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Supplementary Figure 1. Prior-plots of ComBat adjustment
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Supplementary Figure 2. PCA of methylation data after ComBat adjustment for Batch Effects
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Supplementary Figure 3. Manhattan plot of epigenome-wide study
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Supplementary Figure 4. Q-Q Plot of the moderated t statistic of the DNA methylation analysis of microRNA associated CpG-sites
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Supplementary Table 1. Clinical characteristics of subjects in the Validation cohort with alcohol dependence and controls
	 
	Alcohol dependent
	Controls
	Statistics (t-test, Chisq.test)

	
	
	
	, p value

	N
	24
	83
	 

	Age (years)
	37.5 (12.6)
	41.2 (14.2)
	ns

	Men:Women, (n (%))
	17 (70.8):7 (29.2)
	26 (31.3):57 (68.7)
	1.19E-03

	BMI, kg/m2
	25.5 (3.0)
	25.4 (2.9)
	ns

	Depression (n (%))
	6 (25.0)
	20 (24.1)
	ns

	Anxiety (n (%))
	0 (0.0)
	8 (9.6)
	2.29E-02

	Bipolar disorder (n (%))
	1 (4.2)
	5 (6.0)
	ns

	Post-traumatic stress disorder (n (%))
	1 (4.2)
	6 (7.2)
	ns

	Values are shown as mean (SD) unless otherwise specified. P-values were calculated by means of unpaired t-tests or chi-squared tests, contrasting values for patients with alcohol dependence and controls. A one-tailed p-value <0.05 was considered significant.














Supplementary Table 2. Hypersexuality associated methylation changes in miRNA associated CpG-sites: Overrepresentation analysis
	 
	 
	CpG-sites

	 
	 
	 
	 
	 
	 

	Gene
	Transcript
	Total
	Sign.a
	p (binomial)b
	p (binomial, fdr.)c

	mir-133b
	BX648566
	6
	4
	8.64E-05
	5.73E-02

	MIR4456
	NR_039661
	33
	8
	1.76E-04
	5.73E-02

	MIR124-1
	NR_029668
	20
	6
	3.29E-04
	7.85E-02

	MIR100HG
	NR_024430
	14
	5
	4.27E-04
	7.85E-02

	MIRLET7BHG
	BC036832
	4
	3
	4.81E-04
	7.85E-02

	MIR3943
	NR_037508
	22
	6
	5.81E-04
	8.13E-02

	MIR4277
	NR_036240
	40
	8
	7.12E-04
	8.71E-02

	MIR135A2
	NR_029678
	5
	3
	1.16E-03
	1.26E-01

	MIR4522
	NR_039748
	18
	5
	1.55E-03
	1.38E-01

	MIR1253
	NR_031654
	18
	5
	1.55E-03
	1.38E-01

	aNumber of nominally significantly hyper- or hypomethylated CpG sites per transcript (p<0.05)
bP-values for binomial tests, performed separately for each transcript, contrasting the total number of CpG-sites per transcript to the number of nominally significant CpG-sites for each transcript.
cP-values adjusted for multiple testing using the false-discovery rate (FDR)-method (979 transcripts in total)











Supplementary Table 3. Univariate analysis of differential expression in MIR708 and MIR4456 by hypersexuality disorder
	 
	Univariate analysis

	
	(Kruskal-Wallis' test)

	miRNA
	chi-squared
	p

	MIR708a
	2.6
	1.10E-02

	MIR4456b
	13.9
	1.94E-04

	Kruskal-Wallis' tests contrasting expression values of microRNA:s in patients with hypersexual disorder (HD) and healthy volunteers.
a45 HD were compared to 21 healthy volunteers
b55 HD were compared to 28 healthy volunteers
Abbreviations: p, p-value 



Supplementary Table 4. Multivariate analysis by binomial logistic regressions of differential expression in MIR708 and MIR4456 in hypersexual disorder

