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S.1 Expectation-Maximization (EM) Algorithm

S.1.1 Technical Details

M-step: By taking the first-order derivatives of the Q-function and letting them equal zero,

the µ parameter is updated as

µ(τ+1) =

∑n
i=1

∑m
j=1

∑K
k=1

[
u
(τ)
i Y ijk − c(τ)ij 1d

]
K
∑n

i=1

∑m
j=1 v

(τ)
i tj

. (S.1)

The covariance matrix Σ is updated as

Σ(τ+1) =
1

N

n∑
i=1

m∑
j=1

1

tj

K∑
k=1

[
Y ijkY

′
ijk − a

(τ)
ij

(
Y ijk1

′
d + 1dY

′
ijk

)
+ b

(τ)
ij 1d1

′
d

+ c
(τ)
ij tj

(
1dµ

′(τ+1) + µ(τ+1)1′d
)
− u(τ)i tj

(
Y ijkµ

′(τ+1) + µ(τ+1)Y ′ijk
)

+ v
(τ)
i t2jµ

(τ+1)µ′(τ+1)

]
,

(S.2)
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and the other parameters are updated as

κ(τ+1) =

(∑n
i=1

∑m
j=1 b

(τ)
ij

nm

) 1
2

and ω(τ+1) =

(∑n
i=1 v

(τ)
i − 2u

(τ)
i

n
+ 1

) 1
2

,

where

u
(τ)
i = E[ζi|θ(τ),D], v

(τ)
i = E[ζ2i |θ(τ),D],

a
(τ)
ij = E[εij|θ(τ),D], b

(τ)
ij = E[ε2ij|θ(τ),D], and c

(τ)
ij = E[ζiεij|θ(τ),D].

A numerical issue is the positive-definiteness of the covariance matrix Σ. Since our EM

algorithm starts with an educated guess of model parameters as shown in Section S.1.2, the

initial parameter estimation should be close to the true value so that Σ should be positive-

definite for all iterations. Our simulation experiences show that the positive-definiteness of

Σ is ensured for all iterations of the EM algorithm under different parameter settings. In

practice, the positive-definiteness of Σ can be checked in each iteration of the EM algo-

rithm. In case that the corresponding maximizer is not positive-definite in an iteration, we

can re-parameterize Σ using its Cholesky decomposition. The maximization can be then

numerically done.

E-step: The M-step needs values of u
(τ)
i , v

(τ)
i , a

(τ)
ij , b

(τ)
ij , and c

(τ)
ij , i ∈ [n], j ∈ [m]. To this

end, the E-step derives the distribution of the missing data, which is capsulized as follows.

Theorem 1 In the ith rig, the distribution of [εi1, · · · , εim, ζi]′ conditional on D and θ is

multivariate normal with mean vector νi and covariance matrix Ξ, i ∈ [n], where

νi = Ξ

 D′Σ−1X Y i

Y ′iΣ−1X µY + ω−2

 (S.3)

with

D = diag(1Kd, · · · ,1Kd) = Im ⊗ 1Kd ∈ RM×m (S.4)
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and

ΣX = diag(Σt1, · · · ,Σt1︸ ︷︷ ︸
K repetitions

, · · · ,Σtm, · · · ,Σtm) = diag(t⊗ 1K)⊗Σ ∈ RM×M . (S.5)

The expression of Ξ is given in the proof.

Proof Let εi = [εi1, · · · , εim]′. Following Bayes’ theorem, we have

p(εi, ζi|θ,D) ∝ p(εi, ζi,D|θ)

∝ exp

{
−1

2

[
(Y i −Dεi − ζiµY)′Σ−1X (Y i −Dεi − ζiµY) +

(ζi − 1)2

ω2
+ ε′iΣ

−1
ε εi

]}
, (S.6)

where Σε = κ2Im ∈ Rm×m. To find the quadratic form of (S.6), we should compare it with

p(εi, ζi|θ,D) ∝ exp

[
−1

2
([ε′i, ζi]

