
A Supplementary Material

Here the proofs of the results are collected.

A.1 Proof of Proposition 1

We can generate (X, Y ) ∼ Fp for ρ > 0 byX
Y

 = A


U

V

W

 (A.1)

where U, V,W follow a symmetric unimodal distribution G and are i.i.d., and

A =

√1− ρ 0
√
ρ

0
√

1− ρ √ρ

 .
For G = N(0, 1) the distribution of (A.1) equals (9). We now obtain ξ(ρ) = E[ψ(u

√
1− ρ+

w
√
ρ)ψ(v

√
1− ρ+w

√
ρ)]. Since we are interested in ρ ≈ 0, we can use the Taylor expansion

(derived with δ =
√
ρ) to obtain ψ(u

√
1− ρ+w

√
ρ) = ψ(u) +w

√
ρψ′(u) + w2ρ

2
ψ′′(u) + o(ρ)

and similarly for the second factor, yielding 9 terms of which only one term remains, the

others being o(ρ) or zero since ψ is odd:

ξ(ρ) = E

[
ψ(u)

{
ψ(v) + w

√
ρψ′(v) +

w2ρ

2
ψ′′(v)

}
+ w
√
ρψ′(u)

{
ψ(v) + w

√
ρψ′(v) +

w2ρ

2
ψ′′(v)

}
+
w2ρ

2
ψ′′(u)

{
ψ(v) + w

√
ρψ′(v) +

w2ρ

2
ψ′′(v)

}]
=ρE

[
w2ψ′(u)ψ′(v)

]
+ o(ρ)

=ρE[ψ′(u)]E[ψ′(v)] + o(ρ)

Therefore ξ′(0) = E[ψ′(u)]2 and we obtain IF((x, y), T, F0) = ψ(x)ψ(y)/E[ψ′]2.

A.2 Influence function for general ρ

We first consider the non Fisher-consistent functional Tψ = E[ψ(X)ψ(Y )]. The raw influ-

ence function of Tψ under the distribution Fρ generated as in (A.1) is then

IFraw((x, y), Tψ, Fρ) = ψ(x)ψ(y)− EFρ [ψ(X)ψ(Y )] .

1



Proof. Let Fε = (1− ε)Fρ + ε∆(x,y). Then

Tψ(Fε) = (1− ε)EFρ [ψ(X)ψ(Y )] + εE∆(x,y)
[ψ(X)ψ(Y )] .

Differentiating with respect to ε at ε = 0 yields −EFρ [ψ(X)ψ(Y )] + ψ(x)ψ(y).

Now denote the finite sample version of Tψ by Tn = 1
n

∑n
i=1 ψ(xi)ψ(yi). From the law of

large numbers we have that Tn is strongly consistent for its functional value: Tn
a.s.−−→ Tψ(Fρ)

for n→∞. By the central limit theorem, we also have asymptotic normality of Tψ:

√
n(Tn − Tψ(Fρ))→ N(0, Vraw)

where the asymptotic variance Vraw is given by

Vraw = Eρ[IFraw((X, Y ), Tψ, Fρ)
2]

= Eρ
[
(ψ(X)ψ(Y )− Eρ[ψ(X)ψ(Y )])2]

= Eρ
[
ψ(X)2ψ(Y )2

]
− Eρ[ψ(X)ψ(Y )]2 .

Now we switch to the Fisher-consistent functional Uψ(F ) := ξ−1(Tψ(F )) given in (11).

The general influence function defined in (12) then becomes

IF((x, y), Tψ, Fρ) := IFraw((x, y), Uψ, Fρ)

=
IFraw((x, y), Tψ, F )

ξ′(ρ)

=
ψ(x)ψ(y)− Eρ[ψ(X)ψ(Y )]

ξ′(ρ)

hence

IF((x, y), Tψ, Fρ) =
ψ(x)ψ(y)− Cρ

Dρ

(A.2)

where Cρ := Eρ[ψ(X)ψ(Y )] and Dρ := ξ′(ρ) can be computed numerically to any given

precision. For ρ = 0 this simplifies to the formula in Proposition 1. Note that the influence

function has the same shape for all values of ρ (including ρ = 0), only the constants Cρ

and Dρ differ which amounts to shifting and rescaling the IF along the vertical axis.

