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S1 Square Root of Symmetric Semi-positive Matrices
We give here some useful properties of square root of matrices. The following result states
that square root of a symmetric positive semi-definite matrix is unique.

Theorem S1.1 (e.g. Axler (2015)). Let A be a p× p real matrix. If A is symmetric positive
semi-definite, i.e. A = AT and xTAx ≥ 0,∀x ∈ Rp, then there exists a unique positive p× p
matrix B such that A = BB. The matrix B is called the square root of A, and is denoted by√
A or A1/2.

In particular, this tells us that the square root distance between symmetric positive
semi-definite matrices is well defined. The following gives a explicit formula for the square
root of symmetric positive semi-definite rank one matrices. It’s proof follows from direct
calculations.

Proposition S1.2. Let x ∈ Rp, x 6= 0 and A be a n× p matrix. Then

1. (xxT)1/2 = xxT/|x|

2. (AxxTAT)1/2 = AxxTAT/|Ax| provided Ax 6= 0.

S2 Technical results and proofs

Lemma S2.1. The minimizer Ω̂(x, ·) ∈ L2 ([0, 1],Sp) of the following fit criterion:

L∑
l=1

Kh (dg(x,Xl))

∫ 1

0

d2
S(Ω̆l(t), Ω̂(x, t))dt, (S2.1)

is given by

Ω̂(x, t) =

[
L∑
l=1

wl(x)

√
Ω̆l(t)

]2

, (S2.2)

Proof. Setting w̃l = Kh (dg(x,Xl)), using the definition of dS and permuting the sum and
integral in (S2.1), we can rewrite (S2.2) as∫ 1

0

∑
l

w̃l

∣∣∣∣∣∣∣∣∣∣∣∣√Ω̆l(t)−
√

Ω̂(x, t)

∣∣∣∣∣∣∣∣∣∣∣∣2dt.
This expression is minimized with respect to Ω̂ by minimizing it for each t. Fixing t and

writing yl =

√
Ω̆l(t) and y =

√
Ω̂(x, t), and omitting the integral, the fit criterion becomes∑

l

w̃l|||yl − y|||2.

This is just a weighted least-squares problem, whose solution is y =
∑

l w̃lyl/ (
∑

l w̃l) . Sub-
stituting y, yl back concludes the proof.
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Proof of Proposition 3.1. Without loss of generality, assume that EX = 0. By definition,
we have

covdS(X) = argmin
Ω∈Sp

E d2
S

(
XXT,Ω

)
= argmin

Ω∈Sp
E
∣∣∣∣∣∣∣∣∣√XXT −

√
Ω
∣∣∣∣∣∣∣∣∣2

= argmin
Ω∈Sp

E d2
E

(√
XXT,

√
Ω
)
.

The minimum is achieved for
√

Ω = E
√
XXT, hence covdS(X) =

(
E
√
XXT

)2

= E
[
XXT

|X|

]2

.

Proof of Proposition 3.2. Without loss of generality, assume that EX = 0. By (3.1) of the

paper, we have covdS(AX) = E
[
AXXTAT

|AX|

]2

= A E
[
XXT

|AX|

]
ATA E

[
XXT

|AX|

]
AT. The proof of

the first statement is completed by showing that covdS,A(X) must satisfy A covdS,A(X)AT =

A E
[
XXT

|AX|

]
ATA E

[
XXT

|AX|

]
AT, which follows from an argument similar to the proof of Propo-

sition 3.1. For the special case where ATA = I, then |AX| = |X| and

covdS(AX) = A E
[
XXT

|X|

]2

AT = A covdS(X)AT.

