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1. Proof of Theorem 1

Thm1.1. From Eq. (12) we can get
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It is straightforward that lim E(R,) = 0 for h > 0. Theratio E(R,.;1)/E(R,) can be derived
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The derivative of the ratio with respect to n can be obtained as
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increases monotonically.

Since lim f;(n) =1, we can get % <1 or E(Rp41) <E(Ry) for g,(p,h) <n < oo.
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Therefore E(R,) decreases monotonically for n > g,(p, h).



Thm1.2. From Eq. (12) we can get
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Similarly we can obtain the ratio
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Following the same approach, we can show that when n > g,(p, h) where g, is the largest root

of equation f,(n) =0, f,(n) increases monotonically. Since lim f,(n) =1, we can get
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ar((1+1+)1) <Var ( = ) for g,(p,h) <n<o . Therefore Var( nh) decreases

monotonically for n > g,(p, h). Note that the closed form of g,(p, h) is very difficult to obtain,
if not impossible. We can numerically calculate it instead. Alternatively, the variance can be

reformulated as
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Since for sufficiently large n,
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monotonically decreases, there must exist g,(p, h) such that when n > g,(p, h),
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Va r(' 1,?') is monotonically decreasing. Clearly hm Var ('S”') =0.

From the derivation process we can clearly see that f;(n) and f,(n) may also be less than 1 for
certain n with n < g; and n < g, respectively, which means g, and g, are just upper

bounds for the lower ends of the decreasing regions.



2. Proof of Theorem 2

Thm 2.1. The non-centrality matrix T = ¥ (u — i) (4, - &) where p; = o for i = 1,..,n
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Therefor .., p are the eigenvalues of the sample covariance matrix ﬁZZT. Based

on the theory of principal component analysis (PCA) (Izenman 2008), it is straightforward that
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there is only one non-zero eigenvalue since all samples (Z‘E(uo — 0,2 2(ug — f1), .., 2(u —

ﬂ)) are on a line. The corresponding eigenvector is
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Therefore the largest eigenvalue, which is the sample variance of the first principal components,

can be computed as
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Thm 2.2. S;.,., follows noncentral Wishart distribution of degree n (Anderson and
Mathématicien 1958). Since all yu;,i =1,..,n+ 1 are on a line (noncentral linear case), the
expectation of the determinant of the generalized variance is tractable. According to Anderson

(Anderson 1946), the expectation of the mth moment of |S;.,,,1| can be calculated as follows:
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3. Proof of Theorem 3

From Eq. (12) and Eq. (14) we obtain that
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Define f(n) = E(R,4+1)/E(R,), then
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4. Proof of Theorem 4

Thm 4.1. Since all the means u;,i =c—t+1,..,c+n arein a linear relationship, or they are

on a line, we can use the same approach as was used in Thm 2.1.
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Thm 4.2. S._;;1.n4ec follows noncentral Wishart distribution of degree n (Anderson and

Mathémnaticien 1958). Based on Thm 2.2 and Eq. (14) we can easily get
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Let f(t) > 1 we get that
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It can be approximated that
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5. Proof of Theorem 5

Thm 5.1. Suppose A = P - diag(ay, ..., a,) - P7%. Since by = p, — pu = A*(uo — p) = A'by =

pP- diag(a{, s a{,)P‘lbO, each component of b, can be expressed in the form of

p
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where Bj; are the constants determined by P and b, . Since Y, —pu=A'(Yo—p)+

YiZo A'u;_y, the covariance of X; and X; can be derived as
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Based on the equation X = AZAT + X,,, we can get
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Using Eq. (S5.1) and (S5.2) we can obtain cov(Xi,Xj) = (cizjlm) with each entry c¢;jm

expressed as
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where Cp,q are the constants determined by P and X,. Note thatif i = j, cov(Xi,X ) =X=
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Denote y;; = (Xl- — Xn,k)j, i.e., the j-th dimension of X; — X, x, then
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The variance of y;; can be calculated as
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The cross covariance can be obtained using the same way
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To facilitate understanding, let’s first consider a relatively simple case with p = 2. The case p =1 is

much simpler and is not shown here.
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According to Lemma 1,
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+ [3j1.3j27’i2i12 + Vi2i12)’j2j12 + Vi2j11Vi2jzz + Vi2j12]/i2jz1
First look at the terms that lead to the order of O(1) after summation and normalization. These

terms should be ~0(1). Therefore they should not contain any f and cross-covariance. Here
only yi1¥fizz — Yi2¥ iz satisfies the requirements. Besides, the O(ﬁ) in Eq. (S5.5) and

(S5.6) can all be ignored when calculating these two terms. If we check these terms we will find
that we only need to replace the terms in Eq. (S5.7) with the corresponding variance and covariance,
e.g., replacing y3 with ¢, and replacing y;;y;, with o, Clearly, after replacement, we will

et exactly 0% 0%, — o, = |X| after summation and normalization.
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Now check the terms that lead to the order of 0(&). In the previous step, we ignored the terms

of order 0(ﬁ) in the calculation of variances and covariance. If we keep these terms, we will

k

obtain a term % where C; is a constant independent of k (ignoring the terms aj " as they

have much higher shrinking order). Among the remaining terms not used at the previous step, those

with two B's but without cross-covariance and those only have cross-covariance could achieve
the order of O(ﬁ) . These terms are (ﬁizl)/jzjzz + BV — BuBi2Viinz — BirBjzYiiz) +
(Yizjn]/izjzz + Yizjlz)/izjm) . In calculating (ﬁizﬂ’jzjzz + ﬁjzz)’izin - ﬁuﬁizyjzjn - ﬁjlﬁjz)/izilz) to
achieve the order of O(n—ik), the terms of order 0(&) in Eq. (S5.5) and (S5.6) need to be

removed. Therefore,
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For the terms with only covariance,
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where C, is a constant independent of k in the order of 0(ﬁ).

For the cases p > 2, we can follow exactly the same procedure and get the same result.
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Similarly, to get the term of order O(1), the terms in E(Yi,1Yi,j,YVi,2Yi,j, YippYi, jp) should

all be variances and covariances at the same time step (no cross-covariance). Therefore we get the
. ) 1

term ]_[Z=1 os j,» Which eventually leads to [X|. For the term of |S| with order O(E)’ one part
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when we keep O (ﬁ) in Eq. (S5.5) and (S5.6); the

. C; . . . .
second part with vaule n—zk 1s from the terms with each consisting of two cross-covariances and

p — 2 variances or covariances without time lag; the third part is from the terms with two B’'s at

the same time step and with all others being the variances and covariances at the same time step,

e.g., Bi,1Bi,j,0%, O'gjp It would be easy to verify that the summation of all terms containing

Bi,aBi,j, would be exactly B; 4B j, * Mg j, where Mgy, is the minor of the entry in the d-th

row and j;-th column of the matrix X. Therefore we can get n—ik 12| X" s BT 271b;. In summary,
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the following equation is proved:
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6. Proof of Proposition 1
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Since Sy, Scircemn and (X; — X,)(X; —X,)T are all positive semi-definite, based on the

Minkowski inequality, we have
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