.4)
(i,5)€H Bis (z,j)EH "

14



The right hand side of (D.4) implies that

OifTij +§ij:0and Tij—fjl-:o

ngn[— > (7ij b0 — i Z (€ij, 0, ]: (D.5)
J=1jEN(i

en '
(.9)€ —oo otherwise

which means we can always find some 6 that makes (D.5) equal to —oo given that 7;; + &;; # 0
or 75 — & # 0. However, such a choice will make the Lagrangian dual L(r,£) = —oo, which
further makes the dual problem (B.1) meaningless. Therefore to construct a sensible dual problem
we prefer the constraints 7,; + &;; = 0 and 7,; — &;; = 0 hold for (4, j) € H. Combining the results
n (D.3), (D.4) and (D.5) we obtain the Lagrangian dual

2ol o) 2o ()

JEN () (i) €M A

with constraints 7;; + &;; = 0 and 7; — §;; = 0 for (4, 5) € H.

The constraints 7;; + &;; = 0 and 7;; — §;; = 0 provide information about the relationships be-
tween dual variables 7 and &£, and they also serve as a guideline for monitoring convergence of the

sequence generated by the iterative scheme (2.11).

E Proofs of Theorem B.1 and Theorem B.2

This section contains proofs of the main results in Section B.3. Section E.1 provide notation
definitions useful for proving the main results. Section E.2 contains the proof of Theorem B.1 and
technical results relating to the proof. Section E.3 contains the proof of Theorem B.2 and technical
results relating to the poof. Section E.4 contains other technical lemmas underlying the theoretical

results given in Sections E.2 and E.3.
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E.1 Notation

Below we introduce new notation and definitions of quantities that will be useful in proving theo-

retical results in our paper. We define

AT = Z Z (07 — o, B — By, (E.1)
i=1 jeN(i
B(a)™™! = <9T+1 7 — (egj—e;fi),aij—agl), (E.2)
(i,5)€e
C(Q)T-‘rl — Z Z ”’Jrl . 9"'+1 (E3)
i=1 jeN (i
D) = Z <T“, 05:) — (071 = 051h)) . (E.4)
J)EH
We further define
T 1 T ‘s
a0+ = 3 (lla = ¥~ lla - 07113 (55)

E.2 Proof of Theorem B.1

Below we provide a proof of Theorem B.1. We first give some results that are key for proving the

theorem. These results are summarized in Lemma E.1 and Lemma E.2.

Lemma E.1. Under Assumption 1 we have
L(6T+17ar+1797‘+177—7 5) S L(/87 a707TT+17§T+1)
o [A@’"“ +B(a)™ +CO) + Do)

X 1
+ Z Q(Tij77—ij)7+1_§ Z It = 75113

(4,5)€H (i,j€H)
S OB D DI S S [ rer 1)
i=1 jeN(4) i=1 jeN (i)

(E.6)

where L(B,a,0,7,€) is defined in (2.2).

Proof of Lemma E.1. First note that by using the definition of C'()" ! in (E.3) and the definition

16



of D(#)™*! in (E.4), we have

m

_Z Z €T+1,9:J+1 — _Z Z r+1 —I—C(Q)T—H, <E7)
i=1 jeN(4) i=1 jeN (i)
= > (et —entty = = > (a5, 05— 050) + D), (E.8)
(i,4)eH (i,j)EH
Next, we have
Yo (gt =@t -0y = Y (et = (05 - 65h)
(i,j)EH (i,5)EH
+ Y (g Tt agt = - 0nh) .
(2,7)EH

(E.9)

By using the relation (2.8), we have Tl’;ﬂ T = a:jﬂ — (9;’;1 — GJTZH) Further by the derivation
using the result (E.71) in Proposition E.1 and the definition (E.5), we can express the second term

on right hand side of (E.9) as

P A U )

(i,)eH
= D Am—mth it =)
(1.5)EH
1
= 3 X (Il = g = = W = 1)
(i.J)€H
1
= 2 Q) =g D It -l (E.10)
(4,5)€H (i,5EH)

With the result (E.10) we can re-express (E.9) as

r 1 _ r+1 r+1 o r+1 r+1 r+1 r+1
Z <7'sz + 9‘+ _0jz‘+ )> = Z <Tz'j ) Q5 _(eij _9]'1 )>
(4,5)eH (i,5)EH
T 1 T '
t 2 mpme) =g D I -l
(1,)EH (1,JEH)

(E.11)

Following the relations (2.9) and (2.10) and a similar derivation procedure given above, we further

obtain

> (& BT =00t

(4,7)EH
T T T T ]' T ’I‘
= D (G o)+ D0 08 -5 Yo T - €l
(4,5)EH (4,5)€EH (4,5)€EH

(E.12)
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and

> (gt —ant)

