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A Proofs and Technical Details

A.1 Proof of Theorem 1

We will use the following convexity result (cf. Nordström, 2011) in the proof of Theorem 1.

Lemma 1. For any positive definite matrices B1 and B2 of the same dimension,

{αB1 + (1− α)B2}−1 ≤ αB−1
1 + (1− α)B−1

2 (1)

in the Loewner ordering, where 0 ≤ α ≤ 1.

Proof of Theorem 1. The unbiasedness can be verified by direct calculation,

E{β̃L|Z, I∆(ηL) = 1} = EηL
[Ey{β̃L|Z, I∆(ηL) = 1}] = EηL

(β) = β.

Let W = diag(w1ηL1, ..., wnηLn). The variance-covariance matrix of the sampling-based

estimators can be written as

V{β̃L|Z, I∆(ηL) = 1} =EηL
[Vy{β̃L|Z, I∆(ηL) = 1}] + VηL

[Ey{β̃L|Z, I∆(ηL) = 1}]

=σ2EηL

{(
XTWX

)−1 (
XTW2X

) (
XTWX

)−1
}

+ VηL
(β)

=σ2EηL

[{(
XTWX

) (
XTW2X

)−1 (
XTWX

)}−1
]

≥σ2
[
EηL

{(
XTWX

) (
XTW2X

)−1 (
XTWX

)}]−1

. (2)
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The last inequality is due to Lemma 1. Notice that WX
(
XTW2X

)−1
XTW = pr(WX),

the orthogonal projection matrix onto the column space of WX. Define

BWX =


w1ηL1x

T
1

. . .

wnηLnx
T
n

 .
Notice that the column-space of WX = (w1ηL1x1, ..., wnηLnxn)T is contained in the column-

space of BWX . Hence we have pr(WX) ≤ pr(BWX) in the Loewner ordering, i.e.,

WX
(
XTW2X

)−1
XTW ≤


xT

1

(
x1x

T
1

)−
x1I(ηL1 > 0)

. . .

xT
n

(
xnx

T
n

)−
xnI(ηLn > 0)

 .
where I() is the indicator function. From this result, it can be shown that

XTWX
(
XTW2X

)−1
XTWX ≤

n∑
i=1

xix
T
i I(ηLi > 0). (3)

For sampling with replacement,

P (ηLi > 0|Z) = 1− (1− πi)k = πi

k∑
i=1

(1− πi)i−1 ≤ kπi.

For sampling without replacement,

P (ηLi > 0|Z) = P (ηLi = 1|Z) = kπi.

Thus, in either case, P (ηLi > 0|Z) ≤ kπi. Therefore,

P{ηLi > 0|Z, I∆(ηL) = 1} =
P{ηLi > 0, I∆(ηL) = 1|Z}

P{I∆(ηL) = 1|Z}

≤ P (ηLi > 0|Z)

P{I∆(ηL) = 1|Z}
≤ kπi
P{I∆(ηL) = 1|Z}

. (4)

Combining (2), (3) and (4), we have

V{β̃L|Z, I∆(ηL) = 1} ≥ σ2

[
EηL

{
n∑
i=1

xix
T
i I(ηLi > 0)

}]−1

= σ2

[
n∑
i=1

xix
T
i P{ηLi > 0|Z, I∆(ηL) = 1}

]−1

≥ σ2P{I∆(ηL) = 1|Z}
k

{
n∑
i=1

πixix
T
i

}−1

.

2



A.2 Proof of Theorem 2

Proof. Let z̆ij = {2zij − (z(n)j + z(1)j)}/(z(n)j − z(1)j). Then we have,

n∑
i=1

δixix
T
i = kB−1

3 M̆(δ)(BT
3 )−1, (5)

where

M̆(δ) =


1 k−1

∑n
i=1 δiz̆i1 . . . k−1

∑n
i=1 δiz̆id

k−1
∑n

i=1 δiz̆i1 k−1
∑n

i=1 δiz̆
2
i1 . . . k−1

∑n
i=1 δiz̆i1z̆ip

...
...

. . .
...

k−1
∑n

i=1 δiz̆ip k−1
∑n

i=1 δiz̆i1z̆ip . . . k−1
∑n

i=1 δiz̆
2
ip

 ,

and

B3 =


1

− z(n)1+z(1)1
z(n)1−z(1)1

2
z(n)1−z(1)1

...
. . .