′ − [ν ′i1, νi2]
′)
′
C ([ε′i, ζi]

′ − [ν ′i1, νi2]
′)

]
, (S.7)

where

C =

 C11 C12

C ′12 C22

 .
Here, νi1 ∈ Rm, νi2 ∈ R, C11 ∈ Rm×m, C12 ∈ Rm, and C22 ∈ R. Solving (S.6) and (S.7)

yields

νi1 = C−1D′Σ−1X Y i, νi2 = C−1(Y ′iΣ−1X µY + ω−2),

C11 = D′Σ−1X D + Σ−1ε , C12 = D′Σ−1X µY , and C22 = µ′YΣ−1X µY + ω−2.

Then Ξ in the theorem is the inverse of C. Let S = C22 − C ′12C11C12 be the Schur

complement of C11. We can calculate Ξ = C−1 as

Ξ =

 C−111 + C−111C12C
′
12C

−1
11 /S −C11C12/S

symmetric 1/S

 . (S.8)
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Let F = C−111 = (D′Σ−1X D+Σ−1ε )−1. Then we have the same form of νi as shown in Theorem

1 and Ξ is given by

Ξ =

 F + F(D′Σ−1X µYµ
′
YΣ−1X D)F/S −FD′Σ−1X µY/S

symmetric 1/S

 .
Since the marginal distribution of a multivariate normal distribution is still normal, the

values of u
(τ)
i , v

(τ)
i , a

(τ)
ij , b

(τ)
ij , and c

(τ)
ij , for i ∈ [n] and j ∈ [m], can be readily obtained from

Theorem 1 by replacing θ with θ(τ). Specifically, the values of u
(τ)
i and a

(τ)
ij are determined

by νi. We can also derive the values of v
(τ)
i , b

(τ)
ij , and c

(τ)
ij from Ξ, which completes the

E-step.

S.1.2 Determination of Starting Points for the EM Algorithm

The determination of starting point for the EM algorithm includes three steps. First note

that the rig-layer block effect is an unknown but fixed value for each test rig. We can then

obtain a rough estimate of degradation rate in the ith rig, denoted as µ̂i, i ∈ [n]. This can be

done by resorting to the multivariate least square regression model (Rencher, 2003, Chapter

10), which minimizes the sum of squared error

SSE =
n∑
i=1

m∑
j=1

K∑
k=1

(Y ijk − µitj)′(Y ijk − µitj).

According to the values of µ̂i, i ∈ [n], we can determine the starting points for µ and ω.

For each test rig, we can estimate the covariance matrix by first assuming κ = 0, i.e., no

gauge-layer block effect. Based on this covariance matrix, we can further determine the

starting points for κ. The detailed procedure is as follows.

• For the ith test rig, get rough estimates of µi using the multivariate least squared

estimation as µ̂′i =
∑K

k=1(t
′t)−1t′Yik/K, where Yik = [Y i1k, · · · ,Y imk]

′. The starting

point of µ for the EM algorithm is obtained as µ(0) =
∑n

i=1 µ̂i/n.

4



• Get rough estimates of ζ1, · · · , ζn as ζ̂i = 1
d

∑d
l=1 µ̂il/µ̂i, where µ̂il and µ̂i are the lth

coordinate of µ̂i and the ith coordinate of µ̂, respectively. Fit ζ̂1, · · · , ζ̂n with a normal

distribution N (1, ω2) to get the starting point ω(0) for the EM algorithm.

• First get a rough estimate of the covariance matrix assuming that there is no gauge-

layer block effect, i.e., κ = 0. It yields

Σ̃ =
1

N

n∑
i=1

m∑
j=1

K∑
k=1

(
Y ijk − µ̂itj√

tj

)(
Y ijk − µ̂itj√

tj

)′
. (S.9)

Then we numerically maximize the likelihood function conditioning on the values of

µ̂i, i ∈ [n], to get the starting points Σ(0) and κ(0). The above maximization can

be efficiently done by many algorithms (e.g., the Nelder-Mead algorithm), where the

starting points of covariance matrix for the numerical maximization is Σ̃ in (S.9).