(@,5)eM
T T T T 1 T T
= D AGH AT -+ YD &) -5 D g -l
(,4)EM (i,9)EH (1,9)EH

(E.13)

Now adding (E.53) in Lemma E.4, (E.59) in Lemma E.5, (E.7), (E.8), (E.11), (E.12) and (E.13),

and cancelling out the same terms on both sides of the inequality, we obtain

Z ﬁrJrl Z )\”g” +p Z ,7_2]7 7‘+1 (9;"]+1 _ 9;?1)>

i=1 (i,4)eH (i,4)€eH
oY, D (& BT 05
i=1 jEN (i)
< Z Z Azggm Olzy +p Z <7_T+1, ij zgfeji)>
i=1 (i,j)EH (i,4)eH
+pz Z <§T+1 Bi — 0ij)
i=1jeN (i)

+p |:A(ﬁ)r+l + B(a)r+1 + C(a)rJrl +D(9)r+l

1
+ D0 Qrpm) ™ =5 D I -3

(i,4)eH (i,J€M)
S IR DS Sl SN |} (E.14)
i=1 jeN (i) i=1jeN (i)

By using the definition in (2.2) for the first four lines of (E.14), we recover (E.6), which completes

the proof. O

18



Lemma E.2. Under Assumption 1 we have

LB™am 0 e < L(B,a,0,77 €

+p{z > QB 05) T+ > Qi 055 — 0;)"

i=1 jEN(7) (i,4)EH
+ Z QTZ]7T’Lj +1+Z Z 052]352] 7"+1
(i,7)EH i=1 jEN (i)
Y Uy 65,0+ 65)
(i,7)EH
1 - T s 1 7‘ T XA
A S - Y ey - (0 -
i=1 jEN) (if)EH
1 T X
“5 X O 65 - 0+ 5B (E.15)
(i,9)eH

Proof of Lemma E.2. The proof starts from the right hand side of (E.6) in Lemma E.1. First

by using the result (E.70) in Proposition E.1 with a = 8;, b = ﬁiT‘H, c= 9;;'1 and d = 0;, we can

express the ith term in A(a)"! as

(Bi = BIF 00 — 00 = Q(Bi, 035)" T + \IB’"“*@THHz \lﬂ:“fezjllé, (E.16)

s Yig

where Q(83;,0;;)""" is defined in (E.5). Similarly, with a = a;j, b = ozlj'l, c= 0”‘1 9;;'1 and

d=40;; —0;

> we also express the ijth term in B(a)™! as

(O = 07 — (07, — 07), gy — 1)

ij
= Qaij, 05 —0;)" + || =05 = 0nhE - H = (07— 05115

(E.17)

On the other hand, by using the relations (2.8), (2.9) and (2.10), we have ZJ‘H — T = 042;'1 -

(03—1 - 9;'?1)’ SRR G = Bitt - 9;}“ and 5;-1-“ =& = 5;“ - 9;{"1. These results imply that

ij
1
SBr e = Sl - el
1
B g = Sl - gl
Sllaf — 05— g E = Sl -5l (E.18)
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By using the results in (E.16), (E.17) and (E.18), we obtain

1 . .
A(ﬁ)“+1+3(a)’“+l—§ >t = TliE - Z >l - €5l

(4,J€EH) i=1 jeN (i)
Z Y QB0 - Z STt -l
i=1 jeN (i) =1 jeN (i)
T 1 T T 'S
+ 3 Qaiy b~ 00 =5 Yl (65 - 63, (E.19)
(i,5)€EH (4,5)EH

Next we turn our attention to C'(9)"*! and D(6)" ™! in (E.6). First note that we can express C(6)" 1

and D(6)"*! as

CO = 30 (&0 -0+ D0 (G0 - 051, (E:20)
(4,7)EH (i,J)€EH
and
DO = > (e -0y = > (a0 — 05 (E.21)
(i,4)EMH (i,4)EMH

By using (E.65) in Proposition E.6 and representations in (E.20) and (E.21), we can obtain

cOy+ + D)

D (G 0 -0+ Y (G 0 = 05

(i,4)EH (i,j)EH
= D GO — (0 + 65, (65 + 050) — (65T + 657)
(i.j)EH
T p ' I X T
= > Qb+ 65,05 +0;) T — 3 > 6+ 05 — (65 + 65,115
(i,J)EH (i,§)EH

(E.22)

where the derivation from the second line to the third line has used the result (E.70) in Lemma E.1

with a = 0;; + 0;;, b = 9%‘"1 + ejr_i+17 c= 9:],‘“1 4 0;.;—1 and d = 07; + 07,.

