PAGE  
5

SUPPLEMENTARY METHODS
SM1.- Other estimators of pi
SM1.1.- Approximate estimators piA based on piE

An option is to make a1 ≈ n1p1A+x2 in expression (1), solve p1A and obtain p2A so that it verifies the symmetry in the samples; this leads to the following new estimators, which are an approximation of the exact estimator E, p1A = (x2/(y2+(x2) and p2A = x1/(x1+(y1) or approximate estimator A. Note that ORA = ( only if 
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SM1.2.- Approximate estimators piN obtained using the Newcombe method

In the context of the CI for p1(p2, Newcombe (1998) proposed substituting pi in piqi/ni=
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 using the appropriate extreme of the Wilson CI. Zou and Donner (2008) theoretically justify the procedure (method MOVER), Zou et al. (2009) generalize it for the case of a linear combination of proportions, and Donner and Zou (2012) and Li et al. (2010) generalize it for the case of the quotient of two parameters. Martín Andrés et al. (2012), in the case of p1(p2, and Martín Andrés and Álvarez Hernández (2014), in the case of p1/p2, justify the Newcombe method in another way; they use his criterion to obtain estimators in the case of a test and indicate that both methodologies coincide only in the case of a linear combination of proportions pi. The following is a more general justification of the Newcombe method used in the last two articles and its application to the present case.


Let f be a function f((1, (2, …, (I) with I parameters (I (i=1, 2, …,I), which is estimated by 
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=li (if i(r) or ui (if i>r) for the higher extreme. As a result, for contrasting H0: f =(, the contrast statistic will be 
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For the present proposal of H0: OR=(, there are several possible f functions, but all follow the same procedure: if f=p1q2((p2q1 then 
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, H: f=0, (f/(p1=(q2+(p2)>0, (f/(p2=((p1+(q1)<0, and by applying the above, the following estimators are obtained:
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where (li;ui) refers to Wilson's classic CI (1927) for the proportion pi.

SM2.- Other statistics

SM2.1.- Raw statistics

The raw statistic (
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(()2/[(2{((nipiqi)(1}] did not verify the two properties of symmetry. This problem can be avoided using (2=((OR in the denominator to obtain the statistic (
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 These statistics are not addressed here because both produce bad procedures.
SM2.2.- Statistic based on Fieller`s method

Fieller's method avoids the statistically awkward quotient of the independent random variables implied in 
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 For our purposes, this method may be applied in two ways by changing the original hypothesis H0 to an equivalent hypothesis,
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 (p1/q1)(((p2/q2)=0, and then applying the delta method to the statistic 
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SM2.3.- Statistics with an unconditional continuity correction (cc).

In general, the statistical inferences based on the original data and on the estimators piE of maximum likelihood under H0 are usually liberal, something that can be corrected in two ways: by increasing the data (as in Section 2.3) or performing a cc. The cc of the procedure 
[image: image27.wmf]XE

%

 is conditional, because 0.5 is half the jump of the sole variable in the problem x1. In practice, and in many diverse areas, it has been shown to be more suitable and effective to carry out an unconditional type cc.  One procedure which has proved to be effective for obtaining such types of cc is that of Haber (1982): the cc is half the average jump of the implied statistic. For our case, if Y is a statistic then the cc will be c = (max Y(min Y)/2(n+n1n2), if it is assumed that Y takes different values in each one of the points of the sample space, because then the number of jumps of Y will be the “number of points in the sample space(1” = (n1+1)(n2+1)(1 = n+n1n2.


In the following, it will be necessary to determine the derivatives of piE with regard to ( (= 
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 or (). To this end, let the function h=n1(
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In the case of procedure XE, let us assume that the statistic is Y=x1(n1p1E= n1(
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In the case of the statistic F the behavior is similar. Now Y =
[image: image45.wmf]12

pq

-



 EMBED Equation.DSMT4  [image: image46.wmf]21

pq

q

; because its derivatives are dY/d
[image: image47.wmf]1

p

=
[image: image48.wmf](

)

22

qp

q

+

(0 and dY/d
[image: image49.wmf]2

p

=(
[image: image50.wmf](

)

11

pq

q

+

(0, then the minimum (maximum) of Y is reached in 
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In the case of the statistic S, the behavior is the same as in the previous two paragraphs, so obtaining the following procedure 
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 (the procedure SE with cc):
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