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1 Introduction

In Appendix A, we provide the proofs of all the technical results stated in the main

text of “Boundary Detection using a Bayesian Hierarchical Model for Multiscale

Spatial Data” by K. Qu, J. R. Bradley, and X. Niu. In Appendix B, we provide

step-by-step instructions on how to implement the BAGE method. In Appendix C,

we provide simulations that compare the BAGE boundary detection method to the

Canny method for boundary detection. Then, in Appendix D, we give additional

simulation results to show that our model is robust to different specifications of

the signal-to-noise ratio.

2 Appendix A: Technical Results

Proof of Proposition 1(a):

Let ν(1)(s) ≡ (ν
(1)
1 (s), ..., ν

(1)
d (s))′, where s ∈ D ⊂ Rd and ν

(1)
m (s) ≡ ∂ν(s)

∂sm
. Also,

let ν(1)(A) ≡ (ν
(1)
A,1(s), ..., ν

(1)
A,d(s))′, where ν

(1)
A,m(A) ≡ 1

|A|

∫
A
ν
(1)
m (s)ds. Similarly, let
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the d-dimensional vector φi
(1)(s) ≡ (φ

(1)
i,1 (s), ..., φ

(1)
i,d (s))′, where φ

(1)
i,m ≡

∂φi(s)
∂sm

. Also,

let φ
(1)
A,i(A) ≡ (φ

(1)
A,i,1(s), ..., φ

(1)
A,i,d(s))′ where φ

(1)
A,i,m(A) ≡ 1

|A|

∫
A
φ
(1)
i,m(s)ds. The goal

is to show,

ζm(A) ≡ E

∣∣∣∣∣ν(1)A,m(A)−
n∑
i=1

φ
(1)
A,i,m(A)αi

∣∣∣∣∣
2
 ; m = 1, ..., d (A.1)

Expand (A.1) as follows,

ζm(A) = E
(
ν
(1)
A,m(A)

)2
+ E

(
n∑
i=1

n∑
j=1

φ
(1)
A,i,m(A)φ

(1)
A,j,m(A)αiαj

)
− 2E

(
ν
(1)
A,m(A)

n∑
i=1

φ
(1)
A,i,m(A)αi

)
.

(A.2)

We will simplify each term in (A.2) as follows:

E
(
ν
(1)
A,m(A)

)2
= E

(
1

|A|2

∫
A

∫
A

ν(1)m (s)ν(1)m (u)dsdu

)
=

1

|A|2

∫
A

∫
A

E
(
ν(1)m (s)ν(1)m (u)

)
dsdu

=
1

|A|2

∫
A

∫
A

cov
(
ν(1)m (s), ν(1)m (u)

)
dsdu

=
1

|A|2

∫
A

∫
A

∂2cov(ν(s), ν(u))

∂sm∂um
dsdu

(A.3)
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E

(
n∑

i:j=1

φ
(1)
A,i,m(A)φ

(1)
A,j,m(A)αiαj

)
=

n∑
i=1

n∑
j=1

φ
(1)
A,i,m(A)φ

(1)
A,j,m(A)E(αiαj)

=
1

|A|2

∫
A

∫
A

n∑
i=1

n∑
j=1

φ
(1)
i,m(s)φ

(1)
j,m(u)λiδijdsdu

=
1

|A|2

∫
A

∫
A

n∑
i=1

φ
(1)
i,m(s)φ

(1)
i,m(u)λidsdu,

(A.4)

and

E

(
ν
(1)
A,m(A)

n∑
i=1

φ
(1)
A,i,m(A)αi

)

=
1

|A|2
E

(∫
A

ν(1)m (s)ds
n∑
i=1

∫
A

φ
(1)
i,m(u)du

∫
D

ν(ω)φi,m(ω)dω

)

=
1

|A|2

∫
A

∫
A

n∑
i=1

φ
(1)
i,m(u)