By applying the results in (E.19) and (E.22) into the right hand side of the inequality (E.6),
we can recover (E.15), which completes the proof. O
Proof of Theorem B.1. By summing up the inequality (E.15) in Lemma E.2 from s = 0 to

s =r — 1 and using the result in Proposition E.2, we obtain

r—1 r—1
SLETL a8 < Y LB, a, 0,7 &) + pF (8,0, 0,7,8),
s=0 s=0

(E.23)
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where

m

F(B,0,0,7,6) = *Z > igi— Hz+§ > ey — (65— 65113

i=1 jEN (i) (i,§)EH
+ >0 16— 0%+ Y 1165 — 6%
(i,4)EH (i,§)EH
1 m
t5( X P+ Y les - €512).
(i,7)EH i=1 jeN (i)

Now let (8,a,0) = (8%, a*,0%), where (8%, a*,0%) is the first three elements of the saddle point
(8%, a*, 0%, 7*,&*) defined in Assumption 2. We replace (8, a, 0) with (5%, a*,0*) in the first term

on the right hand side of (E.23). Note that by using the fact that o; = 6;; — 07, and 3} = 0;;, w

obtain
L(B*,a*,0*77—8+17§5+1) — Z Z )‘nglj ” +p Z s+1’ :j o (0; _ 9;1)>
i=1 (i,5)€EH (i,5)EH
s+1 * *
oy Do (&8 65
i=1 jEN(3)

= D UBN+ D Njgilal)
i=1 (1,7)€EH

= \I/gll:‘)itmal (E24)

for all s € {0,1,2,--- ,7 — 1}, where ¥°*' s defined in (B.4). Therefore for the first term on the

primal

right hand side of (E.23), we have
r—1
S OL(BT, 0%, 0%, T ) = U (E-25)
s=0

Further note that by maximizing both sides of (E.24) with respect to (7,£) € D (defined in (B.6))

and using result (E.25), we obtain

r—1 r—1
max LBt aTt 05+t 7, } < L(B*, o, 0%, 5Tt et max {F (8%, a*, 0%, T,
<T,§>ep{§ ( op = S £+ p mas (F( o)
= U L PET (E.26)

where Fj* is defined in (B.9). On the other hand, for the left hand side of (E.26), we can bound it
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from below in a way such that

r—1
max { L(ﬂsﬂ, st gt §)}

r—1 m
= szo{;ll 9+1 Z >\’ng’L] +p F%Eé%( Z <le,0f+1 (9;’_179;;_1»

i=1 (1,7)€H (i,5)eH
m
+ (&, 851" — 9;‘?1>>}
i=1 jeN(4)
r—1 m
- S {S e 3 vl 4e 3 vl - 0
s=0 \ i=1 (i,9)eH ('L J)EH
Y Y wlt - esw}
i=1jEN (i)
r—1 m
>SS 3 vt}
s=0 \ i=1 (1,7)€EH

s+1
— 05l

(E.27)

By applying the result (E.27) to the inequality (E.26), rearranging the index s and the corresponding

terms and dividing them by r, we obtain the inequality

1 r m . ng*
; Sz:; ; lz( Z )\z]gz] zg — \ijrimal < -

(i,5)€EH

Further by Assumption 1, we have

S 5 i)

s=1 Li=1 (i) €M
m 1 T . 1 T .
> le’ - Bi Z AijYij - 2%
i=1 s=1 (i,§)EH s=1
_ Z l crg7 Z )\ngj crg r).
(i,5)€M

The inequality (E.28) implies

(e
=1

which completes the proof.

3k
Z A erg, )} \Ilopt FO
z]ng prlmal ’
(i,§)EH

Remark: Note that from the last line of (E.27) we also have

Z{Zl E e T natei)
s=0 (i.)eH
Z )\ng’bj S+1 }7

> 7 LB +
SE{O’ ’ ’T 1} { ; (i,j)eH
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which implies

. pF**
{Zl Z /\ijgij(aij)} - \I/gfitmal < ro ‘

se 1 2
f (i) e

E.3 Proof of Theorem B.2

Below we provide a proof of Theorem B.2. We first give a result that is key for proving the theorem.

The results is summarized in Lemma E.3.

Lemma E.3. Define

T 1 - T ' '
HH = 52 BT =055+ Z >l - 0511
i=1 jeN (i) i=1 jEN(3)
1 s ' T 1 T T s '
+§ Z H%;rl - (‘91‘;1 - oj;rl)H% + 3 Z ||(0ij+1 - Gji—H) — (0 — 9]1)”3
(i,5)€EH (i,9)€EH
1 . . . .
+ >t + +1H2+ =l =B, (E.29)
(4,§)EH (z,j)G’H

Under Assumpton 1, we have

H™ < H", (E.30)

i.e. {H"}, is a non-increasing sequence.