S.1.3 Inference with the Time Scale Transformation Function

This section develops the EM algorithm when there are unknown parameters in the time

scale transformation function H(t) = diag(h1(t), · · · , hd(t)). For the E-step, the distribution

of missing data [εi1, · · · , εim, ζi]′ conditional on the observed data D and model parameter

θ is still multivariate normal with mean vector νi and covariance matrix Ξ as shown in

Theorem 1. The only difference is that

µY = [µ′H(t1), · · · ,µ′H(t1)︸ ︷︷ ︸
K repetitions

, · · · ,µ′H(tm), · · · ,µ′H(tm)︸ ︷︷ ︸
K repetitions

]′

and

ΣX = diag(Σ1/2H(t1)Σ
1/2, · · · ,Σ1/2H(t1)Σ

1/2︸ ︷︷ ︸
K repetitions

, · · · ,Σ1/2H(tm)Σ1/2, · · · ,Σ1/2H(tm)Σ1/2).

For the M-step, the estimates κ(τ+1) and ω(τ+1) are still updated as shown in Section S.1.1.
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In comparison, µ(τ+1) is updated as

µ(τ+1) =

(
K

n∑
i=1

m∑
j=1

v
(τ)
i H(τ+1)(tj)

)−1 n∑
i=1

m∑
j=1

K∑
k=1

[
u
(τ)
i Y ijk − c(τ)ij 1d

]
, (S.10)

where H(τ+1)(·) is the maximizer of H(·) in the M-step. When all dimensions of degradation

share a common transformed time scale but with unknown parameters, we can still have the

closed-form maximizer of Σ similar to that as shown in the main text. Specifically, denote

the common transformed time scale as h(t) ≡ hl(t), l ∈ [d]. The maximizers of µ and Σ

at the (τ + 1)st iteration are given by replacing tj in (S.1) and (S.2) with h(τ+1)(tj). Here,

h(τ+1)(·) is the maximizer of h(·) at the (τ + 1)st iteration, which is given by solving the

following equation (it is obtained by taking the first derivative of the likelihood function with

respect to the unknown parameters in h(·) and letting it equal zero)

n∑
i=1

m∑
j=1

K∑
k=1

{[
d

h(tj)
− (Y ′ijk(Σ

(τ))−1Y ijk − 2a
(τ)
ij Y

′
ijk(Σ

(τ))−11d

+ b
(τ)
ij 1′d(Σ

(τ))−11d)h
−2(tj) + v

(τ)
i (µ(τ))′(Σ(τ))−1µ(τ)

]
∇h(tj)

}
= 0,

where ∇h(t) is the gradient of h(t) (assuming it exists) and 0 is the vector of zero with the

same length of ∇h(t). If the time scale of each dimension of degradation is different, we

cannot have closed-form maximizers for the parameters Σ(τ+1) and H(τ+1)(·) in the M-step.

Nevertheless, these maximizers can be numerically found by maximizing

`c(Σ,p) = −1

2

n∑
i=1

m∑
j=1

K∑
k=1

{
log[det(Σ̄j)]

+ Y ′ijkΣ̄
−1
j Y ijk + b

(τ)
ij 1′dΣ̄

−1
j 1d + v

(τ)
i µ(p)′H(tj)Σ̄

−1
H(tj)µ(p)

− 2a
(τ)
ij Y

′
ijkΣ̄

−1
j 1d − 2u

(τ)
i Y

′
ijkΣ̄

−1
j H(tj)µ(p) + 2c

(τ)
ij 1′dΣ̄

−1
j H(tj)µ(p)

}
,

where Σ̄j = Σ1/2H(tj)Σ
1/2, p are the unknown parameters in H(·), and µ(p) is the function
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following the form of (S.10). To ensure the positive-definiteness of the covariance matrix Σ

in each iteration of the EM algorithm, we re-parameterize it as Σ = LL′, where L is a lower

triangular matrix obtained from the corresponding Cholesky decomposition.