Now consider the estimator T ∗n = ξ−1(Tn) corresponding to the functional Uψ . Since

Tn is asymptotically normal, we can apply the delta method to establish the asymptotic

normality of T ∗n . Using (ξ−1(x))′ = 1/ξ′(ξ−1(x)) we obtain

√
n(T ∗n − ρ)→ N (0, V )
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where V = Vraw/(ξ
′(ρ))2 with Vraw as above. At ρ = 0 this corresponds to (14).

A.3 Relation with influence functions of rank correlations

At the model distribution F0 of (9) the influence functions of the Quadrant and Spearman

correlation (Croux and Dehon, 2010) and the normal scores (Boudt et al., 2012) correspond

to those of certain ψ-product moments. This is not a coincidence, because if we write

the rank transform as g(xi) = h(Rn(xi)) it tends to the function g̃(x) = h(Φ(x)) when

n → ∞. If we put ψ(x) := h(Φ(x)) we observe that (15) indeed holds, with IF(x, h,Φ) =

h(Φ(x))/
∫

(h(Φ))′dΦ = ψ(x)/E[ψ′].

For the quadrant correlation h(u) = sign(u− 1/2) we get the IF of the median:

IF(x, Lh,Φ) =
sign(x)

2Φ′(0)
=

√
π

2
sign(x)

and so γ∗ = π/2 and eff = 4/π2.

For the normal scores rank correlation we have h(u) = Φ−1(u) hence IF(x, Lh,Φ) = x

which is the influence function of the mean and thus unbounded, yielding γ∗ = ∞ and

eff = 1. The truncated normal scores h(u) = Φ−1 ([u]1−αα ) = [Φ−1(u)]b−b where α = Φ(−b)

yields IF(x, Lh,Φ) = ψb(x)/E[ψ′b], which is the influence function of Huber’s ψb function.

For the Spearman correlation (h(u) = u− 1/2) we obtain

IF(x, Lh,Φ) =
Φ(x)− 1/2

E[(Φ′)2]
= 2
√
π

(
Φ(x)− 1

2

)
which is also the influence function of the Hodges-Lehmann estimator and the Mann-

Whitney and Wilcoxon tests (Hampel et al., 1986). It yields γ∗ = π and eff = 9/π2.

A.4 Proof of Proposition 2 and Corollary 1

Proof of Proposition 2. We give the proof for the maximum upward bias (the result for the

maximum downward bias then follows by replacing Y by −Y ). The uncontaminated dis-

tribution of (X, Y ) is F = Fρ from (A.1). Since ψ(X) and ψ(Y ) have the same distribution

and ψ is odd and bounded we find EF [ψ(X)] = EF [ψ(Y )] = 0 and EF [ψ(X)2] = EF [ψ(Y )2] .

Now consider the contaminated distribution G = (1−ε)Fρ+εH where H is any distribution.

At G we obtain

CorG(ψ(X), ψ(Y )) =
EG[(ψ(X)− EG[ψ(X)])(ψ(Y )− EG[ψ(Y )])]√

EG[(ψ(X)− EG[ψ(X)]2)]EG[(ψ(Y )− EG[ψ(Y )])2]
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which works out to be

(1− ε) CovF (U, V ) + εEH [UV ]− ε2EH [U ]EH [V ]√
((1− ε)VF + εEH [U2]− ε2EH [U ]2)((1− ε)VF + εEH [V 2]− ε2EH [V ]2)

(A.3)

where we denote U := ψ(X) and V := ψ(Y ) to save space, as well as VF := VarF (U) =

EF [ψ(X)2] = EF [ψ(Y )2] = VarF (V ).

