New Bifunctional Carbohydrate-Like Thiourea Derivatives – Design and First Application in Organocatalysis

Lutz Adam,^[a] Luise Schefzig,^[a] Tommaso Pecchioli,^[a] Reinhold Zimmer,^{*[a]} Hans-Ulrich Reissig^{*[a]}

 [a] Institut für Chemie und Biochemie, Freie Universität Berlin Takustr. 3, 14195 Berlin, Germany
Fax: (+49) 30-83855367
E-mail: <u>hans.reissig@chemie.fu-berlin.de</u>; <u>rzimmer@zedat.fu-berlin.de</u>

Table of content

General Methods	page	1
Synthesis and spectroscopic data	page	2-8
References	page	8
Copies of spectra	page	9-20

General Methods: Reactions were generally performed under argon in flame-dried flasks. Solvents and reagents were added by syringes. Solvents were dried using standard procedures. Reagents were purchased and were used as received without further purification unless stated. Reactions were monitored by thin-layer chromatography (TLC). Products were purified by flash chromatography (FLC) on silica gel (32-63 µm). Unless otherwise stated, yields refer to chromatographically homogeneous and spectroscopically pure materials (¹H-NMR spectroscopy). NMR spectra were recorded with JEOL (ECX 400, Eclipse 500) instruments. Chemical shifts are reported relative to TMS (¹H: δ = 0.00 ppm) and CDCl₃ (¹³C: δ = 77.0 ppm). Integrals are in accordance with assignments; coupling constants are given in Hz. Multiplicity is indicated as follows: s (singlet), d (doublet), t (triplet), m (multiplet), m_c (centered multiplet), dd (doublet of doublet), br s (broad singlet). MS and HRMS analyses were performed with a Varian Ionspec QFT-7 instrument (ESI-FT ICRMS).

rotations ($[\alpha]_D$) were determined with Perkin–Elmer 141 or Perkin–Elmer 241 polarimeters at the temperatures given. Melting points were measured with a Reichert apparatus (Thermovar) and are uncorrected.

The starting materials **9**,^[1] **11**,^[2] **13**,^[3] and the prolinol derivative **26**^[4] were prepared according to literature procedures.

General Procedure 1, Syntheses of Thiourea Derivatives:

The corresponding aminopyran or aminooxepane derivative (1.0 equivalent) and isothiocyanate **14** (1.0 equivalent) were dissolved in methanol or isopropanol (2-8 mL/mmol substrate) at 0 °C. After stirring the mixture for 1.5 h at this temperature, the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel (CH₂Cl₂/MeOH, 15:1) to give the corresponding thiourea product.

1-[3,5-Bis(trifluoromethyl)phenyl]-3-[(2*S*,3*R*,4*S*,5*S*)-4-hydroxy-2,5-bis(hydroxylmethyl)-6,6-dimethyltetrahydro-2*H*-pyran-3-yl]thiourea (15):

According to the general procedure 1, pyran derivative 9 (282 mg, 1.38 mmol), and isothiocyanate 14 (374 mg, 1.38 mmol) in methanol (7 mL) were used. The crude product was purified by column chromatography to give 15 (305 mg, 46%) as colorless crystals, mp. 83-86 °C, and 18 (160 mg, 38%) as colorless wax. Product **15**: $[\alpha_D^{20}]$ +45.0 (*c* 0.5, MeOH). ¹H NMR (CD₃OD, 500 MHz): δ = 1.27, 1.46 (2 s, 3 H each, Me), 1.78 (q, J = 5.3 Hz, 1 H, 5"-H), 3.56 (dd, J = 11.6, 7.1 Hz, 1 H, 2"-CH₂), 3.66-3.72 (m, 2 H, 2"-CH₂, 5"-CH₂), 3.75 (dd, J = 11.1, 5.7 Hz, 1 H, 5"-CH₂), 4.05 (t, J = 4.7 Hz, 1 H, 4"-H), 4.19-4.25 (m, 1 H, 2"-H), 4.63-4.66 (m, 1 H, 3"-H), 7.63 (s, 1 H, 4'-H), 8.21 ppm (s, 2 H, 2'-H). ¹³C NMR (CD₃OD, 125.8 MHz): δ = 26.5, 27.6 (2 q, Me), 49.4 (d, C-5"), 58.0 (d, C 3"), 62.8 (t, 2"-CH₂), 63.2 (t, 5"-CH₂), 70.8 (d, C-2"), 72.6 (d, C-4"), 75.8 (s, C-6"), 117.8 (d, C-4'), 123.7 (d, C-2'), 124.7 (q, ${}^{1}J_{CF}$ = 271.9 Hz, CF₃), 132.6 (q, ${}^{2}J_{CF}$ = 32.9 Hz, C-3'), 141.5 (s, C-1'), 182.8 ppm (s, C-2). ¹⁹F NMR (CD₃OD, 376 MHz): δ = -60.4 ppm (s, CF₃). IR (ATR): v = 3500-3100 (OH, NH), 3100-2895 (=C-H, C-H), 1275 cm⁻¹ (C=S). HRMS (ESI-TOF) calcd for C₁₈H₂₃F₆N₂O₅S [M+H]⁺: 477.1277, found: 477.1325. Elemental analysis calc (%) for C₁₈H₂₂F₆N₂O₅S (476.4): C 45.38, H 4.65, N 5.88, S 6.73; found: C 45.38, H 4.66, N

5.92, S 7.24. Product **18**: ¹H NMR (CD₃OD, 400 MHz): $\delta = 4.07$ (s, 3 H, OMe), 7.69 (s, 1 H, 4-H), 8.30 ppm (br s, 2 H, 2-H). ¹³C NMR (CD₃OD, 125.8 MHz): $\delta = 56.4$ (q, OMe), 117.0 (d, C-4), 121.1 (d, C-2), 123.3 (q, ¹*J*_{CF} = 277.2 Hz, CF₃), 131.7 (q, ²*J*_{CF} = 37.4 Hz, C-3'), 189.5 ppm (s, C=S); the signal of C-1' could not be detected. IR (ATR): v = 3300-3200 (N-H), 3100-2900 (=C-H, C-H), 1280 cm⁻¹ (C=S). Elemental analysis calc (%) for C₁₀H₇F₆NOS (303.2): C 39.61, H 2.33, N 4.62, S 10.57; found: C 39.64, H 2.54, N 4.69, S 10.04.