Proof of Lemma E.3. Given that Assumption 1 is true, we can directly apply Lemma E.1. Now
by letting (8, o, 0,7,&) = (87, a", 07, 7",£") in the inequality (E.6) in Lemma E.1 we obtain
L(6r+1’ar+179r+177r7£r) S L(6r7ar79r77r+1,€r+1)
+p |:A(ﬁ7')r+1 T B(ar)r-{-l 4 C(a'f)r-{-l 4 D(gr)r-{-l

1 )
+ D ) =g > I =l

(i,5)€H (i,j€H)
DIPIECANEEE o SN aErAl]
i=1 jeN () i=1jEN(3)

(E.31)

On the other hand, by replacing r+1 with 7 and letting (3, o, 0,7, &) = (8", "1 gr+l 7+l ¢rtl)
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in the inequality (E.6) in Lemma E.1 we obtain

L(ﬁr7aT’9T7TT+17§T+1) < L(/BT+1’O{T+179T+1’7—T7§T)

+p |:A(ﬂr+1)r +B(ar+1)r + C(9r+1)r +D(0r+1)r

1
¢ Aty -5 ¥ -

(1,5)EH (i,JEH)
+Z > QUG Z STl =g tB|-
i=1 jEN(4) i=1jeN(i)

(E.32)
Adding (E.31) and (E.32) yields

0 < C(er)rJrl +D(9r)r+1 +C(0r+1)r+D(9r+1)r

1 _
+ X Wt et - g 5 (It -l - g

(4,5)€H (i,jEH)
+B(ar)r+1 4 B(arJrl)r

DN DR NSy (e - it + 1t - 718 )

1=1 jEN(7) 1=1 jEN(7)
[ (ﬂr)r+l+A(6r+l) ] (E33)

The first line of (E.33): By applying the expression (E.22) (see the proof of Lemma E.2) we

have

O(ar)r+1 +D(9r)r+1 +C(9r+1)r +D(0r+1)r

ST QO+ 050+ 00 + S QO + 056+ 0,,)"

(i.7)eM (i,4)EM

1 T T T T 1 T T T— T—

=5 2 NG 05 — O + 05013 — 5 Do 110 +65) — (057" + 057
(i,5)EH (4,5)EH

(E.34)

Next by applying the result (E.75) in Proposition E.4 with a = 6;; + 6,; to the right hand side of
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(E.34) and using the result in Lemma E.6 we further obtain

C(er)r—H +D(9r>r+1 +C(9r+l)r +D(9r+1)r
1

' I T— T— 1 T T ' I
= 3 Z 1(07; + 05;) — (65 1+9ji 1)||3—§ Z H(eij-HJ'_ejjl)_(eij"i'eji)Hg
(i,)eH (i,5)eH
1 T T ' s T I rT— r—
3 Z ||[(9ij+1 + ej;rl) — (0 +07)] = [(0; + 07,) — (0; L+ 03 e
(i,7)eH
1 r T2 1 r r 12
= 3 Z ‘|£ij+7—ij||2+4 Z 165 — 75112
(i,5)eH (i,7)eM
1 T s 1 T T
1 Z ||§ij+1 + Tij+1||g T2 Z ||§ﬂ+1 - Tij+1||g
(i,5)EH (i,j)EH
1 T r r r r r r— r—
3 Z ||[(9ij+1 + 93‘2_1) — (05 +07)] = [(0; + 07;) — (0; L+ 0 Yl (E.35)
(i,9)€EH

The second and third lines of (E.33): Again by applying the result (E.75) in Proposition E.4

with a = 7;;, we have

1 _
I G R EE I DN ([l AR e

(i,5)€H (i,j€M)
1 r r— 1 T T
= 3 Z ||Ti'_Tij 1”%‘5 Z ||Tij+1_7-ij||%
(i,7€M) (,jeH)
1 ‘s T T rT—
—5 2N =) = G = I (E.36)

(i,5€H)

Note that by applying the relation (2.8) we can express the third term on the right hand side of

(E.36) as
1 T T T— 1 T XA g T

Z ||(Tij+1 —7) — (7 — Tij 1)”% =9 Z H[(eifl - ej;rl) - (9% - 951)} - (aijJrl - a:j)]H%

(4,J€EH) (4,J€EH)
(E.37)
On the other hand, we have
B(ar)r+1 +B(Ozr+1)r
= = > (O —e5t) = 05— 03] — (65, — 65) — (677" — 657D, — o)
(i,9)€H
(E.38)
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Applying the results in (E.36), (E.37) and (E.38) we obtain