(∫
D

E(ν(1)m (s)ν(ω))φi,m(ω)dω

)
dsdu

=
1

|A|2

∫
A

∫
A

n∑
i=1

φ
(1)
i,m(u)

(∫
D

∂cov(ν(s), ν(ω))

∂sm
φi,m(ω)dω

)
dsdu

=
1

|A|2

∫
A

∫
A

n∑
i=1

φ
(1)
i,m(s)φ

(1)
i,m(u)λidsdu

(A.5)

Substituting (A.3), (A.4), and (A.5) into (A.2) gives

ζm(A) =
1

|A|2

∫
A

∫
A

∂2cov(ν(s), ν(u))

∂sm∂um
dsdu− 1

|A|2

∫
A

∫
A

n∑
i=1

φ
(1)
i,m(s)φ

(1)
i,m(u)λidsdu.
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Upon taking the limit we have

lim
n→∞

ζm(A) = lim
n→∞

(
1

|A|2

∫
A

∫
A

∂2cov(ν(s), ν(u))

∂sm∂um
dsdu− 1

|A|2

∫
A

∫
A

n∑
i=1

φ
(1)
i,m(s)φ

(1)
i,m(u)λidsdu

)

=
1

|A|2

∫
A

∫
A

∂2cov(ν(s), ν(u))

∂sm∂um
dsdu− 1

|A|2

∫
A

∫
A

lim
n→∞

n∑
i=1

φ
(1)
i,m(s)φ

(1)
i,m(u)λidsdu

(A.6)

where we have assumed a dominating measure in (A.6). It follows from Kadota

[1967] that limn→∞ ζm(A) = 0 (A.7) for each A ⊂ Ds.

Proof of Proposition 1(b)

cov(ν
(1)
A,m(A), ν

(1)
A,m(B))−

n∑
i=1

φ
(1)
A,i,m(A)φ

(1)
A,i,m(B)λi

= E
(
ν
(1)
A,m(A)ν

(1)
A,m(B)

)
− 1

|A||B|

∫
A

∫
B

n∑
i=1

φ
(1)
i,m(s)φ

(1)
i,m(u)λidsdu

=
1

|A||B|

∫
A

∫
B

E
(
ν(1)m (s)ν(1)m (u)

)
dsdu− 1

|A||B|

∫
A

∫
B

n∑
i=1

φ
(1)
i,m(s)φ

(1)
i,m(u)λidsdu

=
1

|A||B|

∫
A

∫
B

cov
(
ν(1)m (s)ν(1)m (u)

)
dsdu− 1

|A||B|

∫
A

∫
B

n∑
i=1

φ
(1)
i,m(s)φ

(1)
i,m(u)λidsdu

=
1

|A||B|

∫
A

∫
B

∂2cov(ν(s), ν(u))

∂sm∂um
dsdu− 1

|A||B|

∫
A

∫
B

n∑
i=1

φ
(1)
i,m(s)φ

(1)
i,m(u)λidsdu

=
1

|A||B|

∫
A

∫
B

(
∂2cov(ν(s), ν(u))

∂sm∂um
−

n∑
i=1

φ
(1)
i,m(s)φ

(1)
i,m(u)λi

)
dsdu

(A.8)

It follows from the similar argument below (A.6) section that (A.8) converges to

zero.
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Proof of Proposition 2(a): We start to by showing that φ
(1)
k,m(xj) = φ

(1)
A,k,m(Aj) im-

plies f(ν
(1)
s,m) = f(ν

(1)
A,m) almost surely. We proceed through proof by contradiction.