Proof of Proposition 3.3. Let S̃ =
(

1
n

∑n
i=1

√
(Yi − µ)(Yi − µ)T

)2

, and S = covdS(Y ). Re-

call that S =
(
E
√

(Y − µ)(Y − µ)T
)2

. Let φx(y) =
√

(x− y)(x− y)T, for x, y ∈ Rp.
Notice that φx(y) = (x− y)(x− y)T/|x− y| if y 6= x, and φx(x) = 0. Furthermore, it is not
difficult to show that φx is Lipschitz, i.e. |||φx(y)− φx(y′)||| ≤ κp|y − y′|, where κp ≥ 0 does
not depend on the value of x, but only on the dimension p. We therefore have

dS(Ŝ, S̃) ≤ 1

n

n∑
i=1

∣∣∣∣∣∣φYi(Y )− φYi(µ)
∣∣∣∣∣∣

≤ 1

n

n∑
i=1

κp
∣∣Y − µ∣∣

= κp
∣∣Y − µ∣∣,

and dS(Ŝ, S̃) = OP(n−1/2).
The proof is completed by showing that dS(S̃, S) = OP(n−1/2), which follows from the

central limit theorem applied to the random element
√

(Y − µ)(Y − µ)T. The central limit
theorem is indeed applicable here since

E
[∣∣∣∣∣∣∣∣∣√(Y − µ)(Y − µ)T

∣∣∣∣∣∣∣∣∣2] = E

[∣∣∣∣∣∣∣∣∣∣∣∣(Y − µ)(Y − µ)T

|Y − µ|

∣∣∣∣∣∣∣∣∣∣∣∣2
]

= E |Y − µ|2 <∞.
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Proof of Theorem 3.7. By the triangle inequality,

dS(Ω̂(x, t),Ω(x, t)) ≤ dS(Ω̂(x, t), Ω̃(x, t)) + dS(Ω̃(x, t),Ω(x, t)), (S2.3)

where Ω̃(x, t) is the same as Ω̂(x, t), but with the sample mean at the observations replaced

by the true mean, i.e. Ω̃(x, t) =

(∑L
l=1 wl(x)

√
Ω̃l(t)

)2

,

√
Ω̃l(t) = n−1

l

nl∑
j=1

√
(Ylj(t)−ml(t))(Ylj(t)−ml(t))T = n−1

l

nl∑
j=1

√
εlj(t)εlj(t)T

and ml(·) = EYl1(·).
Let us first look at the first term in (S2.3). Writing EX for the expectation conditional

on X1, . . . , XL, the triangle inequality and Hölder’s inequality yield

EX dS(Ω̂(x, t), Ω̃(x, t)) ≤
L∑
l=1

wl(x)

√
EX d2

S(Ω̆l(t), Ω̃l(t)).

By arguments in the proof of Proposition 3.3 of the paper, we have

EX d2
S(Ω̆l(t), Ω̃l(t)) ≤ κ2

pn
−1
l E |ε(x, t)|2

∣∣∣∣
x=Xl

≤ κ2
pc
−1n−1 sup

x∈E,t∈[0,1]

E |ε(x, t)|2,

which is non-random, and independent of t. Since
∑

l wl(x) = 1, we get

EX dS(Ω̂(x, t), Ω̃(x, t)) ≤ κp√
cn

sup
x∈E,t∈[0,1]

√
E |ε(x, t)|2

Let us now look at the term EX dS(Ω̃(x, t),Ω(x, t)) ≤
√

EX d2
S(Ω̃(x, t),Ω(x, t)). Since

EX d2
S(Ω̃(x, t),Ω(x, t)) =

p∑
r,s=1

EX
([√

Ω̃(x, t)

]
rs

−
[√

Ω(x, t)
]
rs

)2

,

it is enough to control the mean square error of each coordinate of
√

Ω̃(x, t). Notice that√
Ω̃(x, t) =

∑L
l=1wl(x)

√
Ω̃l(t), Therefore we can apply Lemma S2.2 to each coordinate

1 ≤ r ≤ s ≤ p (by symmetry), with Zl(t) =

[√
Ω̃l(t)

]
rs

. Since EX
√

Ω̃l(t) =
√

Ω(Xl, t) and

varX

([√
Ω̃l(t)

]
rs

)
= n−1

l varX

(
ε(Xl, t)rε(Xl, t)s)

|ε(Xl, t)|

)
≤ n−1

l EX |ε(Xl, t)|2

≤ 1

cn
sup

x∈E,t∈[0,1]

E |ε(x, t)|2

the Lemma can be applied withm(x, t) =
√

Ω(x, t) and ‖ν‖∞ ≤ (cn)−1 supx∈E,t∈[0,1] E |ε(x, t)|
2.