For the effectiveness of the EM algorithm, we also need to obtain some educated guesses

for its starting points. The procedure provided in Section S.1.2 needs some slight changes.

First, we fit the degradation data on each dimension using the univariate mixed-effect Wiener

process (Wang, 2010) to obtain the initial estimates of the degradation rate µ(0) and the

corresponding parameters p(0) in H(·). Then the starting point for ω(0) can be obtained as

the same as the linear case. Based on these initial estimates, the starting points Σ(0) and κ(0)

can also be found similarly with the maximization of the corresponding likelihood function.

S.2 Interval Estimation

S.2.1 Derivation of Equation (5) in the Main Text

The matrix Ak is given by

Ak ≡ (ΣY + ω2µYµ
′
Y)−1

[
∂ΣY

∂θk
+ 2ωµYµ

′
Y
∂ω

∂θk
+ ω2

(
∂µY
∂θk

µ′Y + µY
∂µ′Y
∂θk

)]
.

We derive the above equation and Equation (5) in the main text as follows.

Without loss of generality, we derive the Fisher information matrix for the case d = 2.

The derivation can be readily generalized to any value of d. When d = 2, we have µ = [µ1, µ2]
′

and denote the covariance matrix as

Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 .
Therefore, the model parameters are θ = [µ1, µ2, σ1, σ2, ρ, ω, κ]′. Computing the first order
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derivative of the likelihood function in Equation (4) of the main text, we have

∂`(θ)

∂θk
= −n

2
tr(Ak) +

1

2

n∑
i=1

(Y i − µY)′Ak(ΣY + ω2µYµ
′
Y)−1(Y i − µY)

+
n∑
i=1

(
∂µY
∂θk

)′
(ΣY + ω2µYµ

′
Y)−1(Y i − µY).

Let

ηik =
1

2
(Y i−µY)′Ak(ΣY +ω2µYµ

′
Y)−1(Y i−µY) +

(
∂µY
∂θk

)′
(ΣY +ω2µYµ

′
Y)−1(Y i−µY).

(S.11)

Note that E
[
∂`(θ)
∂θk

]
= 0 for all k. The (k, l)th entry of I(θ) can be obtained as

[I(θ)]k,l = E

[(
−n

2
tr(Ak) +

n∑
i=1

ηik

)(
−n

2
tr(Al) +

n∑
i=1

ηil

)]

=
n2

4
tr(Ak)tr(Al)−

n

2
tr(Al)E

[
n∑
i=1

ηik

]
− n

2
tr(Ak)E

[
n∑
i=1

ηil

]
+ E

[
n∑
i=1

ηik

n∑
j=1

ηjl

]

= −n
2

4
tr(Ak)tr(Al) + E

[∑
i 6=j

ηikηjl +
n∑
i=1

ηikηil

]
, (S.12)

where the last equality holds since Ak is symmetric, then E[ηik] = 1
2
tr(Ak) for all k (Seber

and Lee, 2012, Theorem 1.5). When i 6= j, we have

E

[∑
i 6=j

ηikηjl

]
=
n(n− 1)

4
tr(Ak)tr(Al). (S.13)

Then it suffices to compute the value of E [
∑n

i=1 ηikηil]. We further decompose ηik = η
(1)
ik +

η
(2)
ik , where η

(1)
ik and η

(2)
ik are the first and the second term of the right hand side of (S.11),

respectively. Then, ηikηil = η
(1)
ik η

(1)
il + η

(1)
ik η

(2)
il + η

(2)
ik η

(1)
il + η

(2)
ik η

(2)
il . Among them,

E
[
η
(1)
ik η

(2)
il

]
= E

[
η
(2)
ik η

(1)
il

]
= 0 (S.14)
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since they are the summation of the third order central moments of a multivariate normal

random variable. Based on the properties of multivariate normal random variables, we can

derive

E
[
η
(2)
ik η

(2)
il

]
= E

[(
∂µY
∂θk

)′
(ΣY + ω2µYµ

′
Y)−1(Yi − µY)