Assume ν
(1)
m ≡ ν

(1)
s,m is not almost surely equal to ν

(1)
A,m, then, for at least one xi

and Ai, there exist γ > 0 such that

Pr(|ν(1)m (xi)− ν(1)A,m(Ai)| ≥ γ) > 0. (A.9)

However, from Chebychev’s inequality, and the assumption that φ
(1)
k,m(xj) = φ

(1)
A,k(Aj)

for j = 1, ..., nA,

Pr(|ν(1)m (xi)− ν(1)A,m(Ai)| ≥ γ) ≤
E
(

(ν
(1)
m (xi)− ν(1)A,m(Ai))

2
)

γ2

≤ 1

γ2
E

(
ν(1)m (xi)−

n∑
k=1

φ
(1)
k,m(xi)αk +

n∑
k=1

φ
(1)
A,k,m(Ai)αk − ν(1)A,m(Ai)

)2

=
1

γ2
E

(
ν(1)m (xi)−

n∑
k=1

φ
(1)
k,m(xi)αk

)2

+
1

γ2
E

(
n∑
k=1

φ
(1)
A,k,m(Ai)αk − ν(1)A,m(Ai)

)2

+
2

γ2
E

(
(ν(1)m (xi)−

n∑
k=1

φ
(1)
k,m(xi)αk)(

n∑
k=1

φ
(1)
A,k,m(Ai)αk − ν(1)A,m(Ai))

)
(A.10)

From Kadota [1967] and Proposition 1(a),

lim
n→∞

E

(
ν(1)m (xi)−

n∑
k=1

φ
(1)
k,m(xi)αk

)2

= 0

lim
n→∞

E

(
n∑
k=1

φ
(1)
A,k,m(Ai)αk − ν(1)A,m(Ai)

)2

= 0.

(A.11)
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Thus our next step in this proof is to show that

lim
n→∞

2

γ2
E

(
(ν(1)m (xi)−

n∑
k=1

φ
(1)
k,m(xi)αk)(

n∑
k=1

φ
(1)
A,k,m(Ai)αk − ν(1)A,m(Ai))

)
= 0.

(A.12)

Combining (A.12) and (A.11) in (A.10) contradicts the expression in (A.9), and

completes the result. Expand each term on the left hand side of (A.12) as follows,

H ≡ E

(
(ν(1)m (xi)−

n∑
k=1

φ
(1)
k,m(xi)αk)(

n∑
k=1

φ
(1)
A,k,m(Ai)αk − ν(1)A,m(Ai))

)

= E

∫
Ai

n∑
k=1

ν(1)m (xi)αkφ
(1)
k,m(s)ds− E

∫
Ai

(
ν(1)m (xi)ν

(1)
m (s)ds

)
− E

n∑
k=1

n∑
j=1

∫
Ai

(
αkφ

(1)
k,m(xi)αjφ

(1)
j,m(s)ds

)
+ E

n∑
k=1

∫
Ai

(
αkφ

(1)
k,m(xi)ν

(1)
m (s)ds

)
≡ H1 −H2 −H3 +H4,

where xi = (x1, ..., xd)
′ ∈ D
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H1 = E

∫
Ai

n∑
k=1

ν(1)m (xi)αkφ
(1)
k,m(s)ds = E

∫
Ai

n∑
k=1

ν(1)m (xi)

(∫
Ds

ν(u)φk(u)du

)
φ
(1)
k,m(s)ds

= E

∫
Ai

n∑
k=1

∂

∂xi,m

∫
Ds

ν(xi)ν(u)φk(u)duφ
(1)
k,m(s)ds

=

∫
Ai

n∑
k=1

∂

∂xi,m

∫
Ds

cov(ν(xi), ν(u))φk(u)duφ
(1)
k,m(s)ds

=

∫
Ai

n∑
k=1

∂

∂xi,m
φk(xi)λkφ

(1)
k,m(s)ds =

∫
Ai

n∑
k=1

φ
(1)
k,m(s)φ

(1)
k,m(xi)λkds,

H2 = E

(∫
Ai

ν(1)m (xi)ν
(1)
m (s)ds

)
=

∫
Ai

∂2cov(ν(xi), ν(s))