1-[3,5-Bis(trifluoromethyl)phenyl]-3-[(2*S*,3*R*,4*R*,5*S*,6*S*)-4-hydroxy-2,5-bis-(hydroxylmethyl)-6-methoxytetrahydro-2*H*-pyran-3-yl]thiourea (16):

According to the general procedure 1, pyran derivative **11** (79 mg, 0.38 mmol), and isothiocyanate **14** (103 mg, 0.38 mmol) in methanol (3 mL) were used. The crude product was purified by column chromatography to give **16** (83 mg, 45%) as colorless solid, mp. 163-165 °C. [[$α_D^{20}$] +65.5 (*c* 0.38, MeOH). ¹H NMR (CD₃OD, 400 MHz): δ = 1.97-2.02 (m, 1 H, 5"-H), 3.37 (s, 3 H, OMe), 3.62 (dd, *J* = 11.6, 7.0 Hz, 1 H, 2"-CH₂), 3.68-3.82 (m, 3 H, 2"-CH₂, 5"-CH₂), 4.01-4.06 (m, 1 H, 2"-H), 4.22-4.42 (m, 1 H, 4"-H), 4.83 (s, 1 H, 6"-H), 4.97-5.01 (m, 1 H, 3"-H), 7.64 (s, 1 H, 4'-H), 8.13 ppm (s, 2 H, 2'-H). ¹³C NMR (CD₃OD, 125.8 MHz): δ = 45.3 (d, C-5"), 54.0 (d, C-3"), 54.0 (q, OMe), 57.5 (t, 5"-CH₂), 61.3 (t, 2"-CH₂), 65.8 (d, C-4"), 70.4 (d, C-2"), 100.9 (d, C-6"), 117.0 (d, C-4'), 123.1 (d, C-2'), 123.4 (q, ¹*J*_{CF} = 271.8 Hz,CF₃), 131.5 (q, ²*J*_{CF} = 33.9 Hz, C-3'), 141.4 (s, C-1'), 182.4 ppm (s, C-2). ¹⁹F NMR (CD₃OD, 376 MHz): δ = -64.3 ppm (s, CF₃). IR (ATR): v = 3500-3100 (O-H, N-H), 3100-2880 (=C-H, C-H), 1275 cm⁻¹ (C=S). HRMS (ESI-TOF) calcd for C₁₇H₂₁F₆N₂O₅S (478): C 42.68, H 4.21, N 5.86, S 6.70; found: C 42.72, H 4.44, N 5.83, S 7.26.

1-[3,5-Bis(trifluoromethyl)phenyl]-3-[(2*S*,3*S*,4*R*,5*S*,6*S*)-3,5-dihydroxy-2,6-bis-(hydroxymethyl)-7,7-dimethyloxepan-4-yl]thiourea (17):

According to the general procedure 1, oxepane derivative **13** (353 mg, 1.50 mmol), and isothiocyanate **14** (407 mg, 1.50 mmol) in methanol (8 mL) were used. The crude product was purified by column chromatography to give **17** (605 mg, 80%) as pale pink solid, mp. 165 °C, $[\alpha_D^{20}]$ -20.5 (*c* 0.7, MeOH). ¹H NMR (CD₃OD, 500 MHz, 300

K): $\delta = 1.35$ (2 s, 3 H each, Me), 2.00-2.08 (m, 1 H, 6"-H), 3.53-3.72 (m, 5 H, 2"-H, 2"-CH₂, 6"-CH₂), 3.85 (dd, J = 7.8, 2.9 Hz, 1 H, 5"-H), 3.95 (m_c, 1 H, 3"-H), 4.58-4.70 (m, 1 H, 4"-H), 7.56 (s, 1 H, 4'-H), 8.07 ppm (s, 2 H, 2'-H). ¹³C NMR (CD₃OD, 125.8 MHz, 300 K): $\delta = 21.2$, 31.6 (2 q, Me), 59.8 (d, C-6"), 63.6* (t, 2"-CH₂, 6"-CH₂), 67.7 (d, C-4"), 73.7, 74.9 (2 d, C-2", C-5"), 77.4 (s, C-7"), 118.1 (d, C-4'), 124.4 (d, C-2'), 124.7 (q, ¹ $J_{CF} = 273.5$ Hz, CF₃), 132.8 (q, ² $J_{CF} = 40.9$ Hz, C-3'), 143.0 (s, C-1'), 184.2 ppm (s, C-2); *intensity of the peak corresponds to two C atoms. ¹⁹F NMR (CD₃OD, 376 MHz): $\delta = -64.3$ ppm (s, CF₃). IR (ATR): v = 3500-3100 (O-H, N-H), 3100-2850 (=C-H, C-H), 1275 cm⁻¹ (C=S). HRMS (ESI-TOF): calcd for C₁₉H₂₅F₆N₂O₅S [M+H]⁺: 507.1400, found: 507.1383. Elemental analysis calc (%) for C₁₉H₂₄F₆N₂O₅S (506.5): C 45.06, H 4.78, N 5.53, S 6.33; found: C 45.00, H 4.79, N 5.46, S 6.48.