− z(n)p+z(1)p
z(n)p−z(1)p

2
z(n)p−z(1)p

 (6)

Note that z̆ij ∈ [−1, 1] for all i = 1, ..., n and j = 1, ..., p, which implies k−1
∑n

i=1 δiz̆
2
ij ≤ 1

for all 1 ≤ j ≤ p. Thus,

|M̆(δ)| =
p∏
j=0

λj ≤

(∑p
j=0 λj

p+ 1

)p+1

=

(
1 +

∑p
j=1 k

−1
∑n

i=1 δiz̆
2
ij

p+ 1

)p+1

≤ 1, (7)

where λj, j = 0, 1, ..., p are eigenvalues of M̆(δ). From (5), (6) and (7),∣∣∣∣∣
n∑
i=1

δixix
T
i

∣∣∣∣∣ = kp+1|B3|−2|M̆(δ)| ≤ kp+1

∣∣∣∣∣
p∏
j=1

2

z(n)j − z(1)j

∣∣∣∣∣
−2

=
kp+1

4p

p∏
j=1

(z(n)j − z(1)j)
2.

If the subdata consists of the 2p points (a1, . . . , ap)
T where aj = z(n)j or z(1)j, j = 1, 2, ..., p,

each occurring equally often, then the δopt corresponding to this subdata satisfies M̆(δ) = I.

This δopt attains equality in (7) and corresponds therefore to D-optimal subdata.

A.3 Proof of Theorem 3

Proof. As before, for i = 1, ..., n, j = 1, ..., p, let z(i)j be the ith order statistic for z1j, ..., znj.

For l 6= j, let z
(i)l
j be the concomitant of z(i)l for zj, i.e., if z(i)l = zsl then z

(i)l
j = zsj,
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i = 1, ..., n. For the subdata obtained from Algorithm 1, let z̄∗j and var(z∗j ) be the sample

mean and sample variance for covariate zj. From Algorithm 1, the values zj, j = 1, ..., p, in

the subdata consist of z(m)j, and z
(m)l
j , l = 1, ...j−1, j+1, ..., p, m = 1, ..., r, n−r+1, ..., n.

Note that the subdata may not contain exactly the r smallest and r largest values for each

covariate since some data points may be removed in processing each covariate. However,

since r is fixed when n goes to infinity, this will not affect the final result. Therefore, for

easy of presentation, we abuse the notation and write the range of values of m as 1, ..., r,

n− r + 1, ..., n. The information matrix based on the subdata can be written as

(X∗D)TX∗D = B−1
4

k 0T

0 (k − 1)R

 (BT
4 )−1, (8)

where

B4 =



1

− z̄∗1√
var(z∗1 )

1√
var(z∗1 )

...
. . .

− z̄∗p√
var(z∗p)

1√
var(z∗p)


. (9)

From (8) and (9),

|(X∗D)TX∗D| = k|(k − 1)R|
p∏
j=1

var(z∗j ) ≥ k(k − 1)pλpmin(R)

p∏
j=1

var(z∗j ). (10)

For each sample variance,

(k − 1)var(z∗j ) =
k∑
i=1

(
z∗ij − z̄∗j

)2

=

(
r∑
i=1

+
n∑

i=n−r+1

)(
z(i)j − z̄∗j

)2
+
∑
l 6=j

(
r∑
i=1

+
n∑

i=n−r+1

)(
z

(i)l
j − z̄∗j

)2

≥

(
r∑
i=1

+
n∑

i=n−r+1

)(
z(i)j − z̄∗∗j

)2

=
r∑
i=1

(
z(i)j − z̄∗lj

)2
+

n∑
i=n−r+1

(
z(i)j − z̄∗uj

)2
+
r

2

(
z̄∗uj − z̄∗lj

)2

≥r
2

(
z̄∗uj − z̄∗lj

)2
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≥r
2

(
z(n−r+1)j − z(r)j

)2
(11)

where z̄∗∗j =
(∑r

i=1 +
∑n

i=n−r+1

)
z(i)j/(2r), z̄

∗l
j =

∑r
i=1 z(i)j/r, and z̄∗uj =

∑n
i=n−r+1 z(i)j/r.

From (11),

var(z∗j ) ≥
r(z(n)j − z(1)j)

2

2(k − 1)

(
z(n−r+1)j − z(r)j

z(n)j − z(1)j

)2

. (12)

Thus,

|(X∗D)TX∗D| ≥k(k − 1)pλpmin(R)

p∏
j=1

r(z(n)j − z(1)j)
2

2(k − 1)

(
z(n−r+1)j − z(r)j

z(n)j − z(1)j

)2

=
rp

2p
kλpmin(R)

p∏
j=1

(z(n)j − z(1)j)
2 ×

p∏
j=1

(
z(n−r+1)j − z(r)j

z(n)j − z(1)j

)2

.