∂xi,m∂sm
ds,

H3 = E

(
n∑
k=1

n∑
j=1

∫
Ai

αkφ
(1)
k,m(xi)αjφ

(1)
j,m(s)ds

)
=

∫
Ai

n∑
k=1

φ
(1)
k,m(s)φ

(1)
k,m(xi)λkds,

and

H4 = E

(
n∑
k=1

∫
Ai

(
αkφ

(1)
k,m(xi)ν

(1)
m (s)ds

))
= E

(
n∑
k=1

∫
Ai

(∫
D

ν(u)φk(u)duφ
(1)
k,m(xi)

∂ν(s)

∂sm
ds

))

=
n∑
k=1

∫
Ai

∂

∂sm

(∫
D

cov(ν(u), ν(s))φk(u)duφ
(1)
k,m(xi)ds

)
=

n∑
k=1

∫
Ai

∂

∂sm
φk(s)λkφ

(1)
k,m(xi)ds

=

∫
Ai

n∑
k=1

φ
(1)
k,m(s)φ

(1)
k,m(xi)λkds.

Thus, it follows from that Proposition 1(b) limn→∞H = 0, which proves the result.

To prove the reverse statement of 2(a), suppose f(ν
(1)
s,m) = f(ν

(1)
A,m) almost surely

for any measurable real-valued function f , then the result follows from setting f

equal to the identity function.
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Proposition 2(b) The proof is similar to Proposition 2(a).

Proposition 2(c): Note that, φ
(1)
k,m(Bj) = 1

|Bj |

∫
Bj
φ
(1)
k,m(Aj)ds = φ

(1)
k,m(Aj) (A.13),

then it follows that f(ν
(1)
B ) = f(ν

(1)
A ) by Proposition 2(b).

Proof: BAGE(A)=0 when Eigenfunctions are homogeneous within scale.

If φ
(1)
j,m(w) = φ

(1)
A,j,m(A) for every j, we have from Proposition 2,

ν(1)(w) = ν(1)(A) w ∈ A. (A.14)

We also have that C{w(t)} = 1
‖s1(t)‖(s12, − s11) ≡ s

⊥
1 , where for simplicity we

set d = 2 and s1 = (s11, s12)
′. Hence C{w(t)} does not depend on s0 or on T .

This implies that,

W(s0, α, A) =
1

N(T )

∫
T
〈ν(1)(w(t, s0, α)), C{w(t, s0, α)}〉‖w(1)(t, s0, α)‖dt

= ν(1)(A)′
{

1

N(T )

∫
T
C{w(t, s0, α)}‖w(1)(t, s0, α)‖dt

}
= ν(1)(A)′s⊥1

(A.15)

W(α,A) =
1

|A|

∫
A

W(s0, α, A)ds0

=
1

|A|

∫
A

ν(1)(A)′
{

1

N(T )

∫
T
C{w(t, s0, α)}‖w(1)(t, s0, α)‖dt

}
ds0

= ν(1)(A)′
1

|A|

∫
A

ds0

{
1

N(T )

∫
T
s⊥1 ‖w(1)(t, s0, α)‖dt

}
= ν(1)(A)′s⊥1

= W(s0, α, A), ∀α.

(A.16)

Thus, E(BAGE(α,A)) = E
[

1
|A|

∫
A

(W(s0, α, A)−W(α,A))2ds0|Z
]

= 0. The

proof of the converse is provided below.
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We have shown that the absence of CBF error implies that BAGE(·) is zero.

We are left to show the reverse that when BAGE(·) is zero CBF error is not

present in L2. Our proof involves showing the contrapositive of this statement,

which is logically equivalent. That is, the presence of CBF error in L2 implies that

is BAGE(A) greater than zero for A ⊂ Ds.

We proceed through proof by contradiction. Assume BAGE(A) = 0 and CBF

error exists at A. By definition, the trace of E
∫
A

(
φ(1)(s)α− φ(1)(A)α

)
·(

φ(1)(s)α− φ(1)(A)α
)′
ds > 0 when CBF exists in L2 at A (See Proposition

2).