For fixed r, s, the conditional squared bias is bounded by OP(h2) and the conditional variance
term is bounded by OP

(
1

nLh2

)
, both bounds being uniform in t. The proof is finished by

combining these last results.
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Lemma S2.2. Assume (Xl, Zl(t)) ∈ E × L2 ([0, 1],R), l = 1, . . . , L are i.i.d., with Xl
iid∼ f ,

and assume Zl|Xl are i.i.d. with mean E [Zl(t)|Xl] = m(Xl, t) and var (Zl(t)|Xl) = ν(Xl, t),
and that Conditions 3.4, 3.5 of the paper hold. Furthermore, assume

1. For each t ∈ [0, 1], m(·, t) : E → R is C1, and

‖∇xm‖∞ := sup
x∈E,t∈[0,1]

∣∣∣∣∂m∂x (x, t)

∣∣∣∣ <∞,
2. f is a continuous density on E,

3. ‖ν‖∞ := supx∈E,t∈[0,1] ν(x, t) <∞ for each x ∈ E.

Let m̂(x, t) =
∑L

l=1wl(x)Zl(t), where wl(x) is defined in (3.7) in the paper. Then for each x
in the interior of E, if f(x) > 0, we have

| EX m̂(x, t)−m(x, t)| ≤ 2πµ2(K)‖f‖∞‖∇xm‖∞c2
2

c2
1f(x)

[h+ oP(h)] , (S2.4)

and
varX (m̂(x, t)) ≤ ‖ν‖∞

Lh2

[
c4

2

c4
1f

2(x)
+ oP(1)

]
(S2.5)

as L→∞, h→ 0 such that Lh2 →∞, where the remainder terms are uniform in t.

Proof. Without loss of generality, assume that K is renormalized such that
∫∞

0
K(s)sds =

(2π)−1, and let K̃h : R2 → [0,∞) be defined by K̃h(x) = K(|x|/h)/h2 = Kh(|x|) for h > 0.
Notice that K̃h is a valid density function on R2 for any h > 0, and that it is an approximate
identity as h→ 0.

We first give a technical result that will be useful, and whose proof follows from standard
arguments: for any α, β ≥ 0,∫

E
K1+α
h (|x− y|) |x− y|βf(y)dy ≤ 2πµβ+1(K)‖K‖α∞‖f‖∞ · h

β−2α. (S2.6)

Recall that m̂(x, t) =
[∑L

l=1Kh(dg(x,Xl))
]−1∑L

l=1Kh(dg(x,Xl))Zl(t). First, notice that

L−1

[
L∑
l=1

Kh(dg(x,Xl))

]
=

∫
E
Kh(dg(x, y))f(y)dy +OP

([
L−1

∫
E
K2
h(dg(x, y))f(y)dy

]1/2
)
.

By Condition 3.4 of the paper and (S2.6), the stochastic term is of order OP(1/
√
Lh2).

Concerning the integral, since Kh is an approximate identity as h → 0, approximation
theory gives∫

E
Kh(dg(x, y))f(y)dy ≥ c−2

2

∫
E
K̃h/c2(x− y)f(y)dy = c−2

2 f(x) + o(1)
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as h→ 0. Therefore, as h→ 0, L→∞,[
L−1

L∑
l=1

Kh(dg(x,Xl))

]−1

≤ c2
2

f(x)
+ oP(1). (S2.7)

Let us now look at the bias term. First, notice that EX m̂(x, t) =
∑L

l=1 wl(x)m(Xl, t). Since
x 7→ m(·, t) is C1, for all x, y ∈ E , Taylor’s theorem yields m(y, t) = m(x, t) + r(x, y, t),
where |r(x, y, t)| ≤ ‖∇xm‖∞|x− y|. Therefore, using (S2.7),

| EX m̂(x, t)−m(x, t)| ≤
[
c2

2

f(x)
+ oP(1)

