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A Appendix: Summary of MCMC for Dynamic BPS

A.1 Overview and Initialization

This appendix summarizes algorithmic details of implementation of the MCMC

computations for dynamic BPS model fitting of Section 2.4. This involves a standard

set of steps in a customized three-component block Gibbs sampler: the first compo-

nent samples the latent agent states, the second, the second samples the dynamic

BPS model states/parameters, and the third component samples the observation

variance. The latter two involves a modified FFBS algorithm central to MCMC in all

conditionally normal DLMs (Frühwirth-Schnatter 1994; West and Harrison 1997,

Sect 15.2; Prado and West 2010, Sect 4.5).

In our sequential learning and forecasting context, the full MCMC analysis is

performed anew at each time point as time evolves and new data are observed. We

detail MCMC steps for analysis based on data over times t = 1:T for any chosen T .
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Standing at time t = 0, the decision maker has initial information summarized

via in terms of ✓0 ⇠ N(m0,C0) and V 0 ⇠ IW (n0,D0), independently. Here the

q⇥ q variance matrix V 0 has the inverse Wishart distribution with n > 0 degrees of

freedom and prior “sum-of-squares” matrix D0. Equivalently, the precision matrix

V �1
0 ⇠ W (h0,D

�1
0 ), the Wishart distribution with h0 = n0 + q � 1 and mean h0D

�1
0

so that the initial estimate D0/h0 is the prior harmonic mean of V 0. Model specifi-

cation is completed with two chosen discount factors: �, defining the extent of time

variation in the evolution of the states ✓t, and � defining levels of variation in the

evolution of the volatility matrices V t.

At time T, the decision maker has accrued information {y1:T ,H1:T}. The MCMC

analysis is then run iteratively as follows.

Initialization: First, initialize by setting

F t =

0
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for each t = 1:T , with elements set at some chosen initial values of the latent

agent states. Initial values can be chosen arbitrarily. One obvious and appropriate

choice– our recommended default choice– is to simply generate agent states from

their priors, i.e., from the agent forecast distributions, xtj ⇠ htj(xtj) independently
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for all t = 1:T and j = 1:J . This is easily implemented in cases when the agent

forecasts are T or normal distributions, or can be otherwise directly sampled; we

use this in our analyses reported in the paper, and recommend it as standard. An

obvious alternative initialization is to simply set xtj = yt for each t, j, though we

prefer to initialize with some inherent dispersion in starting values. Ultimately,

since the MCMC is rapidly convergent, choice of initial values is not critical. Given

initial values of agent factor vector xtj = (xt1j, xt2j, ..., xtqj)
0 for each agent j = 1:J

and each time t, the F t matrices are initialized with series-specific row entries from

f tr = (xtr1, xtr2, ..., xtrJ)
0 for each r = 1:q.

A.2 Three Sampling Steps in Each MCMC Iterate

Following initialization, the MCMC iterates repeatedly to resample three sets of

conditional posteriors to generate the MCMC samples from the target posterior

p(X1:T ,✓1:T ,V 1:T |y1:T ,H1:T ). These conditional posteriors and algorithmic details

of their simulation are as follows.

A.2.1 Per MCMC Iterate Step 1: Sampling BPS DLM parameters ✓1:T

Conditional on any values of the latent agent states and observation error, we are

in the setting of a conditionally normal, multivariate DLM with the agent states as
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known predictors based on their specific values. The BPS DLM form,

yt = F t✓t + ⌫t, ⌫t ⇠ N(0,V t),

✓t = ✓t�1 + !t, !t ⇠ N(0,W t),

has known elements F t,W t and specified initial prior at t = 0. The implied condi-

tional posterior for ✓1:T then does not depend on H1:T , reducing to p(✓1:T |X1:T ,V 1:T ,y1:T ).

This is simulated using the efficient and standard FFBS algorithm (e.g. Frühwirth-

Schnatter 1994; West and Harrison 1997, Sect 15.2; Prado and West 2010, Sect

4.5). In detail, this proceeds as follows.