	 
	MIR708
	 
	MIR4456

	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	Parameter
	coef.
	Std. Error
	z value
	p
	 
	coef.
	Std. Error
	z value
	p

	Intercept
	-5.24
	1.95
	-2.69
	7.07E-03
	 
	-2.46
	1.89
	-1.30
	1.92E-01

	MIR708/MIR4456
	-2.15
	1.19
	-1.81
	7.08E-02
	 
	-2.52
	1.04
	-2.42
	1.56E-02

	Depression
	17.00
	2036.02
	0.01
	9.93E-01
	 
	17.77
	1952.41
	0.01
	9.93E-01

	DST non-suppression status
	0.77
	0.83
	0.93
	3.52E-01
	 
	1.28
	0.81
	1.58
	1.14E-01

	CTQ total
	0.11
	0.05
	2.30
	2.15E-02
	 
	0.06
	0.03
	1.80
	7.22E-02

	TNF-alpha (ng/L)
	0.38
	0.18
	2.15
	3.13E-02
	 
	0.33
	0.19
	1.74
	8.14E-02

	Binomial logistic regressions contrasting microRNA expression levels by disease state (hypersexuality disorder or healthy volunteer), adjusting for both continuous variables, i.e. CTQ total and TNF-alpha (ng/L), as well as categorical co-variates, i.e. depression and DST non-suppression status.
Abbreviations: coef., regression coefficient; p, p-value; Std. Error, standard error

	 
	 
	 
	 
	 
	 
	 
	 
	 
	 






Supplementary Table 5. Gene set overrepresentation analysis of MIR4456 putative binding targets – gene expression by tissue
	Category
	Term
	Count
	%
	p.value
	p.value (Benjamini.)

	UP_TISSUE
	Brain
	569
	51.3
	9.4E-14
	2.5E-11

	UP_TISSUE
	Amygdala
	59
	5.3
	4.0E-5
	5.4E-3

	UP_TISSUE
	Epithelium
	201
	18.1
	4.4E-5
	3.9E-3

	UP_TISSUE
	Teratocarcinoma
	50
	4.5
	4.9E-4
	3.2E-2

	UP_TISSUE
	Hippocampus
	44
	4.0
	6.4E-4
	3.4E-2

	UP_TISSUE
	Spleen
	69
	6.2
	6.7E-3
	ns

	UP_TISSUE
	Cerebellum
	51
	4.6
	3.5E-2
	ns

	UP_TISSUE
	Human testis
	3
	0.3
	3.9E-2
	ns

	UP_TISSUE
	Spinal cord
	11
	1.0
	4.0E-2
	ns

	UP_TISSUE
	Endothelial cell
	8
	0.7
	4.5E-2
	ns

	UP_TISSUE
	Embryo
	28
	2.5
	4.6E-2
	ns

	The online web tool 'ComIR' was used to computationally predict putative gene targets of MIR4456. Using the 'David Functional Annotation Bioinformatics MicroArray Analysis Tool', 1142 identified genes were investigated to see if there was a statistically significant abundance of genes expressed in different tissues.
Abbreviations: Count, number of candidate genes expressed in a particular tissue; %, percentage of candidate genes expressed in a particular tissue; p.value, p-value; p.value (Bonf.), bonferroni adjusted p-value









Supplementary Figure 5. Heatmap of the number of overlapping MIR4456 associated genes in each pathway
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Supplementary Figure 6. 
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Part A. Conservation of genomic DNA of pre-miRNA-4456 with the mature 5p region and the seed positions (2-7) highlighted above the multiple sequence alignment. The cladogram represents the evolutionary relationship among the investigated organisms; the branch lengths are not relative to evolutionary distances. miRNA-4456 is identified solely in Homo sapiens in the miRBase sequence database.  We investigated this genomic sequence in related species to assess if this is a conserved region. The miRNA4456 seed region is highly conserved within homininae and moderately conserved throughout Simiiformes. Additionally, the UNAFold Web Server predicts all of the sequence regions fold into  hairpin turns. This may suggest that this region is conserved throughout primates.  Part B. Gene synteny in the surrounding genomic region of miRNA-4456 in ten investigated species.  The general gene synteny appears to be preserved throughout the species that have been mapped, however several of the species have incomplete mapping and gene annotation at this time. 

