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In this supplementary document we assess the regularity conditions in Appendix A

for our Examples 1 and 2. Below we recall the models being tested.

• Model in Example 1:
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where η ∈ [0, 1], θ = (θ1, θ2) is the location of the signal over the search region

Θ, which in this case corresponds to a disc in the sky of 30◦ radius and centered

at (195,28). Its area is given by λ(Θ), and kθ1θ2 is a normalizing constant. The

support of Y coincides with the search region Θ.

• Model in Example 2:
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, (2)

where η ∈ [0, 1], γ = (γ, τ), Γ = [1, 10] × [70, 90], kτγ and kµσ are normalizing

constants. In this setting, θ = (µ, σ) is constrained over the range Θ = [1, 8] ×

[0.2, 2] and we consider y ∈ (0, 1000].
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It is immediate to see that assumption A0 is verified by both (1) and (2) since the

densities involved in the mixture models considered belong to different parametric families

(i.e., uniform and bivariate normal in Example 1, gamma and log-normal in Example 2).

A0 would not necessarily be valid if the components of the mixture belonged to the

same parametric family (e.g., when working with a mixture of two normal distributions).

The reader is directed to Dacunha-Castelle et al. (1999), among others, for extensions of

Ghosh and Sen (1985) to the case of identifiable mixture.

Conditions A1(i)-(iv) are the equivalent of the classical regularity conditions which

guarantee consistency and normality of the MLE, and in our setting are required to hold

for each θ fixed. They can be easily assessed by writing explicitly the score vector and

the Hessian matrix of log h(y, η,γ,θ). Condition A1(v) implies stochastic equicontinuity

of the Fisher information at (0,γ0,θ). For our Example 1, A1(v) naturally follows from

the fact that no nuisance parameter γ is present under the null model, the support

of η is compact and H11(θ) is continuous over [0, 1] × Θ. A similar reasoning can be

done for Example 2. Specifically, since the goal here is to perform a non-nested models

comparison, the hypotheses H0 : η = 1 and H1 : η 6= 1 are also tested and thus both

Γ and Θ are required to be compact. Further, it can be shown that all Hjk(θ) (see

the integrand functions in (7)-(12)) are continuous over [0, 1] × Γ ×Θ. Thus, for both

examples, the uniform continuity of Hjk(θ) over the compact [0, 1]× Γ×Θ guarantees

that for each θ and for each j, k = 1, . . . , p+ 1, Hjk(θ) is bounded, and thus

lim
δ→0

sup
||(η,γ,θ)−(0,γ0,θ)||<δ

|Hjk(θ)−H0
jk(θ)| = 0.
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Whereas

E[ sup
||(η,γ,θ)−(0,γ0,θ)||<δ

|Hjk(θ)−H0
jk(θ)|] ≤ E[sup

δ
sup

||(η,γ,θ)−(0,γ0,θ)||<δ
|Hjk(θ)−H0

jk(θ)|]

(3)

≤ 2E[ sup
[0,1]×Γ×Θ

|Hjk(θ)|] ≤ ∞ (4)

and thus A1(v) follows by dominated convergence.

Assumption A2 guarantees that the log-likelihood is uniquely maximized over [0, 1]×

Γ × Θ. Also in this case, for both Examples 1 and 2, continuity of the log-likelihood

and compactness of [0, 1] × Γ × Θ guarantee this result. Similar considerations can

be made to ensure the validity of A3. It may worth noticing that for Example 2, we

consider γ ∈ [1, 10] and thus the parameter space of the shape parameter of the gamma

distribution is bounded away from zero. If one was to consider γ ∈ (0,∞), A2 can be

verified by choosing N c = [εγ ,∞], for some εγ > 0.

One of the most important assumptions in our setting is A4. For both Examples 1

and 2, continuity of I(θ) can be easily assessed by noticing that all its elements consists of

sums, multiplication and ratios of continuous functions and thus their are also continuous.

Specifically, for Example 1 we have

I(θ) =
λ(Θ)k′θ1θ2
kθ1θ2

− 1 (5)

where λ(Θ) = 2827.433, kθ1θ2 and k′θ1θ2 are normalizing constants and take the form
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∫
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k′θ1θ2 =

∫
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.

Notice that (5) is continuous and positive for any (θ1, θ2) in Θ and thus A4 holds. In
Example 2 the Fisher information matrix

I(θ) =


Iηη(θ) Iηγ(θ) Iητ (θ)

Iγγ Iγτ

Iττ

 (6)

has elements

Iηη(θ) =

∫ [
g(y, µ, σ)

f(y, γ0, τ0)
− 1

]2
f(y, γ0, τ0)∂y (7)

Iηγ(θ) =

∫ [
g(y, µ, σ)

f(y, γ0, τ0)
− 1

][
log y −

∫
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]
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− 1
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]2
f(y, γ0, τ0)∂y (10)
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−
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Iττ =

∫ [
y

τ20
−
∫
e−y/τ0yγ∂y

τ20 kτ0γ0

]2
f(y, γ0, τ0)∂y (12)

where f(y, γ0, τ0) = e−y/τ0yγ0−1

kτ0γ0
, kτ0γ0 =

∫
e−y/τ0yγ0−1∂y, g(y, µ, σ) =

exp
{
− ln y−µ

2σ2

}
ykµσ

, and

all the integrals are evaluated over [0, 1000].

Notice that I(θ) is positive definite uniformly over Θ, if its smallest eigenvalue is

non-negative for each θ ∈ Θ. We assess this with a numerical check. Specifically, we

compute I(θ) on a grid of 12851 values (µ, σ) over [1, 8]× [0.2, 2]. For each of the 12851

points I(θ) is evaluated at the MLE estimates of γ0, τ0 (i.e. γ̂0 = 2.753, τ̂0 = 83.379)
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and thus assuming f(y, γ̂0, τ̂0) as the true model. Finally, we compute the eigenvalues of

each of the 12851 matrices obtained. Below we report a the summary of the distribution

of the smallest eigenvalues.

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.01349 0.38326 0.41697 0.38100 0.43248 0.43604

Since the minimum is achieved at 0.01349, we expect A4 to hold for our Example

2 with ε ≈ 0.0134, and consequently I(θ) is positive-definite for each θ over the range

[1, 8]× [0.2, 2].

Finally, A5 guarantees tightness of the score random field, {S0
1(θ)}, with components

S0
1(θ) = g(y,θ)

f(y,γ0)
− 1, for each value of θ. In both our examples the parameter space

[0, 1] × Γ × Θ is compact and so is the support of y. Furthermore, the derivatives of

{S0
1(θ)} are continuous and thus they are bounded for all θ ∈ Θ. For instance, in

Example 1, we have that

∣∣∣∣ ∂∂θ1 g(x, y,θ)
∣∣∣∣= ∣∣∣∣4(x− E[x])

kθ1θ2
exp

{
−0.5

[(
x− θ1
0.5

)2

+

(
y − θ2
0.5

)2]}∣∣∣∣≤ K1 <∞,

and similarly
∣∣∣∣ ∂∂θ2 g(x, y,θ)

∣∣∣∣≤ K2 < ∞, for some K1,K2 > 0, and for all θ ∈ Θ. In this

setting f(y,γ0) = 1
λ(Θ) , and thus it is constant over Θ. Hence A5 follows by the mean

value theorem, and for ξ = 1 and λ = 1. A numerical check has also been conducted and

A5 is verified for K > 50. The same approach can be used to validate A5 for Example

2 which can be shown to hold for ξ = 1 and λ = 1. Also in this case, a numerical check

has been conducted and A5 is verified for K > 40.
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