(
∂µY
∂θl

)′
(ΣY + ω2µYµ

′
Y)−1(Yi − µY)

]

= E

[(
∂µY
∂θk

)′
(ΣY + ω2µYµ

′
Y)−1(Yi − µY)(Yi − µY)′(ΣY + ω2µYµ

′
Y)−1

(
∂µY
∂θl

)]

= E

[
tr

(
(ΣY + ω2µYµ

′
Y)−1

(
∂µY
∂θl

)(
∂µY
∂θk

)′
(ΣY + ω2µYµ

′
Y)−1(Yi − µY)(Yi − µY)′

)]

= tr

(
(ΣY + ω2µYµ

′
Y)−1

(
∂µY
∂θl

)(
∂µY
∂θk

)′
(ΣY + ω2µYµ

′
Y)−1E

[
(Yi − µY)(Yi − µY)′

])

= tr

(
(ΣY + ω2µYµ

′
Y)−1

(
∂µY
∂θl

)(
∂µY
∂θk

)′
(ΣY + ω2µYµ

′
Y)−1(ΣY + ω2µYµ

′
Y)

)

=

(
∂µY
∂θk

)′
(ΣY + ω2µYµ

′
Y)−1

(
∂µY
∂θl

)
.

(S.15)

Here, the second equality holds since (ΣY + ω2µYµ
′
Y)−1 is symmetric. The third equality

follows from the invariant property under cyclic permutations of the trace operator. The

fourth equality holds since trace is a linear operator. To compute E
[
η
(1)
ik η

(1)
il

]
, we note that

(ΣY +ω2µYµ
′
Y)−

1
2 (Y i−µY) is multivariate normally distributed with zero mean vector and

identity covariance matrix (Seber and Lee, 2012, Chapter 2). It then follows from Seber and

Lee (2012, Theorem 1.6) that

E
[
η
(1)
ik η

(1)
il

]
=

tr(Ak)tr(Al) + 2tr(AkAl)

4
. (S.16)

Summing up (S.12)–(S.16), we can get the formula given in Equation (5) of the main text.

We can readily compute the analytical forms of the partial derivatives in (5) of the main

text by the definition of the derivative of matrices. For example, we have

∂ΣY

∂σ1
= diag

(
∂Σ

∂σ1
t1, · · · ,

∂Σ

∂σ1
t1︸ ︷︷ ︸

K repetitions

, · · · , ∂Σ

∂σ1
tm, · · · ,

∂Σ

∂σ1
tm︸ ︷︷ ︸

K repetitions

)
∈ RM×M ,
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where

∂Σ

∂σ1
=

 2σ1 ρσ2

ρσ2 0

 .
The rest of the partial derivatives in Equation (5) in the main text can be obtained similarly

and are omitted here.

S.2.2 Bootstrap-t

The bootstrap-t can be conducted with the following steps.

• Based on the maximum likelihood (ML) estimate θ̂ in Section 3.1 of the main text,

generate B pseudo-datasets by Monte Carlo simulations, where B is a sufficiently large

number.

• Obtain the ML estimates of the desired indexes g(b)(θ̂) for the bth dataset, b ∈ [B].

• Compute z?(b) = [g(b)(θ̂) − g(θ̂)]/

√
Avar(g(b)(θ̂)), where the asymptotic variance can

be calculated by Equation (6) in the main text.

• Let z?q be the qth empirical quantile based on the z?(b) for b ∈ [B]. The two-sided

equal-tailed (1− α) bootstrap-t confidence interval for g(θ) is given by

[
g(θ̂)− z?1−α/2

√
Avar(g(θ̂)), g(θ̂)− z?α/2

√
Avar(g(θ̂))

]
.