Forward filtering: For each t = 1:T in sequence, perform the standard one-

step filtering updates to compute and save the sequence of sufficient statistics

for the on-line posteriors p(✓t|X1:t,V 1:t,y1:t) at each t. The summary technical

details are as follows:

1. Time t� 1 posterior:

✓t�1|X1:t�1,V 1:t�1,y1:t�1 ⇠ N(mt�1,Ct�1),

with point estimate mt�1 of ✓t�1.

2. Update to time t prior:

✓t|X1:t�1,V 1:t�1,y1:t�1 ⇠ N(mt�1,Rt) with Rt = Ct�1/�,
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with (unchanged) point estimates mt�1 of ✓t, but with increased uncer-

tainty relative to the time t � 1 posteriors, the level of increased uncer-

tainty being defined by the discount factors.

3. 1-step predictive distribution: yt|X1:t,V 1:t,y1:t�1 ⇠ T�nt�1(f t,Qt) where

f t = F tmt�1 and Qt = F tRtF
0
t + V t.

4. Filtering update to time t posterior:

✓t|V 1:t,X1:t,y1:t ⇠ N(mt,Ct),

with defining parameters mt = mt�1 + Atet and Ct = Rt � AtQtA
0
t,

based on 1-step forecast error et = yt � f t and the state adaptive coeffi-

cient vector (a.k.a. “Kalman gain”) At = RtF
0
tQ

�1
t .

Backward sampling: Having run the forward filtering analysis up to time T,

the backward sampling proceeds as follows.

a. At time T : Simulate ✓T from the final multivariate normal posterior

p(✓T |X1:T ,V 1:T ,y1:T ) = N(mT ,CT ).

b. Recurse back over times t = T � 1, T � 2, . . . , 0 : At each time t, simulate

the state ✓t from the conditional posterior p(✓t|✓t+1,X1:t,V 1:t,y1:t); this
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is multivariate normal with mean vector mt + �(✓t+1 �mt) and variance

matrix Ct(1� �).

A.2.2 Per MCMC Iterate Step 2: Sampling BPS DLM parameters V 1:T

Conditional on the sampled values of the BPS DLM parameters ✓1:T and latent agent

states X1:T , the next step in the MCMC iterate samples the full conditional posterior

of the sequence of volatility matrices, generating a draw from p(V 1:T |X1:T ,✓1:T ,y1:T ).

Forward filtering: For each t = 1:T in sequence, update and save the forward

filtering summaries (nt,Dt) of on-line posteriors

V t|X1:t,✓1:t,y1:t ⇠ IW (nt,Dt),

given by nt = ht � q + 1 where ht = �ht�1 + 1, and Dt = �Dt�1 + (yt �
F 0

t✓t)(yt � F 0
t✓t)

0.

Backwards sampling: Having run the forward filtering analysis up to time T,

the backward sampling proceeds as follows.

a. At time T : Simulate V T from the final inverse Wishart posterior IW (nT ,DT ).

b. Recurse back over times t = T � 1, T � 2, . . . , 0 : At time t, sample V t from

the conditional posterior p(V t|V t+1,X1:t,✓1:t,y1:t). Algorithmically, this
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is achieved via

V �1
t = �V �1

t+1 +⌥t where ⌥t ⇠ W ((1� �)ht,D
�1
t ),

and where the ⌥t are independent over t.

A.2.3 Per MCMC Iterate Step 3: Sampling the latent agent states X1:T

Conditional on most recently sampled values of the BPS DLM parameters �1:T , the

MCMC iterate completes with resampling of the latent agent states from their full

conditional posterior p(X1:t|�1:t,y1:t,H1:t). It is immediate that the X t are condi-

tionally independent over time t in this conditional distribution, with time t condi-

tionals

p(X t|�t,yt,Ht) / N(yt|F t✓t,V t)

Y

j=1:J

htj(xtj). (9)

Several comments are relevant to studies with different forms of the agent forecast

densities.

1. Multivariate normal agent forecast densities: In cases when each of the agent

forecast densities is normal, the posterior in eqn. (9) yields a multivariate

normal distribution for vectorized X t. Computation of its defining parameters

and then drawing a new sample vector X t are trivial.