[(1*S*,5*R*,8*S*)-2-Benzyl-6,6-dimethyl-9-oxo-3,7-dioxa-2-azabicyclo[3.3.1]nonan-8yl]methylmethanesulfonate:

To a solution of bicyclic ketone 8 (391 mg, 1.34 mmmol) in dichloromethane (10 mL) mesyl chloride (220 µL, 2.81 mmol) and NEt₃ (940 µL, 6.70 mmol) were added under argon atmosphere at 0 °C. The solution was stirred at this temperature for 4 h. Then, sat. aq. NaHCO₃ (30 mL) and water (15 mL) were added and the phases were separated. The aqueous phase was extracted with dichloromethane (4 x 40 mL) and dried (Na₂SO₄). After filtration and removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (hexane/ethyl acetate, 1:1) to yield the mesylate (361 mg, 73%) as pale yellow solid, mp. 123 °C. $[\alpha_D^{20}]$ +86.0 (c 1.37, CH₂Cl₂). ¹H NMR (CDCl₃, 500 MHz): δ = 1.21, 1.44 (2 s, 3 H each, Me), 2.30 (dt, J = 4.0, 2.3 Hz, 1 H, 5-H), 2.96 (s, 3 H, SO₂Me), 3.08-3.10 (m, 1 H, 1-H), 3.95, 4.19 (2 d, J = 13.0 Hz, 1 H each, NCH₂), 4.18-4.22 (m, 1 H, 8-H), 4.37 (dd, J = 10.5, 5.3 Hz, 1 H, 4-H), 4.50-4.57 (m, 2 H, 4-H, 8-CH₂), 4.61 (dd, J = 12.4, 4.1 Hz, 1 H, 8-CH₂), 7.27-7.35 ppm (m, 5 H, Ph). ¹³C NMR (CDCl₃, 125.8 MHz): δ = 24.0, 26.65 (2 q, Me), 37.4 (q, SO₂Me), 57.8 (d, C-5), 58.6 (t, NCH₂), 68.3 (d, C-1), 68.9 (t, C-4), 69.3 (t, 8-CH₂), 73.0 (d, C-8), 78.8 (s, C-6), 128.0, 128.6, 129.2, 135.3 (s, 3 d, Ph), 207.6 ppm (s, C-9). IR (ATR): v = 3095-3030 (=C-H), 2980-2870 (C-H), 1725 cm⁻¹ (C=O). HRMS (ESI-TOF): calcd for $C_{17}H_{24}NO_6S$ [M+H]⁺: 370.1319, found: 370.1328.

(1*S*,5*R*,8*R*)-2-Benzyl-6,6-dimethyl-8-(pyrrolidin-1-ylmethyl)-3,7-dioxa-2-azabicyclo[3.3.1]nonan-9-one (19):

A mixture of the above prepared mesylate (200 mg, 0.541 mmol) and pyrrolidine (230 µL, 2.70 mmol) in dry 1,4-dioxane (5 mL) was placed in an ACE-sealed tube and heated at 100 °C for 17 h. The mixture was cooled to room temperature and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel (CH₂Cl₂/methanol, 15:1) to yield compound **19** (133 mg, 71%) as caramel-hued wax, $[\alpha_D^{20}]$ +77.1 (*c* 0.2, CH₂Cl₂). ¹H NMR (CDCl₃, 500 MHz): δ = 1.14, 1.33 (2 s, 3 H each, Me), 1.71-1.79 (m, 4 H, 3'-H), 2.17-2.30 (m, 1 H, 5-H), 2.64-2.77 (m, 4 H, 2'-H), 2.85 (dd, J = 12.0, 6.8 Hz, 1 H, 8-CH₂), 2.99 (dd, J = 12.6, 5.4 Hz, 1 H, 8-CH₂), 3.12-3.15 (m, 1 H, 1-H), 3.90, 4.06 (2 d, J = 13.5 Hz, 1 H each, 2-CH₂), 4.17-4.22 (m, 1 H, 8-H), 4.41 (dd, J = 12.2, 5.1 Hz, 1 H, 4-H), 4.45 (dd, J = 12.1, 2.9 Hz, 1 H, 4-H), 7.16-7.28 ppm (m, 5 H, Ph). ^{13}C NMR (CDCl_3, 125.8 MHz): δ = 23.5 (t, C-3'), 24.0, 26.9 (2 q, Me), 54.7 (t, C-2'), 56.9 (t, 8-CH₂), 58.0 (d, C-5), 59.8 (t, 2-CH₂), 69.2 (t, C-4), 70.9 (d, C-1), 73.2 (d, C-8), 78.4 (s, C-6), 127.8, 128.5, 129.1, 136.1 (s, 3 d, Ph), 207.9 ppm (s, C-9). IR (ATR): v = 3090-3020 (=C-H), 2950-2855 (C-H), 1720 cm⁻¹ (C=O). HRMS (ESI-TOF): calcd for C₂₀H₂₉N₂O₃ [M+H]⁺: 345.2173, found: 345.2187.

(1*R*,5*S*,8*R*,9*S*)-2-Benzyl-6,6-dimethyl-8-(pyrrolidin-1-ylmethyl)-3,7-dioxa-2-azabicyclo[3.3.1]nonan-9-ol (20):

Bicyclic compound **19** (129 mg, 0.375 mmol) was dissolved in ethanol (5 mL) under argon atmosphere and cooled to 0 °C. NaBH₄ (28.4 mg, 0.750 mmol) was added in portions and the mixture was stirred at 0 °C to room temperature for 3 h. Then, the solvent was removed under reduced pressure. The resulting residue was dissolved in dichloromethane (5 mL) and water (5 mL). The aqueous phase was extracted with dichloromethane (3 x 5 mL), the combined organic phases were dried (MgSO₄), and the solvent was removed under reduced pressure. The obtained product **20** (116 mg, 89%) was used without further purification in the next step. ¹H NMR (CDCl₃, 500 MHz): δ = 1.30, 1.56 (2 s, 3 H each, Me), 1.53-1.56 (m, 1 H, 5-H), 1.70-1.82 (m, 4 H, 3'-H), 2.36-2.39 (m, 1 H, 1-H), 2.48-2.55 (m, 2 H, 8-CH₂), 2.63-2.76 (m, 4 H, 2'-H), 4.05 (d, *J* = 13.7 Hz, 1 H, 2-CH₂), 4.08-4.19 (m, 2 H, 4-H), 4.26 (d, *J* = 13.6 Hz, 1 H, 2-CH₂), 4.45-4.51 (m, 1 H, 8-H), 4.54 (t, *J* = 3.3 Hz, 1 H, 9-H), 7.15-7.41 ppm (m, 5 H, Ph); the OH signal could not be observed. ¹³C NMR (CDCl₃, 125.8 MHz): δ = 23.5 (t, C-3'), 26.4, 29.6 (2 q, Me), 42.0 (d, C-5), 54.7 (t, C-2'), 57.9 (t, 2-CH₂), 59.3 (d, C-1), 60.9 (d, C-9), 65.4 (t, 8-CH₂), 67.2 (t, C-4), 67.6 (d, C-8), 73.3 (s, C-6), 127.3, 128.3, 128.5, 138.0 ppm (s, 3 d, Ph).