S.3 Likelihood Ratio Test and Goodness-of-Fit

The likelihood ratio (LR) test is established as follows. Consider two hypothesis tests H0 :

κ = 0 versus H1 : κ > 0, and H0 : ω = 0 versus H1 : ω > 0. We can fit the data using

Equation (2) in the main text without and with each of the restriction above to compute

the LR statistic. For each test, parameters of interest are on the boundary of the parameter

space under H0. Self and Liang (1987) suggested that the LR statistic then converges in
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Table S.1: Biases (×10, averaged from the 1,000 replications) and RMSEs of the ML esti-
mates for µl and σl, l = 1, 2, 3, by using the proposed two-layer block-effects model to fit the
data in Section 5.2 of the main text.

n m K
µ1 µ2 µ3 σ1 σ2 σ3

bias RMSE bias RMSE bias RMSE bias RMSE bias RMSE bias RMSE

5
5

1 0.21 0.73 0.33 0.96 0.42 1.15 1.14 3.03 1.68 3.08 1.69 3.01
5 0.12 0.45 0.11 0.72 0.085 0.90 0.044 0.073 0.029 0.083 0.021 0.096

10
1 0.095 0.46 0.16 0.73 0.21 0.91 −0.62 0.19 −0.38 0.17 −0.35 0.18
5 −0.036 0.44 −0.047 0.71 −0.064 0.89 0.018 0.050 0.0085 0.060 0.0024 0.067

10
5

1 −0.036 0.35 −0.049 0.55 −0.068 0.68 −0.28 1.11 0.27 1.16 0.29 1.10
5 −0.028 0.32 −0.024 0.51 −0.062 0.63 0.0095 0.054 0.010 0.059 0.012 0.072

10
1 −0.029 0.32 −0.045 0.50 −0.047 0.63 −0.071 0.12 −0.25 0.13 −0.20 0.13
5 0.0026 0.31 0.0034 0.50 −0.0014 0.62 0.0014 0.035 −0.0012 0.042 −0.0023 0.048

distribution to a 50 : 50 mixture of χ2
0 and χ2

1. The null hypothesis is rejected if the LR

statistic is large.

The quantile-quantile (Q-Q) plot is made as follows. First, we vectorize the degrada-

tion data at the jth measurement from the ith rig as Y ij = [Y ′ij1, · · · ,Y ′ijK ]′, i ∈ [n]

and j ∈ [m]. Conditioning on ζi, Y ij is multivariate normal with mean vector ζiµYij ≡

[µ′ζitj, · · · ,µ′ζitj] ∈ RdK and covariance matrix ΣYij ≡ diag(Σtj, · · · ,Σtj) + κ21dK1′dK ∈

RdK×dK . Since the ML estimator θ̂ is consistent, the statistics (Y ij − ζ̂iµ̂Yij)
′Σ̂
−1
Yij(Y ij −

ζ̂iµ̂Yij) approximately follow a chi-square distribution with dK degrees of freedom. Here,

µ̂Yij and Σ̂Yij are the ML estimates of the corresponding model parameters. The estimate

ζ̂i ≡ E[ζi|θ̂,Y i] can be calculated from Theorem 1.

S.4 Supplementary Results

S.4.1 Additional Simulation Results

Tables S.1 and S.2 provide the biases and the root mean squared errors (RMSEs) for the

ML estimation in Section 5.2 of the main text. Meanwhile, we also provide the simulation

result to see the performance of the EM algorithm when the dimension of degradation d

increases slightly. Without loss of generality, we let d = 10, fix N = 5, m = 10, and K = 5,

and set an identical degradation rate µ = 5, degradation volatility σ = 1, and correlation

coefficient ρ = 0.5 for all dimensions. By keeping the values of ω and κ as the previous
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Table S.2: Biases (×10, averaged from the 1,000 replications) and RMSEs of the ML esti-
mates for ρkl, k, l = 1, 2, 3, k 6= l, κ, and ω, by using the proposed two-layer block-effects
model to fit the data in Section 5.2 of the main text.