Let L(s) =
(
φ(1)(s)− φ(1)(A)

) (
φ(1)(s)− φ(1)(A)

)′
and

the l(i,j) =
∑r

k=1(φ
(1)
k,i (s)− φ(1)

k,i (A))(φ
(1)
k,j(s)− φ(1)

k,j(A)) for (i, j) = 1, ..., d, then

trace

(
E

∫
A

(
φ(1)(s)α− φ(1)(A)α

) (
α′φ(1)(s)′ −α′φ(1)(A)′

)
ds

)
= E

(∫
A

trace (α′L(s)α) ds

)
= E

(
α′
∫
A

L(s)dsα

)
=

r∑
i

E(α2
i )l(i,i) +

r∑
i=1

r∑
j=1

E(αiαj)l(i,j)

=
r∑
i

var(αi)l(i,i)

(A.17)

Assuming CBF error exists in L2, there is at least one var(αi) greater than zero

and the diagonal elements of L(s) are greater than zero, since from Proposition 2,

φ
(1)
k,i (s) 6= φ

(1)
k,i (A).

The proof will now involve writing E(BAGE(A)) as a quadratic form of α,

which will only be equal to zero when var(αi) = 0 for all i. This is a contradiction
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of the existence of CBF error at A. By definition,

E{BAGE(α, A)} = E

(
1

|A|

∫
A

(W(s,α, A)−W(α, A))2ds|Z
)

(A.18)

= E

(
1

|A|

∫
A

(
W(s,α, A)− 1

|A|

∫
A

W(s,α, A)ds

)2

ds|Z
)

= E

(
1

|A|

∫
A

(
1

|A|

∫
T
ν(1)(w(t, s0, s1))

′C{w(t, s0, s1)}‖w(1)(t, s0, s1)‖dt

− 1

|A|

∫
A

1

|A|

∫
T
ν(1)(w(t, s0, s1))

′C{w(t, s0, s1)}‖w(1)(t, s0, s1)‖d(t)ds

)2

ds|Z
)

= E

(
1

|A|

∫
A

α′
(

1

|A|

∫
T
φ(1)(w(t, s0, s1))

′C{w(t, s0, s1)}‖w(1)(t, s0, s1)‖dt

− 1

|A|

∫
A

1

|A|

∫
T
φ(1)(w(t, s0, s1))

′C{w(t, s0, s1)}‖w(1)(t, s0, s1)‖d(t)ds

)2

αds|Z
)

Let W =
∫
A

(
1
|A|

∫
T φ

(1)(w(t, s0, s1))
′C{w(t, s0, s1)}‖w(1)(t, s0, s1)‖dtds

− 1
|A|

∫
A

1
|A|

∫
T φ

(1)(s)′C{w(t, s0, s1)}‖w(1)(t, s0, s1)‖d(t)ds
)2

and denote the i-th

element of this r dimensional vector with wi for i = 1, ..., r. Then

E(BAGE(A)) = E

(∫
A

α′WW ′αds|Z
)

= E

∫
A

(
r∑
i=1

r∑
j=1

αiwiwjαj

)
ds|Z

=

∫
A

(
r∑
i=1

E(α2
i )w

2
i +

r∑
i=1

r∑
j=1

E(αiαj)wiwi

)
ds|Z

=

∫
A

(
r∑
i=1

var(αi)w
2
i + 0

)
ds|Z.

(A.19)

Since BAGE(A) is assumed zero and w2
i > 0 (this condition can be checked for

the choice of φ(s)) then var(αi) = 0 for i = 1, ..., r. However this contradicts the

above result that there is at least one of var(αi) greater than zero when CBF error
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exists. This proves the result.