]
‖∇xm‖∞ ·

[
L−1

L∑
l=1

Kh(dg(x,Xl))|x−Xl|

]

The second term in square brackets is now approximated:

L−1

L∑
l=1

Kh(dg(x,Xl))|x−Xl| ≤ c−2
1 L−1

L∑
l=1

Kh/c1(|x−Xl|)|x−Xl|

= c−2
1

∫
E
K̃h/c1(x− y)|x− y|f(y)dy

+ c−2
1 OP

([
L−1

∫
E
K2
h/c1

(|x− y|)|x− y|2f(y)dy

]1/2
)

≤ c−2
1 2πµ2(K)‖f‖∞ · h+OP(1/

√
L).

Combining these results with (S2.7) yields the conditional bias term (S2.4).
Concerning the variance, we have

varX (m̂(x, t)) =

[
L−1

L∑
l=1

Kh(dg(x,Xl))

]−2

· L−1

[
1

L

L∑
l=1

K2
h(dg(x,Xl))ν(Xl, t)

]

≤
[

c4
2

f 2(x)
+ oP(1)

]
· ‖ν‖∞L

−1c−4
1

[
1

L

L∑
l=1

K2
h/c1

(|x−Xl|)

]
,

Where we have used (S2.7). For the term in the second square brackets, we have[
1

L

L∑
l=1

K2
h(|x−Xl|)

]
=

∫
E
K2
h(|x− y|)f(y)dy +OP

([
1

L

∫
E
K4
h(|x− y|)f(y)dy

]1/2
)

≤ ‖K‖∞‖f‖∞h
−2 +OP(1/

√
Lh6),

where we have used (S2.6). Combining these results yields the conditional variance bound
(S2.5).

The following Lemma gives the approximation error in using the sample total variance
in place of the true variance in the estimator of the mean field (3.4) in the paper. Let
σ2(x) = E ‖ε(x)‖2.
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Lemma S2.3. Assume
sup
x∈E

E ‖ε(x)‖4 <∞, (S2.8)

c′n ≤ nl ≤ C ′n, l = 1, . . . , L, for some constants c′, C ′, as n→∞, (S2.9)

inf
x∈E

σ2(x) > 0 & sup
x∈E

σ2(x) <∞. (S2.10)

Let m̂ be defined as in (3.4) and let m̌(x) =
∑L

l=1 λl(x)Y l, where

λl(x) = λ̃l(x)/
L∑
l=1

λ̃l(x) & λ̃l(x) = nlKh(dg(x,Xl))/σ
2(Xl).

Then, for fixed L, h,

|m̂(x, t)− m̌(x, t)| ≤ Op(n
−1/2) max

l=1,...,L
|Y l(t)|, as n→∞.

Proof. First, notice that |m̂(x, t) − m̌(x, t)| ≤ maxl=1,...,L |Y l(t)| |
∑

l wl(x)− λl(x)|. For the
rest of the proof, will drop the x to simplify notation, and write wl instead of wl(x). Notice
that ∣∣∣∣∣∑

l

wl − λl

∣∣∣∣∣ ≤
∑

l |λ̃l − w̃l|
sλ̃

+
|sw̃ − sλ̃|

sλ̃
,

where sw̃ =
∑

l w̃l and sλ̃ =
∑

l λ̃l. Using (S2.9), we get that∣∣∣∣∣∑
l

wl − λl

∣∣∣∣∣ ≤ (C ′/c′)
2

∑
l |λ̆l − w̆l|
sλ̆

+ (C ′/c′)
2 |sw̆ − sλ̆|

sλ̆
, (S2.11)

where the “ ·̆ ” entries are the same as the “ ·̃ ” entries, but without the nls, i.e. w̆l =
Kh(dg(x,Xl))/σ̂

2(Xl), and λ̆l = Kh(dg(x,Xl))/σ
2(Xl). Using (S2.8) and the delta method,

we have
λ̆l − w̆l = Kh(dg(x,Xl)) ·OP(n−1/2).