n m K
ρ12 ρ13 ρ23 ω κ

bias RMSE bias RMSE bias RMSE bias RMSE bias RMSE

5
5

1 −1.51 0.47 −0.89 0.35 −0.59 0.25 −0.32 0.22 4.83 5.90
5 0.062 0.074 0.041 0.063 0.022 0.047 −0.28 0.072 −1.01 0.30

10
1 −0.57 0.23 −0.34 0.17 −0.14 0.11 −0.30 0.078 −0.61 0.54
5 0.034 0.050 0.015 0.043 0.0096 0.034 −0.27 0.071 −0.39 0.25

10
5

1 −1.20 0.35 −0.69 0.25 −0.36 0.15 −0.17 0.089 1.63 2.04
5 0.040 0.052 0.021 0.044 0.021 0.033 −0.14 0.048 −0.49 0.22

10
1 −0.30 0.13 −0.17 0.096 −0.12 0.073 −0.14 0.048 −0.35 0.42
5 0.013 0.036 0.0047 0.030 0.0086 0.024 −0.12 0.048 −0.30 0.17

Table S.3: Biases (×10) and RMSEs of the ML estimates for µ, σ, ρ, ω, and κ, based on
1, 000 simulation replications when the dimension of data is d = 10. Here, we fix (n,m,K) =
(10, 10, 5) and set the measurement time as tj = j, j = 1, · · · , 10.

µ σ ρ ω κ
bias RMSE bias RMSE bias RMSE bias RMSE bias RMSE

0.96 0.31 −0.0092 0.033 0.0019 0.034 −0.13 0.050 −0.065 0.10

case, the computational time for convergence of the EM algorithm is around eight seconds.

Since the parameters of each dimension of degradation are set as the same, we aggregate the

results for the parameters µ, σ, and ρ without loss of generality. The biases and the RMSEs

based on 1, 000 replications are summarized in Table S.3, where it illustrates the satisfactory

performance of the proposed model even when d increases slightly.

To illustrate the serious results when the block effects are incorrectly overlooked, Ta-

Table S.4: Biases (×10, averaged from the 1,000 replications) and RMSEs of the point
estimates for µl and σl, l = 1, 2, 3, by using the pure random-effects model to fit the data in
Section 5.2 of the main text.

n m K
µ1 µ2 µ3 σ1 σ2 σ3

bias RMSE bias RMSE bias RMSE bias RMSE bias RMSE bias RMSE

5
5

1 −0.28 1.07 −0.60 1.59 −0.83 1.90 2.4 3.26 3.64 3.37 4.28 3.35
5 0.22 0.45 0.35 0.72 0.44 0.90 −0.52 0.27 −0.48 0.40 −0.57 0.51

10
1 0.063 0.48 0.12 0.76 0.16 0.95 −0.39 0.37 −0.020 0.52 0.075 0.66
5 −0.031 0.45 −0.041 0.71 −0.056 0.89 −0.36 0.22 −0.49 0.34 −0.58 0.42

10
5

1 −0.20 0.50 −0.31 0.79 −0.40 0.95 1.54 2.62 2.38 2.76 2.76 2.79
5 −0.021 0.32 −0.041 0.51 −0.051 0.64 −0.35 0.23 −0.42 0.35 −0.51 0.44

10
1 −0.036 0.32 −0.057 0.50 −0.061 0.63 −0.38 0.29 −0.36 0.43 −0.40 0.54
5 0.0066 0.31 0.0080 0.50 0.0038 0.62 −0.26 0.18 −0.37 0.28 −0.47 0.35
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Table S.5: Biases (×10, averaged from the 1,000 replications) and RMSEs of the point
estimates for ρkl, k, l = 1, 2, 3, k 6= l, κ, and ω, by using the pure random-effects model to
fit the data in Section 5.2 of the main text.