(3*S*,4*S*,5*R*,6*R*)-5-Amino-3-(hydroxymethyl)-2,2-dimethyl-6-(pyrrolidin-1-ylmethyl)tetrahydro-2*H*-pyran-4-ol (21):

Bicyclic compound **20** (113 mg, 0.326 mmol) was dissolved in isopropanol (10 mL) and Pd/C (10% Pd, 150 mg) was added. The suspension was saturated with H₂ for 1 h and stirred under the H₂ atmosphere for 3.5 d. The suspension was filtered through a shot pad of Celite, washed with isopropanol (5 mL) and subsequently concentrated under reduced pressure affording aminopyran **21** (76 mg, 90%) as caramel-hued foam, $[\alpha_D^{20}]$ +65.7 (*c* 0.14, MeOH). ¹H NMR (CD₃OD, 500 MHz, 300 K): δ = 1.37, 1.51 (2 s, 3 H each, Me), 1.81 (dd, *J* = 9.1, 4.6 Hz, 1 H, 3-H), 2.01-2.11 (m, 4 H, 3'-H), 3.21 (br s, 1 H, 5-H), 3.29-3.32 (m, 4 H, 2'-H), 3.34-3.38 (m, 2 H, 6-CH₂), 3.66 (d, *J* = 11.2, 4.0 Hz, 1 H, 3-CH₂), 3.93-3.99 (m, 2 H, 4-H, 3-CH₂), 4.42-4.50 ppm (m, 1 H, 6-H). ¹³C NMR (CD₃OD, 125.8 MHz, 300 K): δ = 24.1 (t, C-3'), 26.4, 27.7 (2 q, Me), 48.1 (d, C-3), 54.8 (d, C-5), 56.0 (t, C-2'), 57.6 (t, 6-CH₂), 62.6 (t, 3-CH₂), 64.9 (d, C-6), 72.7 (d, C-4), 77.0 ppm (s, C-2). IR (ATR): v = 3500-3100 (O-H, N-H), 2970-2900 cm⁻¹ (C-H). HRMS (ESI-TOF) calcd for C₁₃H₂₇N₂O₃ [M+H]⁺: 259.2016, found: 259.2015.

1-[3,5-Bis(trifluoromethyl)phenyl]-3-[(2*R*,3*R*,4*S*,5*S*)-4-hydroxy-5-(hydroxylmethyl)-6,6-dimethyl-2-(pyrrolidin-1-ylmethyl)tetrahydro-2*H*-pyran-3-yl]thiourea (22):

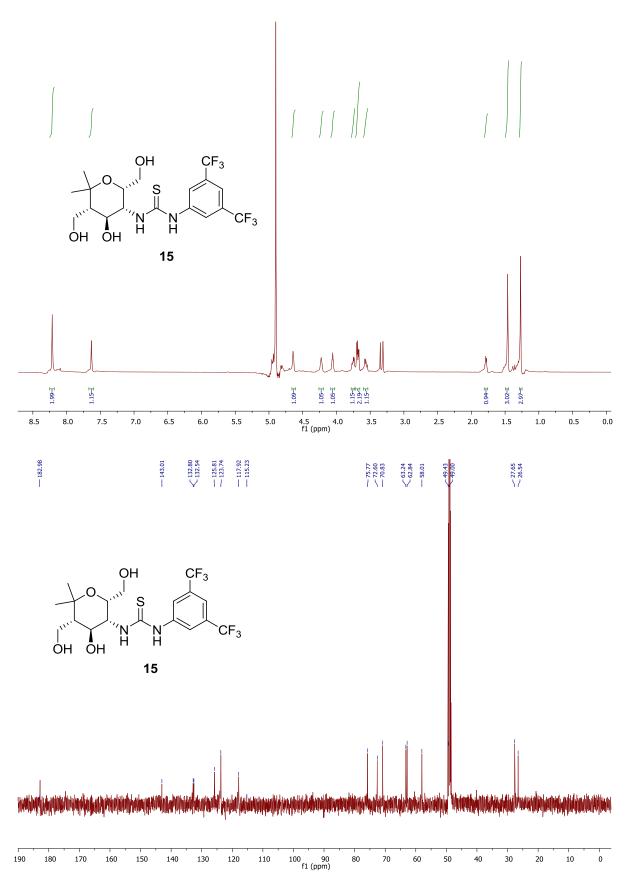
Analogous to the general procedure 1, aminopyran derivative **21** (70 mg, 0.132 mmol), and isothiocyanate **14** (37 mg, 0.132 mmol) in isopropanol (3 mL) were used. The mixture was stirred at 0 °C to room temperature for 17 h. The crude product was purified by column chromatography to give **22** (54 mg, 77%) as pale yellow solid, mp. 113-116 °C. $[\alpha_D^{20}]$ +68.5 (*c* 0.72, MeOH). ¹H NMR (CD₃OD, 500 MHz, 300 K): δ = 1.37, 1.56 (2 s, 3 H each, Me), 1.86 (q, *J* = 5.4 Hz, 1 H, 5"-H), 2.05-2.20 (m, 4 H, CH₂), 3.25-3.45 (m, 4 H, NCH₂, 6"-CH₂), 3.75 (dd, *J* = 11.1, 5.4 Hz, 1 H, 3"-CH₂), 3.85 (dd, *J* = 11.1, 5.4 Hz, 1 H, 5"-CH₂), 4.10 (m_c, 1 H, 4"-H), 4.56 (br d, *J* ≈ 10.0 Hz, 100 Hz, 100 Hz).