We will show the proof for ρ = 0 which implies that U and V are independent hence

CovF (U, V ) = 0 as this reduces the notation, but the proof remains valid if the term

(1 − ε) CovF (U, V ) = (1 − ε)VFTψ(F ) is kept. The proof consists of two parts. We first

show that the contaminated correlation (A.3) is bounded from above by

C(ε) :=
εM2

(1− ε)VF + εM2
(A.4)

and then we provide a sequence of contaminating distributions Hn for which (A.3) tends

to this upper bound.

1. Suppose first that EH [U ]EH [V ] 6 0. Then we have for the numerator of (A.3):

EH [UV ]− εEH [U ]EH [V ] 6 EH [UV ]− EH [U ]EH [V ]

6
√

(EH [U2]− EH [U ]2)(EH [V 2]− EH [V ]2) .

Now consider the denominator of (A.3) and note that√
((1− ε)VF + ε(EH [U2]− εEH [U ]2))((1− ε)VF + ε(EH [V 2]− εEH [V ]2)) >√

((1− ε)VF + ε(EH [U2]− EH [U ]2))((1− ε)VF + ε(EH [V 2]− EH [V ]2))

because EH [U2]−EH [U ]2 > 0, EH [U2] > 0, EH [U ]2 > 0 and 0 6 ε 6 1. Therefore, we can

bound (A.3) from above by

ε
√

(EH [U2]− EH [U ]2)(EH [V 2]− EH [V ]2)√
((1− ε)VF + ε(EH [U2]− EH [U ]2))((1− ε)VF + ε(EH [V 2]− EH [V ]2))

and this quantity is maximal when (EH [U2]−EH [U ]2) and (EH [V 2]−EH [V ]2) are as large

as possible. Their supremum is in fact M2. Therefore, (A.3) is less than or equal to (A.4).

2. Suppose now that EH [U ]EH [V ] > 0. We will first show that the numerator is

bounded as follows:

EH [UV ]− εEH [U ]EH [V ] 6
√

(EH [U2]− εEH [U ]2)(EH [V 2]− εEH [V ]2) . (A.5)
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By squaring both sides we find that this is equivalent to showing

EH [UV ]2 − 2εEH [U ]EH [V ]EH [UV ]

6 EH [U2]EH [V 2]− ε(EH [U2]EH [V ]2 + EH [U ]2EH [V 2])

which is equivalent to

EH [U2]EH [V 2]−EH [UV ]2+ε(2EH [U ]EH [V ]EH [UV ]−EH [U2]EH [V ]2−EH [U ]2EH [V 2]) > 0.

(A.6)

We know that (A.5) holds for ε = 1 as it is equivalent to CovH(U, V ) 6
√

VarH(U) VarH(V )

so (A.6) is true in that case.

The general version of (A.6) with ε 6 1 equals the LHS for ε = 1, plus (1− ε) times

EH [U ]2EH [V 2]− 2EH [U ]EH [V ]EH [UV ] + EH [U2]EH [V ]2 . (A.7)

Therefore, it would suffice to prove that (A.7) is nonnegative. We know that |EH [UV ]| 6√
EH [U2]EH [V 2] by Cauchy-Schwarz. Since EH [U ]EH [V ] > 0 we obtain

EH [U ]2EH [V 2]− 2EH [U ]EH [V ]EH [UV ] + EH [U2]EH [V ]2

> EH [U ]2EH [V 2]− 2EH [U ]EH [V ]
√
EH [U2]EH [V 2] + EH [U2]EH [V ]2

=
(
EH [U ]

√
EH [V 2]− EH [V ]

√
EH [U2]

)2

> 0 .

Now that we have shown (A.5) we can proceed as in part 1, since (A.3) is bounded from

above by

ε
√

(EH [U2]− εEH [U ]2)(EH [V 2]− εEH [V ]2)√
((1− ε)VF + ε(EH [U2]− εEH [U ]2))((1− ε)VF + ε(EH [V 2]− εEH [V ]2))

and this quantity is maximal when (EH [U2] − εEH [U ]2) and (EH [V 2] − εEH [V ]2) are as

large as possible. Their supremum is again M2, so (A.3) is less than or equal to (A.4).