3 Appendix B: Step-by-Step Implementation of

BAGE

Given posterior MCMC replicates from the model in the main text, we can compute

BAGE(A), as follows:

1. Randomly sample s̃1, ..., s̃m with s̃j = (s̃1j, s̃2j). Define an angle α.

2. For each b=1,...,B and j=1,...,m, based on (15), compute of the

∂ν(s̃)[b]

∂s̃1j
= −4

φ
(s̃1j − ci1)exp

(
−2
φ
{(s̃1j − ci1)2 + (s̃2j − ci2)2}

)
η[b], and

∂ν(s̃)[b]

∂s̃2j
= −4

φ
(s̃2j − ci2)exp

(
−2
φ
{(s̃1j − ci1)2 + (s̃2j − ci2)2}

)
η[b],

where s̃ = (s̃1, s̃2) and {ci.} are knot points.

3. For each b=1,...,B and j=1,...,m, compute

W(s̃j, α, A)[b] = 1
N(T )

∫
T 〈

∂ν(s̃j)
[b]

∂s̃.j
, C{w(t, s̃j, α)}〉‖w(1)(t, s̃j, α)‖dt using the

integral function in Curbature R package.

4. For each j=1,...,m, compute W(α,A)[b] = 1
m

∑m
j=1W(s̃j, α, A)[b].

5. For each b, compute BAGE(α,A)[b] = 1
|A|
∑m

j=1(W(s̃j, α, A)[b]−W(α,A)[b])2.

6. Compute BAGE(α,A) = 1
B

∑B
b=1BAGE(α,A)[b].

7. Repeat steps 1 - 6 for every A and α under consideration.

8. Produce a map of {BAGE(α,A)}.
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4 Appendix C: A Simulation Study Comparing

the BAGE and Canny Methods

In general, it is difficult to use the simulations to validate boundary detection

methods for continuous spatial fields. This is because there is no “true” bound-

aries that exist in spatial fields, just “large” gradients that suggest a boundary.

Consequently, there is no “gold standard” to compare to. See Banerjee and Gelfand

[2006] for additional discussions on this issue. Our setting, however, is different

because we take a latent Gaussian process approach. That is, one can perform two

sets of a standard boundary detection algorithms, one on the field {Y (s) : s ∈ Ds}

and another on the observed data {Z(s) : s ∈ Ds}. Since we are interested in

inference on {Y (s) : s ∈ Ds} and {Y (s) : s ∈ Ds} is unobserved, chosen bound-

aries based on {Y (s) : s ∈ Ds} can be treated as the “gold standard” to compare

competing boundary detection methods. Thus, the first step in our comparison

is to define a “gold standard” to compare to. Specifically the Canny boundary

detection algorithm (R edge.detect function from the R wvtool package) is ap-

plied to a Gaussian random field {Y (s) : s ∈ Ds} defined on a 32 × 32 grid. The

Canny-selected boundaries on {Y (s) : s ∈ Ds} are then aggregated to a 16 × 16

grid. These aggregated set of boundaries on the 16 × 16 are referred to the “gold

standard.” In particular, we compare the agreement between the Canny method

that replaces {Y (s) : s ∈ Ds} with {Z(s) : s ∈ Ds} versus the gold standard.

Similarly, we compare the agreement between calibrating BAGE in Section 4.2

and the gold standard. The “agreements” (accuracies) are computed using,

Accuracy =

∑nA

i=1 I{qm(A16) = qG(A16)}
nA

; m = 1, 2 (C.1)
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where qG(A) is equal to one provided the “gold standard” classified a boundary

in region A (and zero otherwise), the Canny method classifier that uses the data

{Z(s) : s ∈ Ds} as an input (instead of {Y (s) : s ∈ Ds}), is denoted with q2(A).

The BAGE method classifier q1(·) is defined as,

q1(A) = I[max
α
{BAGE(α,A)} > f ]; A ⊂ D (C.2)

which is equal to one when we classify a boundary in A and is equal to zero when

then no boundary detected in A. We choose the value of f in (C.2) to maximize the

agreement between the BAGE method classifier and the Canny method classifier

that uses the estimated {E(Y (s)|Z : s ∈ Ds} instead of {Y (s) : s ∈ Ds}. Here,

the n-dimensional data vector is defined as Z = (Z(s1), ..., Z(sn))′. Note that

both q1(·) and q2(·) are completely data driven. Thus the method with large

values of (C.1) implies a higher agreement with the gold standard. These accuracy

calculations are repeated with 30 times with simulated data sets having small signal

to noise ratio (SNR) of 0.2. Boxplot of 30 replicates of the accuracies in (C.1) are

presented in Figure 1.