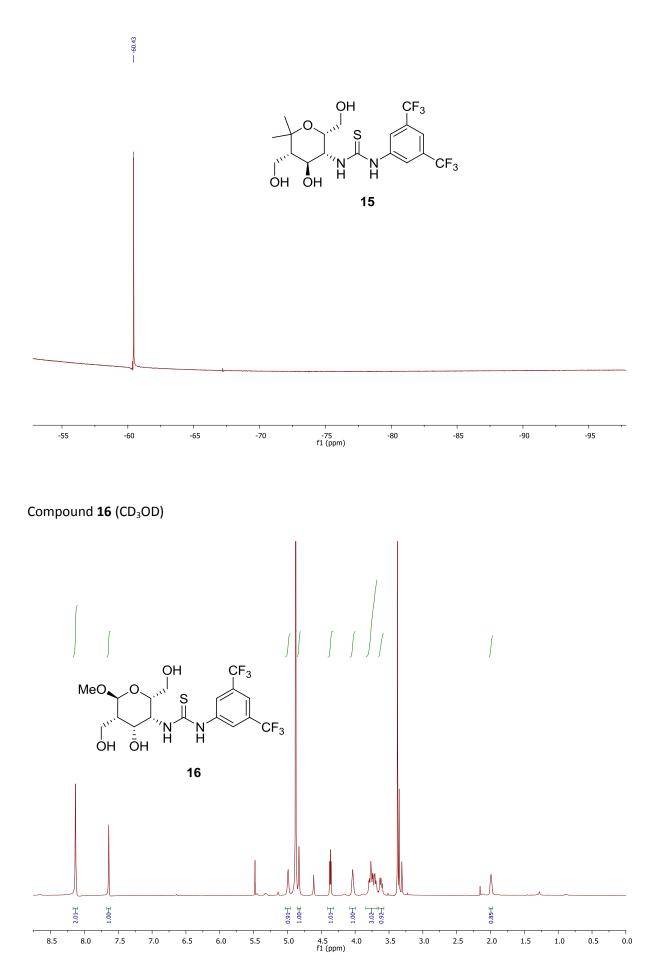
1 H, 2"-H), 4.75 (m_c, 1 H, 3"-H), 7.67 (s, 1 H, 4'-H), 8.32 ppm (s, 2 H, 2'-H). ¹³C NMR (CD₃OD, 125.8 MHz, 300 K): δ = 24.0 (t, CH₂), 26.5, 27.7 (2 q, Me), 49.5 (d, C-5"), 55.9 (t, NCH₂), 57.6 (d, C-3"), 58.6 (t, 2"-CH₂), 62.6 (t, 5"-CH₂), 66.8 (d, C-2"), 72.1 (d, C-4"), 76.8 (s, C-6"), 117.8 (d, C-4'), 123.6 (d, C-2'), 124.5 (q, ¹J_{CF} = 270 Hz, CF₃), 132.6 (q, ²J_{CF} = 33.6 Hz, C-3'), 143.0 (s, C-1'), 182.3 ppm (s, C-2). IR (ATR): v = 3500-3100 (O-H, N-H), 3050 (=C-H), 2975 (C-H), 1275 cm⁻¹ (C=S). HRMS (ESI-TOF) calcd for C₂₂H₃₀F₆N₃O₃S [M+H]⁺: 530.1907, found: 530.1911.

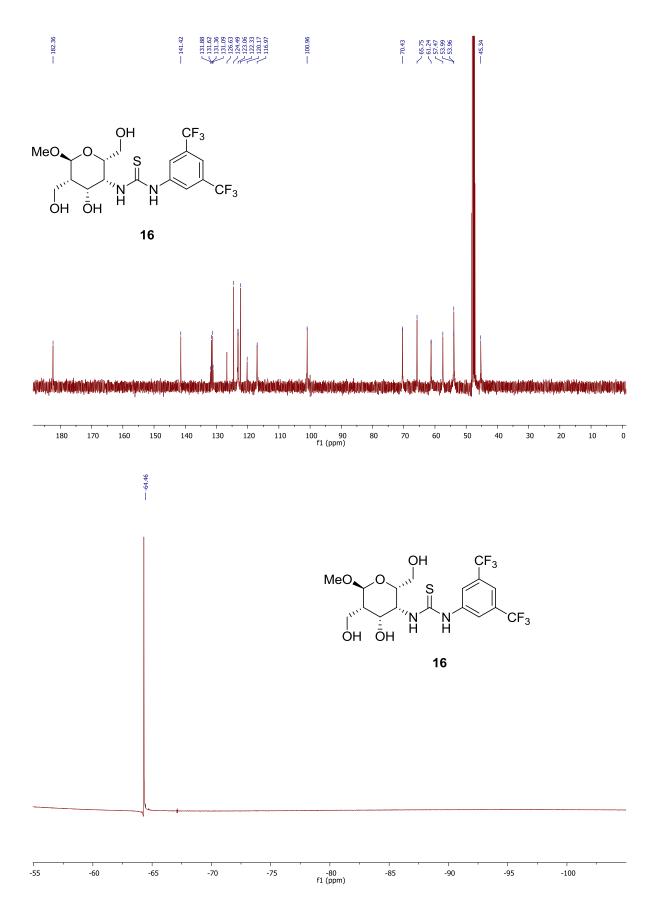
Michael addition of acetylacetone to β -nitrostyrene:

To a solution of β -nitrostyrene **23** (30 mg, 0.20 mmmol) in dichloromethane (1 mL) or dichloromethane/methanol (1 mL/0.1 mL) the corresponding organocatalyst (0.20 mmol) was added under argon atmosphere at room temperature. The solution was stirred for 5 min, then acetylacetone **24** (24 μ L, 0.23 mmol) was added and stirring was continued for the time indicated in Table 1 of the main text. The solution concentrated under reduced pressure and the crude product was purified by column chromatography on silica gel (hexane/ethyl acetate, 3:1) to give the product **25**. The ratio of the formed enantiomers was determined by chiral HPLC (chiralpak IA, 4.6x250 mm; 5% isopropanol/hexane; flow 1 mL/min, 25 bar; UV 215 nm, RI).