3. Now all that is left to show is that the upper bound (A.4) is sharp. Let (kn)n∈N

be a sequence such that limn→∞ ψ(kn) = supx |ψ(x)| = M and consider the sequence of

‘worst-placed’ contaminating distributions

Hn =
1

2
∆(kn,kn) +

1

2
∆(−kn,−kn) . (A.8)
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For the numerator of (A.3) we have lim
n→∞

εEHn [UV ]− ε2EHn [U ]EHn [V ] = εM2 since EHn [U ] =

0 = EHn [V ], and for the denominator we obtain analogously

lim
n→∞

√
((1− ε)VF + εEHn [U2])((1− ε)VF + εEHn [V 2]) = (1− ε)VF + εM2

so we reach the upper bound (A.4). The proof for the maximum downward bias is en-

tirely similar, and there the worst placed contaminating distributions are of the form

Hn = 1
2
∆(kn,−kn) + 1

2
∆(−kn,kn) . QED.

Proof of Corollary 1. For the breakdown value we start from F = F1 , that is ρ = 1

and X = Y , so CovF (ψ(X), ψ(Y )) = VarF (ψ(X)) hence Tψ(F ) = 1. From Proposition 2

we know that

inf
G∈Fε

Tψ(G) =
(1− ε) VarF (ψ(X))Tψ(F )− εM2

(1− ε) VarF (ψ(X)) + εM2
.

For this to be nonpositive the numerator has to be, i.e. (1 − ε) VarF (ψ(X)) − εM2 6 0.

The smallest ε for which this holds is indeed VarF (ψ(X))/(VarF (ψ(X)) +M2) . QED.

Note that we can rewrite the breakdown value as ε∗ = 1 − (EF [(ψ/M)2] + 1)−1 so it

is a strictly increasing function of EF [(ψ/M)2]. This implies that the maximizer of the

breakdown value is ψ(x) = sign(x) which maximizes EF [(ψ/M)2] = 1, hence ε∗ = 0.5

(this yields the quadrant correlation). Interestingly, the breakdown value of the scale M-

estimator S defined by avei ρ(xi/S) = EF [ρ] where ρ(z) := ψ2(z) is also determined by the

ratio EF [ρ]/M2 = EF [(ψ/M)2], see e.g. Maronna et al. (2006).

A.5 Relation with breakdown values of rank correlations

The breakdown values of the rank correlations in Table 2 were derived by Capéraà and

Garralda (1997) and Boudt et al. (2012), but not for the ε-contamination model (16).

Instead they used replacement contamination, which means you can take out a certain

fraction of the observations and replace them by arbitrary points. In fact ε-contamination

is a special case of this, which corresponds to replacing a mass ε distributed exactly like

the original distribution F , whereas in general one could replace an arbitrary part of F .

Therefore the breakdown value for replacement is always less than or equal to that for
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ε-contamination. However, in many situations the result turns out to be the same, as is

the case here.

For rank correlations in the replacement model, Capéraà and Garralda (1997) and Boudt

et al. (2012) showed that given a sorted sample (x1, y1), . . . , (xn, yn) where x1 < · · · < xn

and xi = yi for all i ∈ {1, . . . , n}, the worst possible bias is reached by replacing the highest

and the lowest yi by values beyond the other end of the range.

We can in fact obtain the same type of configuration through the ε-contamination

model. Let us start from perfectly correlated data, that is xi = yi for all i ∈ {1, . . . , n}.

Then choose a sequence of contaminating distributions Hn = 1
2
∆(−kn,kn) + 1

2
∆(kn,−kn) in

which the kn are positive and tend to infinity, so the horizontal and vertical coordinates of

the outliers move outside the range of the original data values. The resulting rank pairs

then have the same configuration as was constructed for breakdown under replacement.