T 1 7‘ ' T T—
> 0t e- 5 5 (It - il - 7R

(4,§)EH (i,J€EH)
—I—B(O/‘)T—H + B(a7-+1)r

= Y -y X -

(4,j)EH (z J)EH

]. X T r r r r
{ 2 [z”K"Jlf’ﬁ )= O = 65 = (@ — oI
(i,)EH

zj i

+ <[(9:j+1 - Hﬁ_l) — (05 —07,)] — [(07; — 05:) — (9;} ! 0r D altt - 0‘7‘"‘> }
(E.39)

Now we need the inequality (1/2)||a —b||3+ (a — ¢, b) = (1/2)||al|3 + (1/2)]|b—¢||3 — (1/2)||c||3. By
letting a = (07,71 — 0711) — (0, — 05,), b= o' —af; and ¢ = (07, — 07,) — (0], —6;;"), and using
the relation (2.8), we can further simplify the right hand side of (E.39) and obtain

T ' T 1 T‘ T T rT—
I R R RO EE D DN ([l [P e

(i,4)EH (i,jEH)
+B(ar)r+1 4 B(ar+1)r

1 T r T 1 T T r— T—
= 3 > llagy = (05 = 05)l13 + 5 > 65 =65 = 05 = 65D

(i,5)€H (i,)eH
1 T X T 1 T T T I
—3 Mool =05 = 0IE -5 D 05T =65 — (0 — 6515
(i,5)EH (4,5)EM
1 T ‘s ' ' T— T—
D) Z H(O‘i;_l - aij) - [(eij - sz') - (92‘3‘ t- Gij 1)”‘% (E.40)
(i,4)€EH

The fourth and fifth lines of (E.33): Applying an argument similar to the one for dealing with
the second and third lines of (E.33), we obtain

+Z 3 QU Eq) T+ QT €)'

i=1 jeN (i)
+A( r)r+1 +A(ar+1)r

l\.’)\»—~

Z > (w“— L2+ N — -;1||§)
i=1 jEN(i

D A T Sl SRl
i=1jEN() i=1 jeN (i)
_%Z Z ||B:+1 9T+1||2_7Z Z H9r+1_9r‘|2
i=1 jeN (i) i=1 jeN (i)
%Z > B =30 = 0 = 0 IE (E41)
i=1 jEN(i
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Combining the results: Applying the results in (E.35), (E.40) and (E.41) to the right hand side

of (E.33) and using the definition of H"*! in (E.29), we obtain the following inequality:

1 T T X T T T rT— T—
-3 DO+ 05 = (05 + 05)] — [0 + 65) — (077" + 05 )13
(1,7)€EH
1 T T T T T— T—
D) Z H(aij+1 - aij) - [(eij - Hji) - (eij ' Hij 1)]”%
(i,5)eH
LSS e A - e
i=1 jeN (i)
which implies H™t! < H". The proof is complete. O

Proof of Theorem B.2. Under Assumption 2 there exists a saddle point (8*,a*,0%,7*,£*) of

L(B,a,0,7,£), and by definition of the saddle point we will have

L(/B*7a*’0*77-r+17§r+1) S L(/B*7a*70*77-*7€*) S L(5r+17ar+17er+177-*’€*)

(E.42)

for r =0,1,2,---. In addition, (8*,a*,6*) solves the primal problem (2.1), and therefore 5*, a

and 6" will satisfy the relations 8] — 07, = 0 and oj; — (0;; — 07;) = 0. As a result of that, we have
L(B*, o, 0%, 7%, %) = L(B*, o™, 0%, 7T ¢, (E.43)

Now by letting (8, «, 0, 7,&) = (8%, a*, 0%, 7*,£*) in the inequality (E.15) in Lemma E.2 and applying

the results in (E.42) and (E.43), we obtain

Z Z (87 05) )+ Z ai;, 0 eﬂ)rJrl
i=1 jeN (i) (i,7)eH
+ Y Q) ’"+1+Z >, &)t
(i,5)eH =1 jEN(i)
+ > QO+ 05,0+ 05"
(,j )EH
T T 1 T T T
—*Z > Bt —6rll3 - 3 Do llag =05 - 050113
=1 jEN(7) (i,5)EH
1 XA T s T
—3 D5+ 05 — 05+ 05|15 (E.44)
(i,9)€H
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By applying the relation (2.8) we can express the sixth term of (E.44) as

fZ > g =05l = fZ > B =0+ Z > oG — o113

i=1 jEN(3) i=1 jEN(3) i=1 jeN (i)
7‘+1 r+1 r
+Z Z <6 ZJ’GZJ 9ij>' (E'45)
i=1 jeN (i)