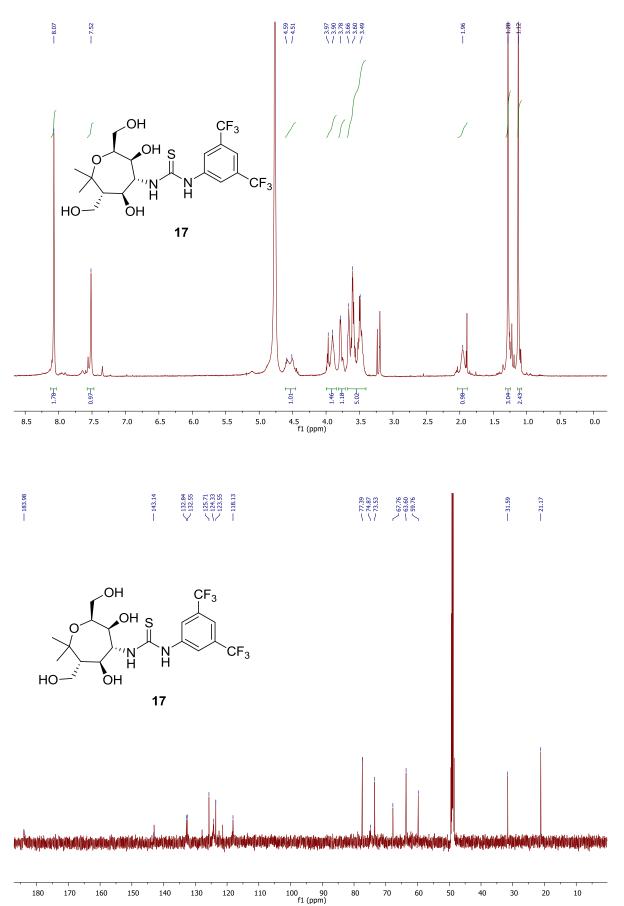
 $[\alpha_D^{20}]$ +60 (*c* 0.59, CH₂Cl₂); 39% ee. ¹H NMR (CDCl₃, 400 MHz): δ = 1.91, 2.25 (2 s, 3 H each, Me), 4.19 (ddd, *J* = 10.9, 8.1, 6.4 Hz, 1 H, PhCH), 4.57 (d, *J* = 10.9 Hz, 1 H, COCH), 4.68-4.75 (m, 2 H, CH₂), 7.11-7.63 ppm (m, 5 H, Ph). The NMR data are in accordance to those reported in the literature.^[5]

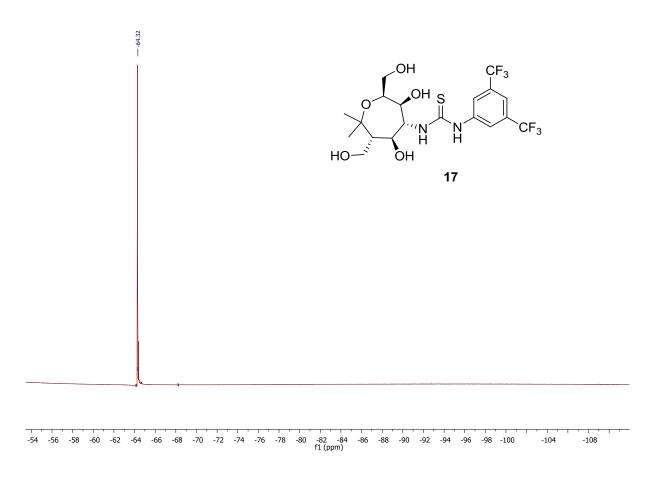

(*R*)-3-Hydroxy-3-(2-oxopropyl)indolin-2-one (28):

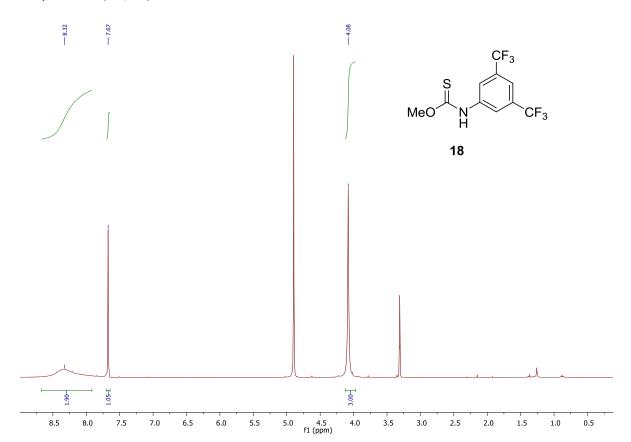

To a solution of isatin **27** (15 mg, 0.10 mmol) dissolved in dichloromethane (2 mL) thiourea derivative **17** (5 mg, 0.01 mmol) was added and the solution was stirred for 15 min at 0 °C. After addition of acetone (587 μ L, 8.0 mmol) and pyrrolidine (100 μ L, 0.1 mmol) the mixture was stirred for 74 h at 4 °C. The solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (ethyl acetate/hexane, 5:1) to yield **28** (5.4 mg, 28%) beside a mixture of **28** and **17** (6 mg). [α_D^{20}] +34 (*c* 0.12, MeOH); ¹H NMR (CDCl₃, 400 MHz): δ = 1.57 (s, 1 H, OH), 2.19 (s, 3 H, Me), 2.96 (d, *J* = 16.7 Hz, 1 H, CH₂), 3.18 (d, *J* = 16.7 Hz, 1 H,