Therefore the ε-contamination breakdown values of rank correlations equal those under

replacement.

A.6 Construction of the optimal transformation

Theorem 3.1 in (Hampel et al., 1981) says that for any 0 < c <∞ and large enough k > 0

there exist positive constants 0 < b < c, A and B such that ψ̃ defined by

ψ̃(z) =


z if 0 6 |z| 6 b√
A(k − 1) tanh

(
B
2

√
k−1
A

(c− |z|)
)

sign(z) if b 6 |z| 6 c

0 if c 6 |z|

(A.9)

satisfies

b =
√
A(k − 1) tanh

(
1

2

√
(k − 1)B2

A
(c− b)

)
,

A =
∫ c
−c ψ̃(x)2dΦ(x) , B =

∫ c
−c ψ̃

′(x)dΦ(x) and κ∗(ψ̃) = k . Theorem 4.1 then says that this

function ψ̃ minimizes the asymptotic variance among all odd functions ψ satisfying (21)

subject to κ∗(ψ) 6 k, and that this optimal solution is unique (upto a positive nonzero

factor). It can be verified that for a given value of c there is a strictly monotone relation

between k and b, so we have decided to parametrize ψ̃ by the easily interpretable tuning

constants b and c. A short R-script is available that for any b and c derives the other
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constants A, B and k, in turn yielding q1 =
√
A(k − 1) and q2 = (B/2)

√
(k − 1)/A . For

instance, for b = 1.5 and c = 4 we obtain A = 0.7532528, B = 0.8430849 and k = 4.1517212

hence q1 = 1.540793 and q2 = 0.8622731, yielding the gross-error-sensitivity (b/B)2 = 3.16

and the efficiency (B2/A)2 = 0.890.

x

y

IF

−3

−2

−1

0

1

2

Figure 13: Influence function of Tψ at Fρ for ρ = 0.5.

Figure 13 shows the influence function (A.2) at ρ = 0.5 for the psi-function ψb,c of (22).

The influence function has the same shape at other values of ρ, up to shifting and rescaling

the surface along the vertical axis, as shown in Section A.2.

A.7 Proof of Propositions 3 and 4

Proof of Proposition 3. It is assumed that (X, Y ) follows a bivariate Gaussian distribu-

tion. Due to the invariance properties of correlation, we can assume w.l.o.g. that the

distribution is Fρ with center 0, unit variances and true correlation −1 < ρ < 1. The

assumption that Cor(gX(X), gY (Y )) = 0 is equivalent to its numerator being zero, i.e.
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T (Fρ) = Eρ[ψ(X)ψ(Y )] = 0. We need to show that this implies ρ = 0, from which

independence between the components follows.

We first show that ρ > 0 implies that T (Fρ) = Eρ[ψ(X)ψ(Y )] > 0. Denote A =

{(x, y) ∈ R2; xy > 0} and B = {(x, y) ∈ R2; xy < 0}. We then have:

Eρ[ψ(X)ψ(Y )] =

∫
R2

ψ(x)ψ(y)fρ(x, y)dxdy

=

∫
A

ψ(x)ψ(y)fρ(x, y)dxdy +

∫
B

ψ(x)ψ(y)fρ(x, y)dxdy

=

∫
A

ψ(x)ψ(y)fρ(x, y)dxdy +

∫
A

ψ(x)ψ(−y)fρ(x,−y)dxdy

=

∫
A

ψ(x)ψ(y)fρ(x, y)dxdy −
∫
A

ψ(x)ψ(y)fρ(x,−y)dxdy

=

∫
A

ψ(x)ψ(y) {fρ(x, y)− fρ(x,−y)} dxdy .

In the third equality we have changed the integration variables from (x, y) to (x,−y). This

transformation has Jacobian 1 and maps B to A. In the fourth equality we have used that

ψ is odd so ψ(−y) = −ψ(y). Now note that fρ(x, y) > fρ(x,−y) for all (x, y) ∈ A since

ρ > 0. We conclude that T (Fρ) > 0. The proof that T (Fρ) < 0 for ρ < 0 follows by

symmetry. Therefore, T (Fρ) = 0 implies ρ = 0 .