2. In some cases, as in our study in this paper, the agent forecast densities will

be those of Student T distributions. In our case study the five agents rep-
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resent conjugate exchangeable dynamic linear models in which all forecast

densities are multivariate T, with parameters varying over time and with step-

ahead forecast horizon. In such cases, standard Bayesian augmentation meth-

ods apply to enable simulation. Each multivariate T distribution is expressed

as a scale mixture of multivariate normals, with the mixing scale parame-

ters introduced as inherent latent variables with inverse gamma distributions.

This expansion of the parameter space makes the multivariate T distributions

conditional multivariate normals, and the mixing scales are resampled (from

implied conditional posterior inverse gamma distributions) each MCMC iter-

ate along with the agent states. This is again a standard MCMC approach and

much used in Bayesian time series, as in other areas (e.g. Frühwirth-Schnatter

1994; West and Harrison 1997, Chap 15). Then, conditional on the current

values of these latent scales, sampling the X t reduces technically to that con-

ditional normals above.

Specifically, suppose that htj(xtj) is density of the normal Tntj(htj,H tj); the

notation means that (xtj � htj)/
p

H tj has a standard multivariate Student

T distribution with ntj degrees of freedom. Then latent scale factors �tj

exist such that: (i) conditional on �tj, latent agent factor xtj has a condi-

tional multivariate normal density xtj|�tj ⇠ N(htj,H tj/�tj) independently

over t, j; (ii) the �tj are independent over t, j with gamma distributions,

�tj ⇠ G(ntj/2, ntj/2). Then, at each MCMC step, the above normal update

for latent agent states is replaced by normal simulations conditional on the
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�tj. Following this, we resample values of the �tj from their trivially implied

conditional gamma posteriors.

3. In some cases, agent densities may be more elaborate mixtures of normals,

such as (discrete or continuous) location and/or scale mixtures that represent

asymmetric distributions. The same augmentation strategy can be applied in

such cases, with augmented parameters including location shifts in place of,

or in addition to, scale shifts.

4. In other cases, we may be able to directly simulate the agent forecast dis-

tributions and evaluate forecast density functions at any point, but do not

have access to analytic forms. One class of examples is when the agents are

simulation models, e.g., DSGE models. Another involves forecasts in terms of

histograms. In such cases, MCMC will proceed using some form of Metropolis-

Hastings algorithm, or accept/reject methods, or importance sampling for the

latent agent states.

For example, suppose we only have access to simulations from the agent fore-

cast distributions, in terms of I independent draws from each collated in the

simulated matrix X
(i)
t for i = 1:I. We can apply importance sampling as fol-

lows: (a) compute the marginal likelihood values p(yt|�t,X
(i)
t ,Ht) for each

i = 1:I; (b) compute and normalize the implied importance sampling weights

wti / N(yt|�t,X
(i)
t ,Ht), and then (c) resample latent agent states for this

MCMC stage according to the probabilities these weights define.
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B Appendix: Additional Graphical Summaries from

Macroeconomic Analysis

This appendix lays out additional graphical summaries of results from the macroe-

conomic forecasting analysis in the paper, providing material supplementary to that

discussed in Section 3.

Figure C1: US macroeconomic forecasting 2001/1-2015/12: Mean squared 1-step
ahead forecast errors MSFE1:t(1) of wage (w) sequentially revised at each of the
t = 1:180 months.
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Figure C2: US macroeconomic forecasting 2001/1-2015/12: Mean squared 1-step
ahead forecast errors MSFE1:t(1) of unemployment rate (u) sequentially revised at
each of the t = 1:180 months.

Figure C3: US macroeconomic forecasting 2001/1-2015/12: Mean squared 1-step
ahead forecast errors MSFE1:t(1) of consumption (c) sequentially revised at each of
the t = 1:180 months.
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Figure C4: US macroeconomic forecasting 2001/1-2015/12: Mean squared 1-step
ahead forecast errors MSFE1:t(1) of investment (i) sequentially revised at each of
the t = 1:180 months.

Figure C5: US macroeconomic forecasting 2001/1-2015/12: Mean squared 1-step
ahead forecast errors MSFE1:t(1) of interest rate (r) sequentially revised at each of
the t = 1:180 months.
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Figure C6: US macroeconomic forecasting 2001/1-2015/12: Mean squared 12-step
ahead forecast errors MSFE1:t(12) of wage (w) sequentially revised at each of the
t = 1:180 months.
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Figure C7: US macroeconomic forecasting 2001/1-2015/12: Mean squared 12-step
ahead forecast errors MSFE1:t(12) of unemployment rate (u) sequentially revised at
each of the t = 1:180 months.