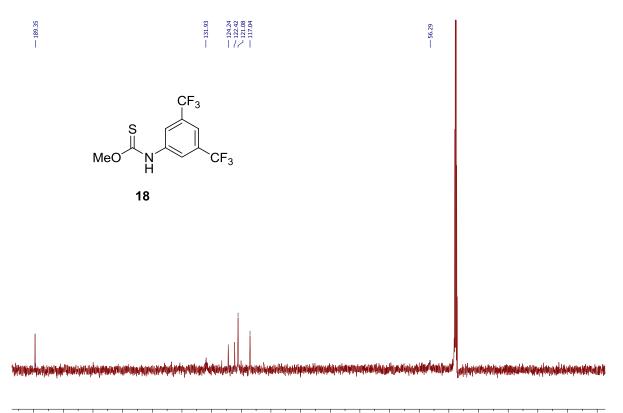

CH₂), 6.86 (d, J = 7.7 Hz, 1 H, 5-H), 7.05, 7.24 (2 t, J = 7.6 Hz, 1 H each, 6-H, 7-H), 7.35 (d, J = 7.5 Hz, 1 H, 8-H), 7.51 ppm (s, 1 H, NH). The NMR data are in accordance to those reported in the literature.^[6]

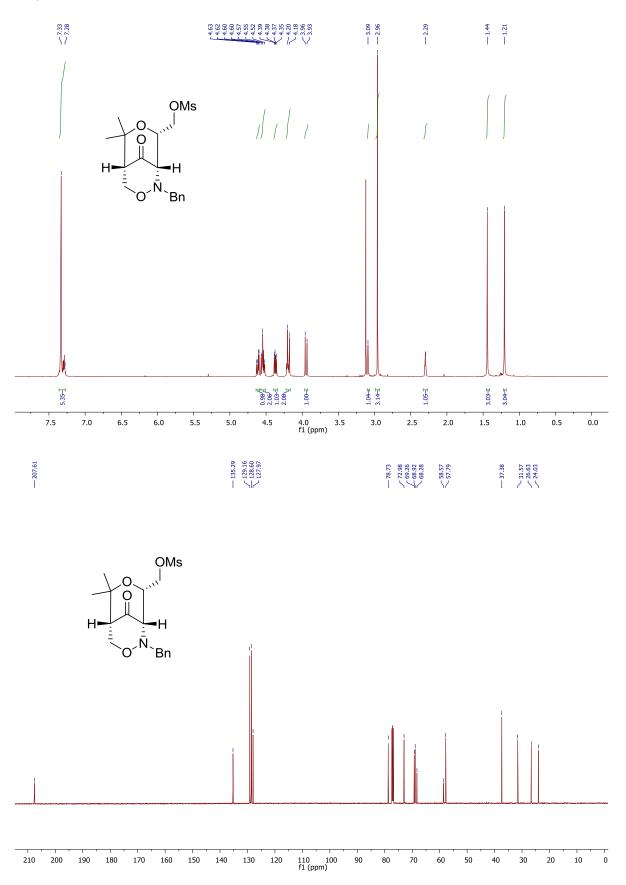
References:

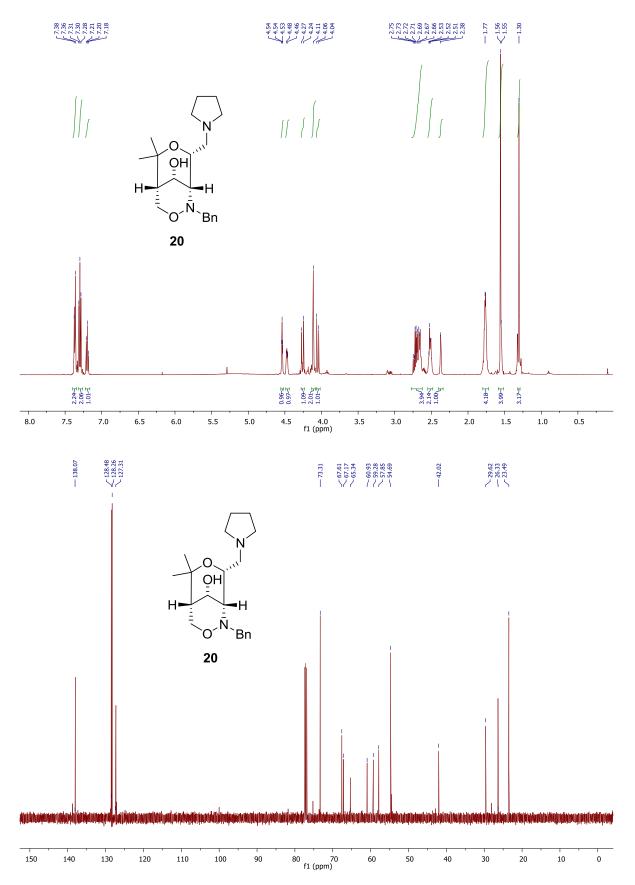

- [1] A. Al-Harrasi, F. Pfrengle, V. Prisyazhnyuk, S. Yekta, P. Koos, H.-U. Reissig, *Chem. Eur. J.* **2009**, *15*, 11632-11641.
- [2] F. Pfrengle, H.-U. Reissig, *Chem. Eur. J.* **2010**, *16*, 11915-11925.
- [3] L. Bouché, M. Kandziora, H.-U. Reissig, *Beilstein J. Org. Chem.* 2014, 10, 213-223.
- [4] R. K. Boeckman Jr, K. F. Biegasiewicz, D. J. Tusch, J. R. Miller, *J. Org. Chem.* **2015**, *80*, 4030-4045.
- [5] K. Ágoston, P. Fügedi, *Carbohydr. Res.* **2014**, *389*, 50-56.
- [6] C. Shen, F. Shen, H. Xia, P. Zhang, X. Chen, *Tetrahedron: Asymmetry* 2011, 22, 708-712.