Supplementary Table 6. Differential methylation analysis of cg01299774 in alcohol dependence compared to controls
	Parameter
	Coef.
	Std. Error
	z value
	p.val

	 
	 
	 
	 
	 

	Intercept
	-21.98
	1711.57
	-0.01
	9.90E-01

	cg01299774
	6.06
	2.72
	2.23
	2.61E-02

	Gender
	1.82
	0.56
	3.26
	1.13E-03

	Anxiety Disorder (N)
	17.14
	1711.57
	0.01
	9.92E-01

	Anxiety Disorder (Y)
	-0.88
	2683.45
	0.00
	1.00E+00

	Binomial logistic regression model of a binary outcome variable (alcohol dependence or control) to CpG site methylation and adjusting for gender and occurence of any anxiety disorder under treatment.
Abbreviations: Coef., coefficient; p.val, p-value; Std. Error, standard error
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Supplementary Figure 7. Boxplot diagram of cg01299774 in alcohol dependence and controls
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Background correction, adjustment of type I and type II probes, removal of batch effects and probe exclusion 

Methylation idat files were first loaded into the R environment using the ‘read.metharray.exp’ function of the minfi package (v 1.18.2). Thereafter, the efficient NOOB method was selected to correct for background artifacts(1). Probes on the Illumina Methylation EPIC BeadChip array come in two different designs which differ in dynamic range and distribution of the DNA methylation pattern. We used the Beta Mixture Quantile Dilation (BMIQ) function of the wateRmelon package to adjust the methylation data for these probe type differences(2). In addition, the use of different analysis plates could result in undesired batch effects and we used the ‘ComBat’ function of the sva package to correct for this potential bias(3). Prior-plots and PCA analysis after ComBat adjustments are presented in Supplementary Figures 1-2. Moreover, methylation levels of CpG sites annotated to known SNP loci could be affected by single nucleotide polymorphisms (SNP:s)(4) and probes located on sex chromosomes have been shown to be more difficult to accurately normalize(5). 196,202 CpG sites were thus subsequently excluded as they were located on sex determining chromosomes or covering known SNP loci. In addition, 2,032 probes were also filtered out as 75% or more of the samples exhibited a detection p-value >10-5. After the probe exclusion steps outlined above, 668,602 CpG sites were included in the subsequent analysis. 

Correction for white blood cell type heterogeneity 
DNA methylation measured in whole blood is composed of different cell populations(6). Rask-Andersen et al. showed that changes in leukocyte fractions could introduce significant variability in the DNA methylation pattern, an effect that could bias downstream analyses. It is thus important to adjust the global DNA methylation pattern for white blood cell type heterogeneity(7). For this purpose, we used the ‘champ.refbase’ function of the ChAMP package, which implements a statistical procedure of the Houseman algorithm to estimate the relative proportions of CD4+ and CD8+ T cells, monocytes, granulocytes, B cells and natural killer cells based on the DNA methylation pattern(8). Using the estimated relative proportions of leukocyte subpopulations, methylation data was thereafter adjusted for white blood cell type heterogeneity in a method similar to regression calibration (‘RefBaseEWAS’).
Criteria of sample exclusion
To investigate the global DNA methylation pattern for sample outliers, the ‘PCA’ function of the FactoMineR package was used(9). 7,547 probes were further studied and included in the covariance matrix based on a threshold of 0.2 and a 95% reference range, as performed by Voisin et al(10). The first principal component explained 20,4% of the total variance and successively studied vectors did not add significantly to the total variance. Outliers were identified by visual inspection of the graphical display of the first principal component, resulting in seventeen samples being excluded from further analysis.
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