This shows that

|(X∗D)TX∗D|
kp+1

4p

∏p
j=1(z(n)j − z(1)j)2

≥λ
p
min(R)

pp
×

p∏
j=1

(
z(n−r+1)j − z(r)j

z(n)j − z(1)j

)2

.

A.4 Proof of Theorem 4

Proof. From (8) and (9),

V(β̂
D
|Z) = σ2{(X∗D)TX∗D}−1 = σ2BT

4

 1
k

0T

0 1
k−1

R−1

B4.

Thus

V(β̂D
0 |Z) = σ2

(
1

k
+

1

k − 1
uTR−1u

)
, (13)

and

V(β̂D
j |Z) =

σ2

k − 1

(R−1)jj
var(z∗j )

, (14)

where u =
{
− z̄∗1/

√
var(z∗1), ...,−z̄∗p/

√
var(z∗p)

}T

and (R−1)jj is the jth diagonal element

of R−1.

From (13), V(β̂D
0 |Z) ≥ σ2/k because uTR−1u ≥ 0.
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Denote the spectral decomposition of R as R = VΛVT. Since Λ−1 ≤ λ−1
min(R)Ip,

R−1 = VΛ−1VT ≤ Vλ−1
min(R)IpV

T = λ−1
min(R)IT

p . Thus R−1
jj ≤ λ−1

min(R) for all j. From

this fact, and (14) and (12), we have

V(β̂D
j |Z) =

σ2

k − 1

(R−1)jj
var(z∗j )

≤ 4pσ2

kλmin(R)(z(n−r+1)j − z(r)j)2
. (15)

Similarly, we have

V(β̂D
j |Z) =

σ2

k − 1

(R−1)jj
var(z∗j )

≥ 4σ2

kλmax(R)(z(n)j − z(1)j)2
. (16)

Here we utilize the following inequality

var(z∗j ) ≤
1

k − 1

k∑
i=1

(
z∗ij −

z(n)j + z(1)j

2

)2

≤ k

4(k − 1)

(
z(n)j − z(1)j

)2
, (17)

where the last inequality is due to the fact |z∗ij −
z(n)j+z(1)j

2
| ≤ z(n)j−z(1)j

2
for all i = 1, . . . , k.

A.5 Proof of Theorem 5

Proof. For (21), it is a direct result from (20).

For (22), we consider the five cases in the following. For the first case that r is fixed,

from results in Theorems 2.8.1 and 2.8.2 in Galambos (1987), we have that

z(n−r+1)j − z(r)j

z(n)j − z(1)j

= OP (1) and
z(n)j − z(1)j

z(n−r+1)j − z(r)j

= OP (1). (18)

Combining (21) and (18), (22) follows.

For the second case when r →∞, r/n→ 0, and the support of Fj is bounded, (18) can

be easily verified.

For the third case when the upper endpoint for the support of Fj is ∞ and the lower

endpoint for the support of Fj is finite, and r → ∞ slow enough such that (23) holds, if

we can show that z(n−r+1)j/z(n)j = 1 + oP (1), then the result in (22) follows. Let bn,j =

F−1
j (1 − n−1). From Hall (1979), we only need to show that z(n−r+1)j/bn,j = 1 + oP (1) in

order to show that z(n−r+1)j/z(n)j = 1 + oP (1). For this, from the proof of Theorem 1 of

Hall (1979), it suffices to show that[
1− Fj(bn,j)

1− Fj{(1− ε)bn,j}

]−1/2 [
1− r{1− Fj(bn,j)}

1− Fj{(1− ε)bn,j}

]
→∞,
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which holds by directly applying the assumption in (23) and the fact that r →∞.

For the fourth case, it can be proved by using an approach similar to the one used for the

third case. It can also be proved by noting that z(r)j = −(−z)(n−r+1)j, z(1)j = −(−z)(n)j,

and the fact that the condition in (24) on z becomes the condition in (23) on −z.

For the fifth case, it can be proved by combining the results in the third case and the

fourth case.

A.6 Proof of Theorem 6

Let σj and ρj1j2 be the jth diagonal element of Φ and entry (j1, j2) of ρ, respectively, for

j, j1, j2 = 1, ..., p. As described in the proof of Theorem 3, from Algorithm 1, the values

zj, j = 1, ..., p, in the subdata consist of z(i)j, and z
(i)l
j , l = 1, ...j− 1, j+ 1, ..., p, i = 1, ..., r,

n− r + 1, ..., n, where z
(i)l
j are the concomitants for zj.