Following a similar argument we can express the seventh term of (E.44) as

1

3 Z ot — (07, — 07,)113
(4,j)EH
1 T T 1 ' I
= 3 Z IIO@j“—(9ij*1—9§?1)||§+5 Z 1057 — 05:51) — (67, — 07,113
(1,7)EH (2,7)€EH
+ Y (T O = 05 = (65— 07,)) (E.46)
(1,7)EH

On the other hand, by applying the result in Proposition E.6 we can express the eighth term of

(E.44) as
1 I8 '
B > 65T+ 65 — (65 + 050115
(i,7)EH
1 T T 1 T 7‘
= 2 SR g - R (B.47)
(i,j)EH (i,7)EH

Now we turn to the final terms of (E.45) and (E.46). Again by applying the result in Proposition

E.6 we have

<£r+1 __¢r 97‘+1 _ 97" > <€r+1 f]ﬂejr;rl _ 01“ >

1) Vg
+ <Tirj+1 Tijs (QTH 9;#) — (03 — 9}})>
= (& ™) = €+ ) 05T = 05) + (&G =it — (&= ) 05— 05)
= |l + 057 — (65 + 05113
= {005+ 05) — (057 + 057, (057 + 057) — (03 + 05,)) (E-48)
By applying the identity [la — b|I3 — (o —b,b—c) = (1/2)ll(a = b) = (b = I3 + (1/2)la — bl|3 -

(1/2)||b — ¢||3 with a = 9”1 9;-?1, b=0;+0} and c = 9:{1 + 9;;1, we can express the right
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hand side of (E.48) as

(€ — €l 0r 7Y 4 (€ — €0, 0 = 07) 4 (i (O — 0T — (07 — 65))
= %H[(@fj +05) = (057 + 05D = (057 +0571) — (0 + 05113

65+ 05 — (65 + 05013 — 65+ 65 — (67 + 05 I (E.49)

By applying the results in (E.45), (E.46), (E.47) and (E.49) to the inequality (E.44) and using the

definition of H™™! in (E.29), we can obtain the following inequality:

H = Z Z Qﬁwem T—HJ'_ Z Q ZJ’ ” 9ji)r+1

i=1jeN (i) (i,5)EH
F Y )Y Y e
(i,4)EH i=1 jEN (i)
+ Y Q0+ 605,05+ 0;)"
(i,5)eH
1 ‘s s r— r— 1 ' I8 ‘s '
3 Z 1655 +65:) — (077 + 05113 — 5 Z (6771 + 6571) — (65 + 65,) 13-
(i,5)EH (i,4)eH

(E.50)

Further by summing up the inequality (E.50) from r = 0 to r = s — 1 and using the result in

Proposition E.3, we obtain

r—1
ZHS+1 < (Z Z 18* — 65,115 + Z llos; — (63 — 63:)113
s=0

i=1jeEN(4) (i,9)eH
+ Z ||T:} Zj||2+z Z ng] gz]HZ
(1,7)EH i=1 jeN (i)
* * 1 — —
+ > 1185+ 65 _(9?j+9?i)|%>+2 > 16y +6%) — (651 + 6,115
(i.5)eH (i.5)eH

(E.51)

Since 6;; and 69, are initial values for 6;; and 6;, and for convenience we let 0;; Y and 6 Jl, the values
before the initial values, equal to the initial values. As a result of that, the last term of (E.51) is

vanished. In addition, ||6;; + 6%, — (67, +6%,)[13 < 2[16;; — 65,115+ 21|65, — 6%;|]3. Therefore inequality
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(E.51) implies that

r—1 m
s 1 1 .

ZHH < 52 Z 16" — 63 ||2+§ Z llag; — (63 — 650113
5—=0 i=1 jEN(3) (i,5)€EH

+ > lims =l + Z > lg - &l

(i,5)EH i=1 jEN(7)
+ Y 8 —elE+ Y 16— 615
(i,5)€H (1,4)EH

= FO(B*7Q*79*7T*u€*)

*
= F07

where Fy(B8*, o*, 0%, 7%,£*) and FJ are the same as those given in (B.14). Note that from Lemma

E.3 we know H"™1 < H". Now by applying (E.52) we further obtain

o
IN

r—1

Z S(Hs _ Hs+1)

s=0

r—1

= Y [sH®— (s + )H*" + H*H]

s=0

r—1

= —H'+H'-2H*+2H° — -4+ (r—=1)H"' —rH" + Y H"V!
s=0

—rH" + F}. (E.52)

IN

The result in (E.52) implies

H’I"

IN

DN ETALEES Sl SN Al
2

=1 jeN (i) 1=1 jeN (i)