The BAGE criterion can be used to perform multiscale inference on the un-

observed process {Y (s) : s ∈ Ds}. However, the simulated data set (that defines

Z) in this section only used a single scale of the data. This is done partially be-

cause the standard computational package that implement Canny can not handle

multiple overlapping scales of the data.

To make our comparisons fair, when Canny is applied to {Y (s) : s ∈ Ds},

Z, and {E(Y (s)|Z : s ∈ Ds}, we use the same default specification of the low

threshold, high threshold, and bandwidth parameters from the R package wvtool.
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Figure 1: Boxplot of accuracy over 30 replicates for an aggregation (16 × 16 grid)

These numerical simulation results support that BAGE is practically useful in

boundary classification. In particular, for realistic signal to noise ratios, the BAGE

method performs better (in term of (C.1)) than the Canny method because our

approach can appropriately account for uncertainty in the data. Furthermore, the

results from Section 5.1 show that our method can provide a measure of uncertainty

(i.e., BAGE), while the deterministic Canny can not.
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5 Appendix D: Model Performance by Signal-

to-noise Ratio

The signal-to-noise ratio (SNR) is defined to be,∑n
i=1 V ar(Yi)∑n
i=1 V ar(εi)

(C.1)

In Tables 1 and 2 we present the estimates by SNR and their true values. Here we

see that we can reasonably recover the truth in each setting.

Table 1: Posterior quantiles of σ2
ε by SNR and various specifications of the true β

and σ2
ε in the simulations

SNR β(True) σ2
ε(True) Est. 2.5% (σ2

ε) Est. 50.0% (σ2
ε) Est. 97.5% (σ2

ε)

0.5 1 2 1.6503 1.7999 1.9782
1 1 1 0.8269 0.9022 0.9929
3 1 0.3333 0.2773 0.3028 0.3341
5 1 0.2 0.1686 0.1828 0.2013
7 1 0.1429 0.1219 0.1324 0.1444
0.5 3 2 1.6508 1.7995 1.9717
1 3 1 0.8267 0.9051 1.0000
3 3 0.3333 0.2765 0.3021 0.3329
5 3 0.2 0.1665 0.1826 0.1999
7 3 0.1429 0.1204 0.1315 0.1449
0.5 5 2 1.6346 1.7939 1.9670
1 5 1 0.8319 0.9032 0.9862
3 5 0.3333 0.2771 0.3026 0.3334
5 5 0.2 0.1684 0.1828 0.2011
7 5 0.1429 0.1202 0.1316 0.1454
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Table 2: Posterior quantiles of β by SNR and various specifications of the true β
and σ2

ε in the simulations

SNR β(True) σ2
ε(True) Est. 2.5% (β) Est. 50.0% (β) Est. 97.5% (β)

0.5 1 2 0.5024 0.8121 1.1150

1 1 1 0.4810 0.7308 1.1046

3 1 0.3333 0.6086 0.8024 0.9369

5 1 0.2 0.3620 0.7239 1.0198

7 1 0.1429 0.5232 0.7369 0.9080

0.5 3 2 2.4710 2.7597 3.0300

1 3 1 2.4680 2.7569 3.0245

3 3 0.3333 2.5754 2.7851 3.0470

5 3 0.2 2.3755 2.6863 3.0715

7 3 0.1429 2.5357 2.7000 2.9358

0.5 5 2 4.3228 4.7875 5.0949

1 5 1 4.4809 4.7737 5.1241

3 5 0.3333 4.4652 4.6981 5.0064

5 5 0.2 4.4759 4.7818 4.9628

7 5 0.1429 4.5747 4.7469 4.9321
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