The first summand in (S2.11) is now bounded:∑
l |λ̆l − w̆l|
sλ̆

≤ OP(n−1/2)
∑

lKh(dg(x,Xl))∑
lKh(dg(x,Xl))/σ2(Xl)

= OP(n−1/2),

where we have used (S2.10). Using the same arguments, we get the same bound on the
second summand of (S2.11),

|sw̆ − sλ̆|
sλ̆

≤ OP(n−1/2).

The proof is finished by combining these results.
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S3 Preprocesing of the British National Corpus Data
We describe here in further detail the preprocessing of the sound data extracted from the
spoken part of the British National Corpus and analyzed in the paper.

S3.1 Raw Data Preprocessing

First all the segmentation information and all the contextual information were extracted.
Then, the list of words for the segmentation and the context were corrected for coding
differences (e.g. “they’ll” was coded as two separate words “they” and “’ll” in the contextual
information files). After this, the segmentation and contextual information were merged
together. This was done by matching—within each audio recording file—consecutive groups
of words. The algorithm we used looked for a unique sequence of words of length L that
perfectly matched between the two sets of words. The algorithm looped through the sequence
of utterances (sequence of words pronounce by the same speaker) defined in the contextual
XML files, by initially setting L to the minimum of the length of the utterance and 50 (this
was chosen for speeding up the matching). If multiple matches were found, L was increased
and the search was performed again. If no match was found, L was decreased and the search
was performed again. If the algorithm didn’t find any match, or if L > 50, the algorithm
went to the next word in the current utterance (setting L = 1). Then L was either increased,
respectively decreased, if multiple matches, respectively no match, was found. If L > 50, the
algorithm was restarted with L = 1 but the perfect matching was relaxed to approximate
matching using the optimal string aligment metric (van der Loo 2014), with distance at most
2.

The result of the preprocessing is a data frame with variables word, begintime, endtime,
textgridfilename, index, agegroup, role, sex, soc, dialecttag, age, persname, occupation,
dialect, id, placename, activity, locale, wavfile, placenamecleaned and about 5 mil-
lion observations (i.e. words). Discriminative information about the speaker is missing for
about 2.9% of the words, and information about the location of the recording is missing for
about 8.4% of the words.

S3.2 Cleaning

Since the data we analyzed are sounds from noisy recording, we first cleaned the sounds
corresponding to the set of words

class, glass, grass, past, last, brass, blast, ask, cast, fast,pass. (S3.1)

The following sounds were removed:

1. Sounds with duration outside the interval [0.2, 1] seconds.

2. 400 sounds with the lowest maximal amplitudes.

3. Sounds corresponding to young speakers (selected by taking speakers less than 10 year
old and whose median pitch was above a fixed threshold)
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To further remove low quality sounds from our analysis, we ranked the sounds s1, . . . , sN ,
for each word w in (S3.1), according to following score,

scorei =
1

Li

Li∑
l=1

(
ši(tl)− 1[a(w),b(w)](tl/tLi

)
)2

exp
(
−1[a(w),b(w)](tl/tLi

)
)
, (S3.2)

where ši(tl) = s̃i(tl)/maxl=1,...,Li
s̃i(tl), s̃i is the root mean square amplitude (RMSA) of si

on a running window of 10 milliseconds, and a(w), b(w) ∈ [0, 1] were chosen by looking at
the plot of s̃i for a sound of good quality, and correspond roughly to the location of the
vowel in the sound. Large values of scorei correspond to noisier sounds. The effect of the
exponential factor in (S3.2) is to give higher score to sounds having large RMSA outside the
vowel interval, while still penalizing for low RMSA inside the vowel interval. For each word
w of our list of words, we then discarded the sounds with the largest 5% scores.

S3.3 Vowel Segmentation and MFCC Extraction

We extracted the MFCCs of all the sounds corresponding to the words in (S3.1), using
the software ahocoder (http://aholab.ehu.es/ahocoder/index.html) with parameter
--CCORD=30 --LFRAME=16.