1 r r r 1 r T r— r—
+5 > i =5 = FDIE+ 5 D 1105 =05 — (057 = 0573

(1,)EH (i,5)€H
1 T T 1 T T
7 Z ‘|§ij+7—ij|‘g+1 Z 1165 — ”||g
(i,J)€EH (i,5)EH
1
F*. =
0 r’
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which further implies

m
2Ff
D2 IBr=opl < /=2
i=1 jEN (i)
2Ff
Z ||O‘zrj_(9£j_9§i)||§ < TO
(i,4)EH
4FfF
Sl +ml < 5L
(i,5)EM
4FfF
> ollgi—T5li < -
(6,5)EM
This completes the proof. O
E.4 Technical lemmas
Lemma E.4. Under Assumption 1, we have
MICEIRTS DI DRCIENEE) Z B +pYS 30 (€58 + pABy
i=1 i=1 jEN(4) i i=1 jeN (i)

(E.53)
where A(B)" is defined in (E.1).

Proof of Lemma E.4. By definition (2.4), 37 *! is also a solution to the following system of

equations:

0=Vily(B) + pNDIBH —p D (05— &) (E.54)
JEN(3)

By carrying out the inner product multiplication on both sides of (E.54) with vector §; — 5] 1 we

obtain

0= (Vili(B™"), 8= 87" ) +p Y (BT =05+ €58 - B). (E.55)

JEN(4)

Under Assumption 1 ;(;) is a convex function of 3;, and therefore we have
LB < Li(B) — (VLB B — B (E.56)

By adding (E.55) and (E.56) and using the relation (2.9), we obtain

LB <UB) +p D (05 =058 =87 ) +p Y (G Bi- BT (EST)

JEN(3) JEN (i)
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By rearranging (E.57) we obtain

LB +p > (BT < LB+ Y (€58

JEN () JEN()
+p > {05 =07, 8 — BT (E.58)
JEN(3)

By summing up (E.58) from i = 1 to i = m and using the definition of A(8)"*! in (E.1), we obtain

(E.53), which completes the proof. O

Lemma E.5. Under Assumption 1, we have

Z )\z]gu +p Z 7+1 T-H

(i,7)eH (i,5)eH
< D Nggile) +p D (T ai) + pB(a) T, (E.59)
(i,5)EH (4,5)EH

where B(a)"*! is define in (E.2)

Proof of Lemma E.5. By definition (2.5) ozZH is also a solution to the following system of

equations:
_ r+1 P +1 T T r
0= + —)\” lai;™ = (07, — 05,) + 711, (E.60)

+1

where u;; Le ag; jlag; 1) is a subgradient of g;;(x) evaluated at a;; . Now by carrying out the

inner product multiplication on both sides of (E.60) with «a;; — affl we obtain

0= <a;;_1’ Q5 — T+1> + - < :j+1 - (alrj - 951) + Tirjv Qi — Ozz;'_l> : (E61)
]

Under Assumption 1 g;;(c;) is a convex function of «;j, and therefore we have

(i) < gijlaiy) = (aij ™ iy — o) (E.62)

gijl& ij ij

Adding (E.61) and (E.62), multiplying both sides with \;;, and using the relation (2.8) we obtain

Xijgii () < Nijgig(aig) + p (7] aij — o)

+p (O = 05 — (07, — 05), 05 — af ) (E.63)

)
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By rearranging (E.63) we obtain

/\ijgij(ozifl) +p <Tirj+17 CYZH> < Nijgijlasg) +p <Tirj+17 @ij)
+p (05 = 07571 — (07 — 07,), iy — i)

ij

(E.64)

By summing up (E.64) for all (i,j) € H and using the definition of B(«)"*! in (E.2), we obtain

(E.59), which completes the proof. O

Lemma E.6. From the relations (2.6), (2.7), (2.8), (2.9) and (2.10), we have

r+1 r+1 _ sr+1 r+1 _ gr+1 r r+1 r
§j Ty =& — Ty =0y =0 05T — 0, (E.65)
Proof of Lemma E.6. From the relation (2.6) we have
3037 = 05 + o+ riy 4 BT+ € + 6
& & =30 -0 — ot - BT - (E.66)

By using the relations (2.8) and (2.9) and the result in (E.66), we obtain

r+1 r+1 _ r r+1 r+1 r+1 r r+1 r+1
& +7i; = 75— (05 =05 )+l + &G -0 + B

_ r+1 T r+1 r+1 r r+1 r+1 r+1 r+1 r+1
= 300 g, —altt - gt — (0 0 ol - 0 4

_ r4+1 r r+1 r
On the other hand, from the relation (2.7), we have
307 =07, — ol — 1l 4+ BT+ & + 0
& - =300 =0+ - Bt - 07 (E.68)