Proof of Proposition 4.

(i) From (23) and equivariance it follows that µ̂Y = α + βµ̂X and σ̂Y = βσ̂X hence

gY (yi) = (yi − µ̂Y )/σ̂Y = (xi − µ̂X)/σ̂X = gX(xi) for all i.

(ii) From Cor(gX(xi), gY (yi)) = 1 and avei(gX(xi)) = 0 and avei(gY (yi)) = 0 it follows

that there is a constant γ > 0 such that gY (yi) = γgX(xi) for all i. For the i for which

|xi−µ̂X |/σ̂X 6 b and |yi−µ̂Y |/σ̂Y 6 b it holds that gY (yi) = (yi−µ̂Y )/σ̂Y and gX(xi) = (xi−

µ̂X)/σ̂X hence (yi− µ̂Y )/σ̂Y = γ(xi− µ̂X)/σ̂X which implies (23) with α = µ̂Y −γµ̂X σ̂Y /σ̂X
and β = γσ̂Y /σ̂X .

A.8 Illustration of anomaly detection based on robust location

and scatter

To visualize things we consider a small bivariate data set, about the star cluster CYG OB1

consisting of 47 stars in the direction of Cygnus. Their Hertzsprung-Russell diagram is a
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Figure 14: Plot of the 47 stars with their classical tolerance ellipse (red) and the one based

on wrapped covariance (blue).

plot of the logarithm of each star’s light intensity versus the logarithm of its temperature.

The data can be found on page 27 of (Rousseeuw and Leroy, 1987) and is plotted in Figure

14. We see that the majority of the stars (the so-called main sequence stars) follows a

certain upward trend, whereas there are four anomalous stars in the upper left corner.

These are red giant stars. In this data set the anomalies are measured correctly, but they

belong to a different population.

The classical correlation between the variables is −0.21 which would indicate a negative

relation. However, this decreasing trend is caused by the four outliers, and without them

the trend would be increasing. Indeed, the wrapped correlation is 0.57 indicating a positive

relation. Figure 14 shows the 99% tolerance ellipse derived from the classical mean and

covariance matrix, in red. The four outliers have pulled the ellipse toward them, making

them lie on its boundary. In contrast, the tolerance ellipse from the wrapped mean and

covariance (in blue) fits the majority of the stars, leaving aside the four outliers.

Of course, in higher dimensions we can no longer plot the data points or draw the

tolerance ellipsoids. But in that case we can still look at the classical Mahalanobis distance
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of each case xi given by

MD(xi) =

√
(xi − µ̂)′Σ̂−1(xi − µ̂) , (A.10)

in which µ̂ is the arithmetic mean and Σ̂ the empirical covariance matrix. The left panel of

Figure 15 plots MD(xi) versus the case number i. In this plot the four giant stars lie close

to the cutoff value
√
χ2
d,0.99 for dimension d = 2. But they are easily detected in the right

hand panel, which plots the robust distances given by (A.10) where this time µ̂ and Σ̂ are

the location and scatter matrix obtained from the wrapped data. These robust estimates

have thus allowed us to detect the anomalies.
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Figure 15: Classical distances of the stars (left) and their robust distances based on wrapped

location and covariance (right).

A.9 Distance correlation after transformation

The distance correlation dCor between random vectors X and Y is defined by the Pearson

correlation between the doubly centered interpoint distances of X and those of Y (Székely

et al., 2007). It always lies between 0 and 1. Interestingly, dCor(X,Y ) can also be

written in terms of the characteristic functions of the joint distribution of (X,Y ) and the

marginal distributions of X and Y . Using this result Székely et al. (2007) prove that
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dCor(X,Y ) = 0 implies that X and Y are independent, which is not true for the plain

Pearson correlation (except for multivariate Gaussian data).