In order to extract the MFCC corresponding to the vowel segment of the recording of
the words in (S3.1), we performed the following steps. For each word in (S3.1):

1. align the MFCCs of the sounds of the word with respect to the first MFCC coefficient,

2. find the segment of the warped sounds which corresponds to the vowel,

3. extract the corresponding portion on the unwarped MFCCs,

4. recompute all the unwarped MFCCs on a common grid,

S3.4 MFCC alignment

Let us describe more precisely the alignment step in the preprocessing procedure. Let
MFCCi(t,m), i = 1, . . . , N denote the MFCCs of the sounds corresponding to the current
word w. Recall that m = 1, . . . ,M , and assume that the time domains have been linearly
rescaled, i.e. t ∈ [0, 1]. We first align the curves MFCCi(·, 1), i = 1, . . . , N using the Fisher-
Rao metric. This yields warping functions γi : [0, 1] → [0, 1] such that MFCCi(γi(·), 1), i =
1, . . . , N are aligned. Then we align all the MFCC coefficients of the sound i using the
warping γi, that is, we set M̃FCCi(t,m) = MFCCi(γi(t),m), t ∈ [0, 1],m = 1, . . . ,M for all
i. The idea is that, after alignment, the temporal location of the vowel would be the same
accross all registered MFCCs of a same word, which would make the vowel segmentation
much easier.

Once the MFCCs corresponding to a common word w have been aligned, the interval
[a(w), b(w)] ⊂ [0, 1] corresponding to the vowel sound was found by manual auditory dis-
crimination. The inverse of the warping functions were then used to compute the interval

9
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Ii = [γ−1
i (a(w)), γ−1

i (b(w))], which is the vowel interval of the i-th unaligned MFCCs. The
interval Ii was then linearly rescaled to [0, 1], yielding the vowel MFCCs

MFCCvowel
i (t,m) = MFCCi

(
(1− t)γ−1

i (a(w)) + tγ−1
i (b(w)),m

)
, t ∈ [0, 1] (S3.3)

S4 Modeling the Vowel Sound Duration
The sound duration of the vowel in the words of the “class” dataset are believed to carry
part of the information of the spatial variation of the dialect sounds. However, since the
duration cannot capture time dynamics in relative volume, and differences in the vowel
quality, the information carried by the vowel duration is a very crude approximation of the
vowel sound. This is why the focus of the paper is on the MFCCs of the vowel sounds. We
have nevertheless produced a spatial map of the relative duration of the vowel sound (relative
to the duration of the word), where the spatial map is obtained by spatial smoothing of the
relative durations at each observation location, obtained using a linear mixed model with
observation location, word and sex as fixed effects, and speaker as random effect. The
resulting map is given in Figure S5, together with the projection of the mean MFCC field
onto the second principal component. The same spatial smoothing parameters have been
used for both maps (h = 0.5, k = 14 nearest locations). It can be seen that the two maps
are quite correlated (the absolute correlation is 0.66; note that the principal component is
defined up to a sign), and therefore the duration information is more or less similar to that
obtained by the projection of the MFCC mean field onto the second principal component.

S5 Simulation Study
In order to quantify whether the spatial mean function and the spatial dS-covariance contain
valuable spatial informations, we compare the results obtained in the main paper with a
simulation scenario in which all the spatial locations have the same mean and dS-covariance.
We simulate observations from a model with constant mean and constant dS-covariance,

Y ∗lj = µ+ ε∗lj, l = 1, . . . , L; j = 1, . . . , nl (S5.1)

where µ =
(∑

l,j Ylj

)
/
∑

l nl, ε
∗
lj were drawn with replacement from {ε̌lj : l = 1, . . . , L; j = 1, . . . , nl},