By using the result in (E.68) and the relations (2.8) and (2.10), we obtain

r4+1 r4+1 _ r r+1 r+1 r r+1 r+1 r+1
& —Tij = &, -0 + 87 -1+ (00 —057) —af;

_ r+1 r r+1 r+1 T r+1 r+1 r+1 r4+1 r4+1
= 39]‘1‘ - eij +toa; T — 53‘ - eji - aji +Bj + (eij - eji ) — Q;;

_ r+1 Is r+1 r
= 0 —05+0; — 05 (E.69)
The results in (E.67) and (E.69) imply (E.65), which completes the proof. O
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Proposition E.1. Fora,b,c,d € RP, we have

(a—=byc—d)y =

DN | =

(o= al? = lla el + 1o~ el - ). (E.70)
In particular, when b = ¢, we have
1 2 2 2
fa—ce—d) = F(lla=dl*~lla—c|" = lle=dl . (E.71)

Remark on proofs: The results in Proposition E.1 can be verified by directly computing left

hand sides of (E.70) and (E.71) using elementary linear algebra techniques.

Proposition E.2. For Q(a,b)" ™! defined in (E.5), we have
s—1 1
3 a by < a1
r=0

Proof of Proposition E.2. By direct calculation we have

s—1
1 1
S0yt = 2<|ab°|2|ab1||2)+2<|ab1||2|ab2||2)+..‘
r=0
1 s—1112 s(12
3 (1o =812 = la — 8]
2
1 1
= §|Ia—b°\|2—§|Ia—bs|\2
1
< Slla=¥IPR,
which completes the proof. B

Proposition E.3. For Q(a,a)" ™! defined in (E.5), we have

Qa”,a)™ + Qa1 a)" — %HarJrl —ar|? - %Har — P
< ;(Har —a" Y = ||a"Tt - a’"|2>. (E.72)
Proof of Proposition E.3. By definition in (E.5) we have
Qa”, )"+ _§||ar — R,
) = gl - Pl - (B.73)
Further note that
e+ —a™ Y2 = [ja — "+ — a2
< 2lla™ —a"|* + 2" —a" |2 (E.74)
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By applying the results in (E.73) and (E.74) we obtain

1 1
Qa”,a)" ' + Qa1 a)" — §||GT+1 —a'[|* - §|\a7“ —a

1 1 1
S _§||ar _ar+1||2 4 |:2 <2||ar+1 _ar||2 _|_2||ar _ ar—1||2) _ §Har+1 _arH2
1 1
2||ar+1 _ar||2 _ §Har _ ar—1|‘2
1 1 .
_ §Har _ar—lHZ _ 2||a7~-‘,-1 _a7||2’
which completes the proof. O

Proposition E.4. For Q(a,a)" ™! defined in (E.5), we have

1

1
Q(ar,a)T-H =+ Q(ar+1,a)T _ §||CLT+1 _ CLr||2 _ §||ar _ ar—1||2
1 1
= Slla" —a" P = Slla"t —a"|]? = S||(a"F —a”) = (a" —a" Y| (E.75)
2 2 2
Proof of Proposition E.4. By definition in (E.5) we have
Q(ar’a)r+1 7§||ar 7ar+1||27
r+1 r 1 r+1 r—1112 1 r4+1 12
Q@ ey = Sl - P = e - | (5.76)
Note that
lar —ar P = @ )+ (@ P

_ ||ar+1 _ar||2 4 ||ar _ar—1||2 + <ar+1 _ar7ar _ ar—1>
Hl(@™ = a") = (@" = a DI = [[(a" = a") = (" =

= (@™ —a") = (@ —a" P +2Ja" —a"|* + 2f|a” — "7

(E.77)
By applying the result in (E.77) we obtain
Q(CLTJFI,G,)T
1 r+1 r r r—1\112 r+1 12 r r—172 1 r+1 T2
= 5|~ @™ =a") = (a" =a" )" +2[[a" —a"||" +2]]a" = "7 | = Sla" o]
1 r+1 r r r—1 2 1 r+1 12 r r—1112
= —5lll@™ —a") = (a" = a" )" + glla™" —a"[]" +[la” —a" 7" (E.78)
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By applying the results in (E.76) and (E.78) we further obtain

1 1
Q" @)+ + Q@ 0)" Sl = | = Gl — a7
1 T r+112 1 r+1 r r r—1\(12 1 r+1 712 r r—1112
= —lla" =a™ P+ [ = Sll(e™ —a") = (a" —a" )" + S lla"™ —a"[]" + [la” —a"]
1 1
_§Har+1_arHQ_i”ar_ar—lHQ
1 T r—12 1 r4+1 T2 1 r+1 T T r—1\]12
= Sl =@ P = Sl =Tl - Sl =) - (@ -,

which completes the proof.
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