n m K
ρ12 ρ13 ρ23 ω κ

bias RMSE bias RMSE bias RMSE bias RMSE bias RMSE

5
5

1 −1.03 0.51 −0.73 0.45 −0.92 0.42 −0.46 0.11 5.22 5.95
5 −1.62 0.41 −1.18 0.34 −1.41 0.35 −0.35 0.073 −0.95 0.48

10
1 −1.41 0.47 −1.03 0.41 −1.06 0.38 −0.33 0.072 −0.64 0.60
5 1.19 0.33 −0.96 0.28 −1.07 0.28 −0.30 0.071 −0.63 0.42

10
5

1 −1.30 0.46 −0.92 0.41 −0.89 0.35 −0.18 0.082 3.17 4.49
5 −1.27 0.35 −0.98 0.28 −1.11 0.29 −0.16 0.049 −0.52 0.40

10
1 −1.39 0.40 −1.10 0.35 −1.21 0.34 −0.19 0.049 −0.45 0.48
5 −0.84 0.25 −0.69 0.22 −0.73 0.21 −0.14 0.047 −0.48 0.34

Table S.6: Coverage probability (in %) of the 95% interval estimators for the model param-
eters based on 1, 000 simulation replications. In the simulations, m = 10 and K = 5.

n µ1 µ2 µ3 σ1 σ2 σ3 ρ12 ρ13 ρ23 ω κ

5
Proposed model 94.2 94.1 94.3 95.1 95.5 93.6 95.4 95.2 95.4 95.2 92.6

Random-effects model 22.7 22.2 21.3 87.4 83.6 81.1 81.8 80.3 78.1 27.0 87.6

10
Proposed model 95.0 95.1 95.4 95.5 95.5 95.6 96.0 95.2 95.6 95.3 95.6

Random-effects model 24.1 23.8 23.4 92.5 90.5 89.5 87.7 86.1 84.5 31.3 84.8

bles S.4 and S.5 show the biases and RMSEs of the point estimates for the model parame-

ters θ based on the pure random-effects model in Section 5.3 of the main text. The results

are obtained by using this model to fit the degradation data in Section 5.2 of the main

text. Finally, Table S.6 shows the coverage probability of the 95% confidence intervals for

the model parameters based on 1, 000 simulation replications from two candidate models as

demonstrated in Section 5.3 of the main text.

S.4.2 Additional Results for Case Study

The linearized data of the six test rigs are shown in Figure S.1. We can see that different

rigs exhibit different (transformed) degradation rate, which implies the rig-layer block effect

due to the variation of the hydroxyl radical concentration. This variation can be caused

by the preparation of the test solution in each replication. The uncontrollable environmen-

tal conditions within the test stand/rig may also lead to the variation of the (transformed)
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degradation rate in each replication. In addition, we can also see some simultaneous humps

and dips in the mean degradation path. For example, there is an obvious dip for the fifth

measurement of Rig 4. The dip may attribute to the impurity contained in the tertiary-

butanol that was added to quench the degradation or the unknown problems for the liquid

chromatography tandem mass spectrometry (LC-MS/MS) measurement system. The trans-

formed data based on Equation (9) in the main text are also included as an Excel file in

the supplementary material. For the model selection in the main text, we use the proposed

model with time scale transformation H(t) = diag(h1(t), · · · , hd(t)) to fit the data. We can

also let the d dimensions of degradation share the same (transformed) time scale h(t). The

Akaike information criterion (AIC) value corresponding to h(t) = tq is −627.34. AIC still

prefers the proposed model without the time scale transformation. We also use the Bayesian

information criterion (BIC) for model selection. The results are consistent with AIC, i.e., the

proposed two-layer block-effects model without time scale transformation has the smallest

BIC value.
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(a) Rig 1
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(b) Rig 2
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(c) Rig 3
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(d) Rig 4
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(e) Rig 5
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(f) Rig 6

Figure S.1: Linearized degradation data from the six test rigs after the transformation based
on Equation (9) in the main text.
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