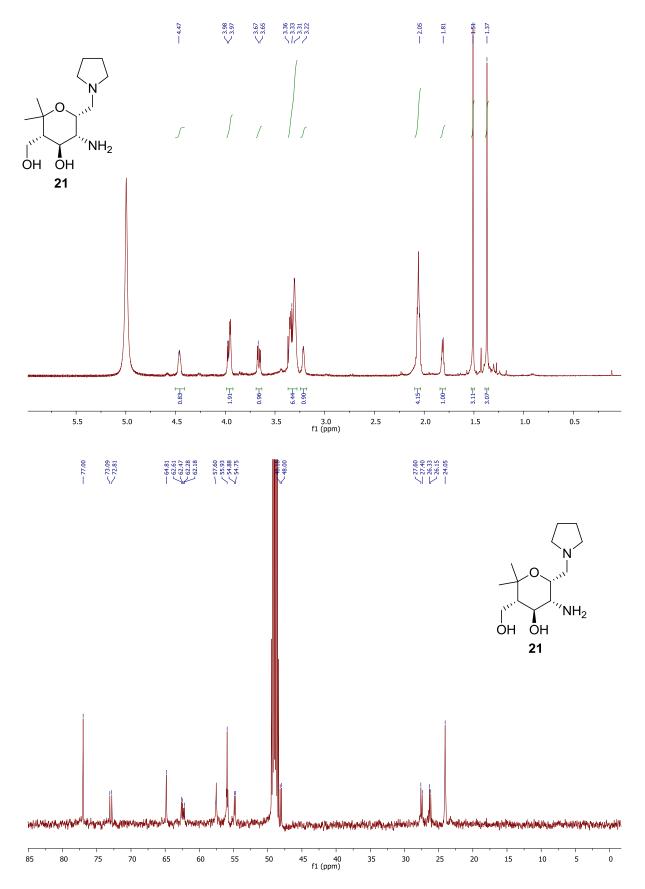




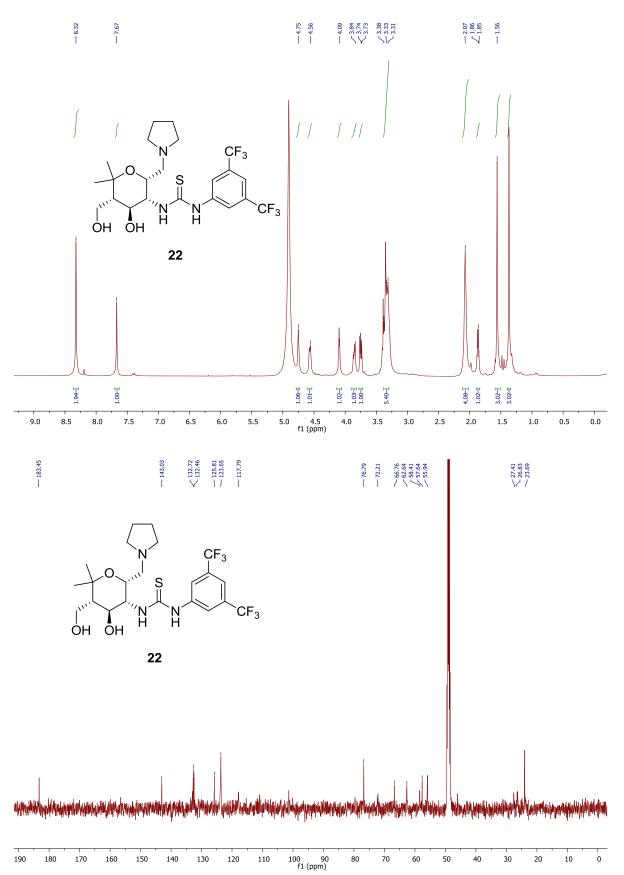

Compound 17 (CD₃OD)

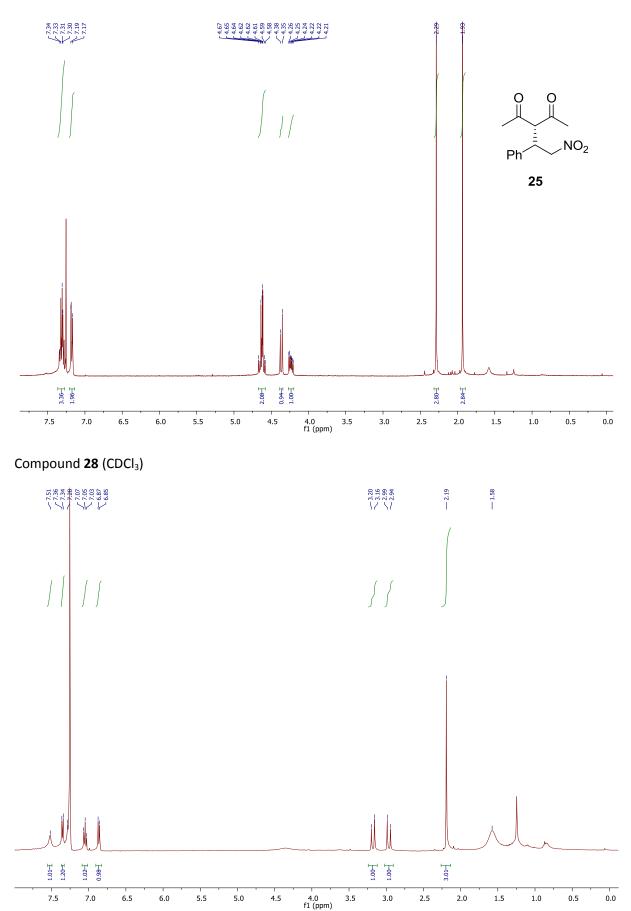

Compound 18 (CD₃OD)




_	1		1			1			1		1			1 1						
	190	180	170	160	150	140	130	120	110	100 f1 (ppr		80	70	60	50	40	30	20	10	0

Mesylate (CDCl₃)





Compound 22 (CD₃OD)