The population dCor(X,Y ) is estimated by its finite-sample version dCor(Xn,Yn)

which is a test statistic for dependence. Unfortunately this statistic is very sensitive to

outliers. To illustrate this we first generate n = 100, 000 data points from the standard bi-

variate Gaussian distribution, which has dCor(X,Y ) = 0, and replace a single observation

by an outlier in the point (a, a). The left panel of Figure 16 shows dCor(Xn,Yn) as a func-

tion of a. For this we used the fast algorithm of Huo and Székely (2007) as implemented

in the function dcor2d in the R package energy, which can handle such a large sample size

n. For a = 0 we obtain dCor(Xn,Yn) ≈ 0 but by letting a increase we can bring the result

close to 1, even though the remaining 99, 999 points were generated independently.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0e+00 5e+04 1e+05 1.5e+05 2e+05

dCor of binormal data with 1 outlier at (a,a)

a

dC
or

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dCor of linear data with 1 outlier at (a,0)

a

dC
or

Figure 16: Left panel: distance correlation (black curve) and its robust version (blue curve)

of a data set with 99, 999 standard Gaussian data points and one outlier at (a, a) versus

a. Right panel: distance correlation of data with 99, 999 data points (xi, xi) with standard

Gaussian xi and one outlier at (a, 0).

We can also do the opposite, by starting from a perfectly dependent setting. For this

we generate Xn from the univariate standard Gaussian distribution, and take Yn := Xn

so that dCor(Xn,Yn) = 1. Then we replace a single observation by an outlier in the point

(a, 0). In the right panel of Figure 16 we now see that we can bring dCor(Xn,Yn) close to
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0 by this single outlier out of 100, 000 data points.

We now apply our methodology of first transforming the individual variables. For this

we use the function g of (25) where µ̂j is the sample median and σ̂j is the median absolute

deviation. For the ψ-function we use the sigmoid ψ(z) = tanh(z). After this transformation

we compute the distance correlation. This combined method no longer requires the first

moments of the original variables to exist because ψ is bounded, and its population version

is again zero if and only if the original X and Y are independent, since ψ is invertible.

The blue lines in Figure 16 are the result of applying the combined method, which by

construction is insensitive to the outlier.

The robustness of the proposed method can help even when no outliers are added but

distributions are long-tailed, as illustrated in Figure 8.

A.10 Simulation with cellwise outliers

This section repeats the simulation in Section 4 for cellwise outliers. The clean data are

exactly the same, but now we randomly select data cells and replace them by outliers

following the distributionN(k, 0.012) when they occur in the x-coordinate andN(−k, 0.012)

when they occur in the y-coordinate. The simulation was run for 10%, 20% and 30% of

cellwise outliers, but the patterns were similar across contamination levels.

Figure 17 shows the MSE of the same transformation-based correlation measures as in

Figure 4, with 10% of cellwise outliers for k = 3 and k = 5. Within this class Pearson

again has the worst MSE, followed by normal scores. The quadrant correlation is next,

and does not look as good here as for rowwise outliers. Wrapping has the lowest MSE,

and again outperforms Spearman, sigmoid and Huber because it moves the outlying cells

to the central part of their variable.

Figure 18 compares wrapping to the correlation measures in Figure 7 in the presence

of these cellwise outliers. Also here the SSCM has the largest bias, especially in d = 10

dimensions, followed by Kendall’s tau. Wrapping does well but not as well as MCD and

GK when k = 3, and their performance is similar for k = 5. But in higher dimensions

wrapping still has the redeeming feature that it yields a PSD correlation matrix unlike the

GK method, whereas the MCD suffers from the propagation of cellwise outliers and a high

computation time.
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Figure 17: MSE of the correlation measures in Figure 4 with 10% of cellwise outliers placed

with k = 3 (left) and k = 5 (right).
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Figure 18: MSE of the correlation measures in Figure 6 with 10% of cellwise outliers placed

with k = 3 (left) and k = 5 (right).
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