Figure C8: US macroeconomic forecasting 2001/1-2015/12: Mean squared 12-step
ahead forecast errors MSFE1:t(12) of consumption (c) sequentially revised at each
of the t = 1:180 months.
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Figure C9: US macroeconomic forecasting 2001/1-2015/12: Mean squared 12-step
ahead forecast errors MSFE1:t(12) of investment (i) sequentially revised at each of
the t = 1:180 months.

Figure C10: US macroeconomic forecasting 2001/1-2015/12: Mean squared 12-
step ahead forecast errors MSFE1:t(12) of interest rate (r) sequentially revised at
each of the t = 1:180 months.
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Figure C11: US macroeconomic forecasting 2001/1-2015/12: Mean squared 24-
step ahead forecast errors MSFE1:t(24) of wage (w) sequentially revised at each of
the t = 1:180 months.
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Figure C12: US macroeconomic forecasting 2001/1-2015/12: Mean squared 24-
step ahead forecast errors MSFE1:t(24) of unemployment rate (u) sequentially re-
vised at each of the t = 1:180 months.

Figure C13: US macroeconomic forecasting 2001/1-2015/12: Mean squared 24-
step ahead forecast errors MSFE1:t(24) of consumption (c) sequentially revised at
each of the t = 1:180 months.
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Figure C14: US macroeconomic forecasting 2001/1-2015/12: Mean squared 24-
step ahead forecast errors MSFE1:t(24) of investment (i) sequentially revised at each
of the t = 1:180 months.

Figure C15: US macroeconomic forecasting 2001/1-2015/12: Mean squared 24-
step ahead forecast errors MSFE1:t(24) of interest rate (r) sequentially revised at
each of the t = 1:180 months.
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Figure C16: US macroeconomic forecasting 2001/1-2015/12: On-line posterior
means of BPS(12) model coefficients for inflation (p) sequentially computed at each
of the t = 1:180 months.
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Figure C17: US macroeconomic forecasting 2001/1-2015/12: On-line posterior
means of BPS(12) model coefficients for wage (w)sequentially computed at each of
the t = 1:180 months.

Figure C18: US macroeconomic forecasting 2001/1-2015/12: On-line posterior
means of BPS(12) model coefficients for unemployment (u) sequentially computed
at each of the t = 1:180 months.
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Figure C19: US macroeconomic forecasting 2001/1-2015/12: On-line posterior
means of BPS(12) model coefficients for consumption (c) sequentially computed at
each of the t = 1:180 months.

Figure C20: US macroeconomic forecasting 2001/1-2015/12: On-line posterior
means of BPS(12) model coefficients for investment (i) sequentially computed at
each of the t = 1:180 months.
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Figure C21: US macroeconomic forecasting 2001/1-2015/12: On-line posterior
means of BPS(12) model coefficients for interest rate (r) sequentially computed at
each of the t = 1:180 months.
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Figure C22: US macroeconomic forecasting 2001/1-2015/12: On-line posterior
means of BPS(24) model coefficients for inflation (p) sequentially computed at each
of the t = 1:180 months.
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Figure C23: US macroeconomic forecasting 2001/1-2015/12: On-line posterior
means of BPS(24) model coefficients for wage (w)sequentially computed at each of
the t = 1:180 months.

Figure C24: US macroeconomic forecasting 2001/1-2015/12: On-line posterior
means of BPS(24) model coefficients for unemployment (u) sequentially computed
at each of the t = 1:180 months.

24



Figure C25: US macroeconomic forecasting 2001/1-2015/12: On-line posterior
means of BPS(24) model coefficients for consumption (c) sequentially computed at
each of the t = 1:180 months.

Figure C26: US macroeconomic forecasting 2001/1-2015/12: On-line posterior
means of BPS(24) model coefficients for investment (i) sequentially computed at
each of the t = 1:180 months.
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Figure C27: US macroeconomic forecasting 2001/1-2015/12: On-line posterior
means of BPS(24) model coefficients for interest rate (r) sequentially computed at
each of the t = 1:180 months.
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