ε̌lj = ε̂lj −
(∑

l,j ε̂lj

)
/
∑

l nl, ε̂lj = Ylj − m̂(Xl), and where m̂ is the estimated of the mean
MFCC field obtained from the data with tuning parameters h = 0.5, k = 14 nearest locations,
and nl is the number of observations at location Xl.
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Figure S1: Cross-validation curves of the “class” dataset for the mean MFCC field (top)
and the dS-covariance field (bottom) when the bandwidth is adjusted using the k-th nearest
observations.
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Figure S2: Left: Color maps with contours of the mean smooth MFCC field obtained for
the “class” vowel with h = 1.5 and k = 300th nearest observations (denoted NO map in the
text), projected onto the first three principal components directions (from top to bottom) of
the original data {Ylj(t) : l = 1, . . . , L; j = 1, . . . , nl}. Right: Colour image representing the
projection directions (loadings).
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Figure S3: Counties of England. Licenced under the Creative Commons Attribution 3.0
Unported license. Attribution: XrysD.
https://en.wikipedia.org/wiki/File:England_Administrative_2010.png.
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Figure S4: Regions of Great Britain. C = North East England, D = North West England,
E = Yorkshire and the Humber, F = East Midlands, G = West Midlands, H = East of
England, I = Greater London, J = South East England, K = South West England, L =
Wales, M = Scotland. Licenced under the Creative Commons Attribution-Share Alike 3.0
Unported license. Attribution: Dr Greg and Nilfanion.
https://commons.wikimedia.org/wiki/File:NUTS_1_statistical_regions_of_
England_map.svg.
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Figure S5: Mean MFCC field projected on PC2 (left) and duration field of the vowel sounds
(right). The absolute correlation between the two fields is 0.66.

Notice that although the simulated data is generated under a constant mean model, their
estimated dS-covariance field will be the same as what would be obtained by a model with
varying mean, i.e. replacing µ by m̂(Xl) in (S5.1). Indeed, the dS-covariance field is based
on the spatial smoothing of the sample dS-covariance at each location, defined by

Ω̆∗l (t) =

[
1

nl

nl∑
j=1

√
(Y ∗lj(t)− Y

∗
l (t))(Y

∗
lj(t)− Y

∗
l (t))

T

]2

, (S5.2)

where Y ∗l =
∑

j Y
∗
lj/nl. Changing µ in (S5.1) to m̂(Xl) would not change (S5.2), since

Y ∗lj − Y
∗
l = (µ+ ε∗lj)−

∑
i

(µ+ ε∗li)/nl

= ε∗lj −
∑
i

ε∗li/nl

=
(
m̂(Xl) + ε∗lj

)
−
∑
i

(m̂(Xl) + ε∗li)/nl.

The dS-covariance field estimated in each simulations run is therefore the same, regardless
of the choice of the mean at each location.

The projections onto PC1-3 are given in Figure S9. If there was no spatial information
in the mean field of the BNC dataset, the mean field (projected onto PC1) of the simulated
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Figure S6: Scatterplot of pairwise distance between residuals (y axis) against their geograph-
ical distance (x axis). The black thick line is a robust local linear regression obtained via
the R function lowess.

data would have the same range of variation as the mean field of the BNC dataset (projected
onto PC1). However, the MFCC field of the estimated MFCC field of the simulation has
consistently a much smaller range than the smooth field obtained from the BNC dataset
over the 100 simulation replicates (the range for the projection on PC1 is [9.2, 9.7] for a
realization from (S5.1), as opposed to [7.9, 10.8] for the real data application). This provides
evidence in support of spatial structure for the mean field.

S6 An illustration of the advantage of the dS-covariance
As a motivation for the use of dS-covariances, here is a one-dimensional example which
illustrates the advantages of using them when smoothing spatially under the metric dS.
Suppose you have data Y11, . . . , Y1m

iid∼ ε(x1) and Y21, . . . , Y2m
iid∼ ε(x2), where x1, x2 ∈ R

are two points that are equally close to x0 ∈ R, and we wish to estimate the co-variation
of ε(x0). Assume that ε(x) ∼ N(0, σ2) for all x ∈ R, and that the mean of ε(x) is known
to be equal to zero. If we wish to estimate the parameter σ2 = var (ε(x0)), then a natural
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Figure S7: Mean field of the BNC dataset projected on PC2 with computed with geodesic
distance (left) and with Euclidean distance (right). Notice the artifacts near the boundaries
(the level curves go across the port of Edinburgh when using the Euclidean metric).

estimator is the Fréchet mean of σ̂2
i = m−1

∑m
j=1 Y

2
ij , i = 1, 2, under dS, i.e.

