Supporting Information

New lignan from the rattan stems of Schisandra chinensis

Bing-You Yang^a, Zhang-Lin Chen^a, Yan Liu^a, Jiang-Tao Guo^b, Hai-Xue Kuang^a

^aKey Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, People's Republic of China; ^bGui Yang College of Traditional Chinese Medicine, Guiyang 550002, People's Republic of China Corresponding Author

*Tel: +86 0451-87267188; E-mail: <u>hxkuang@yahoo.com</u>

ABSTRACT:

A new lignan named schilignan F (1), together with twelve known ones (2-13), were isolated from the rattan stems of *Schisandra chinensis*. Their chemical structures were elucidated by spectroscopic methods including one and two-dimensional NMR spectra referring to the literatures, as well as high-resolution mass spectrometric analysis. All compounds were evaluated for their cytotoxicities against human Hela cancer cell lines *in vitro*. The results showed that compounds 2, 6 and 8 exhibited weak cytotoxic activity with IC₅₀ values of 30.6, 86.3 and 41.0 μ M, and cisplatin showed cytotoxic activity with IC₅₀ value of 27.3 μ M.

Keywords: Magnoliaceae, Lignan, Schisandra chinensis, Natural products, Cytotoxicity

Table S1 ¹³C-NMR Data of **2-13** (100 MHz in ¹³C NMR, CD₃OD)

NO.	2	3	4	5	6	7	8	9	10	11	12	13
1	139.1	138.4	138.8	133.2	134.7	128.5	129.1	133.7	138.8	146.3	146.4	130.6
2	111.3	111.3	111.2	109.3	110.8	114.0	112.7	111.6	112.7	150.8	150.8	111.9
3	152.1	150.9	152.1	147.6	149.0	148.4	149.1	148.8	148.9	118.4	118.3	153.4
4	146.4	147.6	146.6	146.0	147.4	147.5	147.5	147.6	145.6	136.5	136.5	149.1
5	119.1	118.0	119.6	114.6	116.1	115.2	116.0	115.8	116.1	122.2	122.1	115.8
6	119.6	119.4	119.1	118.3	119.8	122.4	121.6	120.7	121.5	114.1	114.2	124.7
7	88.3	88.5	88.6	87.8	89.2	90.0	89.3	74.1	67.3	40.8	40.8	199.7
8	55.9	55.6	55.7	51.5	52.9	99.2	92.8	87.7	37.3	139.0	139.0	41.7
9	65.2	65.1	62.2	70.9	72.3	73.1	76.1	61.8	9.9	115.9	115.9	58.9
1'	136.9	137.1	137.1	135.6	137.0	133.1	133.6	138.2	138.0	103.1	103.0	
2'	117.1	114.2	114.1	112.6	114.2	110.6	111.3	114.1	112.7	74.9	75.0	
3'	141.9	145.3	145.2	143.8	145.2	149.3	148.7	151.6	148.8	78.0	78.2	
4'	146.5	147.5	147.5	146.0	147.5	147.3	147.4	147.2	145.5	71.6	71.4	
5'	129.5	129.6	129.1	128.3	129.7	116.3	115,6	119.6	116.1	77.8	77.9	
6'	116.7	118.0	117.9	116.8	118.2	119.9	120.5	122.1	121.6	68.7	62.5	
7'	32.7	32.9	32.9	31.5	32.9	86.8	87.8	32.7	57.3			
8'	35.9	35.8	35.8	34.4	35.8	60.3	62.4	32.7	36.9			
9'	62.3	62.3	65.1	60.8	62.2	72.2	72.0	69.9	12.2			
OCH_3	56.5	56.8	56.4	55.0	56.8	56.5	56.4	56.3	56.4	56.7	56.7	56.4
OCH_3		56.8	56.7	56.3	56.5	56.6	56.4	56.5	56.4			
1''	101.3	102.8	101.4	102.8	104.3	100.1		104.5		111.0		
2''	72.1	74.9	72.2	73.7	75.2	74.8		75.2		77.0		
3"	72.2	78.2	72.1	76.8	78.2	78.3		77.9		80.5		
4''	73.9	71.4	73.9	70.2	71.7	71.1		71.7		75.0		
5''	70.8	77.8	70.8	76.6	78.1	78.0		78.1		65.6		
6''	17.9	62.5	18.0	61.3	62.8	62.4		62.8				

Table S2 Cytotoxic activities of compounds (1-13) from the rattan stems of *S. chinensis*.

Growth Inhibition Constant (IC ₅₀ in μM) ^a									
Drugs	IC ₅₀ (μM)	Drugs	IC ₅₀ (μM)						
cisplatin ^b	27.3 ± 1.9	Compound 7	>100						
Compound 1	>100	Compound 8	>100						
Compound 2	30.6 ± 1.7	Compound 9	41.0 ± 3.5						
Compound 3	>100	Compound 10	>100						
Compound 4	>100	Compound 11	>100						
Compound 5	>100	Compound 12	>100						
Compound 6	86.3 ± 5.2	Compound 13	>100						

 $^{^{*}}IC_{50}$ was defined as the concentration that resulted in a 50% decrease in cell number

The IC_{50} greater than 100 μM was deemed inactive.

^b Positive control.

Fig.S1. ¹H-NMR (400 MHz) Spectrum of compound 1 in CD₃OD

Fig.S2. ¹³C-NMR (100 MHz) Spectrum of compound **1** in CD₃OD

Fig.S3. DEPT Spectrum of compound 1 in CD₃OD

Fig.S4. ¹H-¹H COSY Spectrum of compound **1** in CD₃OD

Fig.S5. HSQC Spectrum of compound 1 in CD₃OD

Fig.S6. HMBC Spectrum of compound 1 in CD₃OD

Fig.S7. MS Spectrum of compound 1

Fig.S8. Key HMBC and ¹H-¹H COSY correlations of compound **1**

Fig.S10. MS Spectrum of compound 3

Fig.S12. MS Spectrum of compound 5

Fig.S13. MS Spectrum of compound 6

Fig.S14. MS Spectrum of compound 7

Fig.S16. MS Spectrum of compound 9

Fig.S17. MS Spectrum of compound 10

Fig.S18. MS Spectrum of compound 11

Fig.S19. MS Spectrum of compound 12

Fig.S20. MS Spectrum of compound 13