σ̂2
∗ =

[(√
σ̂2

1 +
√
σ̂2

2

)
/2

]2

.

But

E σ̂2
∗ = E(σ̂2

1 + σ̂2
2)/4 + E

√
σ̂2

1σ̂
2
2/2

< σ2/2 +
√

E σ̂2
1σ̂

2
2/2

= σ2/2 +
√

E(σ̂2
1) E(σ̂2

2)/2

= σ2,

where we have used Jensen’s inequality in the second line (which is in this case a strict
inequality, since σ̂2

1σ̂
2
2 is not almost surely constant), and the independence of σ̂2

1 and σ̂2
2 in the

third line. In other words, σ̂2
∗ is a biased estimator of σ2. Furthermore, since

√
σ̂2

1 and
√
σ̂2

2

are both Chi distributed with m degrees of freedom, E
√
σ̂2
∗ = σ

√
2Γ ((m+ 1)/2) /Γ(m/2),

where Γ is the Gamma function, Γ(z) =
∫∞

0
xz−1e−x dx, that is,

√
σ̂2
∗ is a biased estimator of√

σ2. In other words, if one smooths the sample variances using the square-root Euclidean
metric, the resulting estimator is biased, even in the square-root space. However, if one
wishes to estimate the parameter τ = covdS(ε(x0)) = [ E |ε(x0)|]2, then the natural estimator
is the Fréchet mean of

τ̂i =

(
m−1

m∑
j=1

|Yij|

)2

, i = 1, 2
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Figure S8: Scatterplot of the distances between the raw dS-covariances Ω̆l, Ω̆k, and the corre-
sponding geographical distance between Xl, Xk. Notice that the thick line, which represents
a robust local linear regression obtained via the R function lowess, has a nugget, and is
slightly increasing with the geographical distance.

under dS, that is

τ̂∗ =

[
(2m)−1

m∑
j=1

(|Y1j|+ |Y2j|)

]2

,

which is unbiased in the square-root space, i.e. E
√
τ̂∗ =

√
τ . In conclusion, using the same

metric for the spatial smoothing and the definition of the co-variation yields estimators that
are less biased than those obtained by using distinct metrics.

S6.1 Comparison of the d-covariance field under the square-root
metric and the Euclidean metric

One might raise the question of whether the dS-covariance field yields results different from
the dE-covariance field (dE being the Euclidean metric). In order to compare the dS-
covariance and dE-covariance fields visually, one could in principle use dimension reduction
methods; however the interpretation of projections of the dS-covariance may be problem-
atic, as discussed in Section 3.1 of the main paper. An alternative way to represent the
d-covariance variations is to consider a single location of interest and plot the distances
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Figure S9: Projection onto PCs 1,2,3 of the mean obtained from data simulated under the
global model (S5.1)

between the d-covariance at the location of interest, and the d-covariances at all other lo-
cations of the map. This produces 2D surfaces that reflect which parts of the country are
more similar or dissimilar to the location of interest with respect to d-covariance. Figure S10
shows an example of these distance surface for the square-root and the Euclidean metric,
where the distance between d-covariances has been computed using the dS metric in both
cases (averaged over the length of the sound), and the distances have been renormalized
to the interval [0, 1] to allow for fair comparison of the plots. The tuning parameters are
h = 1, k = 32 nearest locations. Notice that the level curves are different. In particular,
the level curve 0.6 for the square-root map goes down to Bristol, whereas it goes down to
Dorset in the Euclidean metric map. The level curve 0.8 is also very different between the
two maps. These differences can be attributed to the swelling effect of the Euclidean metric
(Arsigny et al. 2007).
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