Let v = (Z∗D)T1 and Ω = (Z∗D)TZ∗D. Then

(X∗D)TX∗D =

k vT

v Ω

 . (19)

The jth diagonal element of Ω is

Ωjj =

(
r∑
i=1

+
n∑

i=n−r+1

)
z2

(i)j +
∑
l 6=j

(
r∑
i=1

+
n∑

i=n−r+1

)(
z

(i)l
j

)2

, (20)

while entry (j1, j2), j1 6= j2, is

Ωj1j2 =

(
r∑
i=1

+
n∑

i=n−r+1

)(
z(i)j1z

(i)j1
j2

+ z(i)j2z
(i)j2
j1

)
+
∑
l 6=j1j2

(
r∑
i=1

+
n∑

i=n−r+1

)
z

(i)l
j1
z

(i)l
j2
. (21)

The jth element of v is

vj =

(
r∑
i=1

+
n∑

i=n−r+1

)
z(i)j +

∑
l 6=j

(
r∑
i=1

+
n∑

i=n−r+1

)
z

(i)l
j . (22)

Now we consider the two specific distributions in Theorem 6 and prove the corresponding

results in (26) and (27).

7



A.6.1 Proof of equation (26) in Theorem 6

Proof. When zi ∼ N(µ,Σ), using the results in Example 2.8.1 of Galambos (1987), we

obtain

z(i)j = µj − σj
√

2 log n+ oP (1), i = 1, ..., r,

z(i)j = µj + σj
√

2 log n+ oP (1), i = n− r + 1, ..., n.
(23)

Using an approach similar to Example 5.5.1 of Galambos (1987), we obtain

z
(i)l
j = µj − ρljσj

√
2 log n+OP (1), i = 1, ..., r,

z
(i)l
j = µj + ρljσj

√
2 log n+OP (1), i = n− r + 1, ..., n.

(24)

Using (23) and (24), from (20), (21) and (22), we obtain that

Ωjj =4r log nσ2
j

p∑
l=1

ρ2
lj +OP (

√
log n), (25)

Ωj1j2 =4r log nσj1σj2

p∑
l=1

ρlj1ρlj2 +OP (
√

log n) (26)

vj =OP (1), (27)

respectively. From (25), (26) and (27), we have

Ω = 4r log nΦρ2Φ +OP (
√

log n) and v = OP (1). (28)

The variance,

V(β̂
D
|X) = σ2

k vT

v Ω

−1

=
σ2

c

 1 −vTΩ−1

−Ω−1v cΩ−1 + Ω−1vvTΩ−1

 , (29)

where c = k− vTΩ−1v = k+OP (1/ log n) and the second equality is from (28). Note that

from (28) Ω−1 = OP (1/ log n), so

Ω−1 − (4r log nΦρ2Φ)−1 = Ω−1(4r log nΦρ2Φ−Ω)(4r log nΦρ2Φ)−1

= OP

(
1

log n

)
OP

(√
log n

)
O

(
1

log n

)
= OP

{
1

(log n)3/2

}
.

Thus

Ω−1 =
1

4r log n
(Φρ2Φ)−1 +OP

{
1

(log n)3/2

}
. (30)
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Combining (19), (29) and (30), and using that k = 2rp

V(β̂
D
|X) = σ2

 1
k

+OP

(
1

logn

)
OP

(
1

logn

)
OP

(
1

logn

)
1

4r logn
(Φρ2Φ)−1 +OP

{
1

(logn)3/2

}
 .

A.6.2 Proof of equation (27) in Theorem 6

Proof. When zi ∼ LN(µ,Σ). Let zij = exp (Uij) with Ui = (Ui1, ..., Uip)
T ∼ N(µ,Σ).

From (23),

z(i)j = exp(U(i)j) = exp(−σj
√

2 log n)OP (1) = oP (1), i = 1, ..., r,

z(i)j = exp(U(i)j) = exp(σj
√

2 log n){eµj + oP (1)}, i = n− r + 1, ..., n.
(31)

Without loss of generality, assume that ρlj ≥ 0, l, j = 1, ..., p. From (24),

z
(i)l
j = exp(U

(i)l
j ) = exp(−ρljσj

√
2 log n)OP (1) = oP (1), i = 1, ..., r,

z
(i)l
j = exp(U

(i)l
j ) = exp{σj

√
2 log n− (1− ρlj)σj

√
2 log n+ µj +OP (1)}

= exp(σj
√

2 log n)oP (1), i = n− r + 1, ..., n.

(32)

Using (31) and (32), from (20), (21) and (22), we obtain that

Ωjj =r exp(2σj
√

2 log n){e2µj + oP (1)}, (33)

Ωj1j2 =2r exp
{

(σj1 + σj2)
√

2 log n
}
oP (1), (34)

vj =r exp(σj
√

2 log n){eµj + oP (1)}. (35)

From (19), (33)-(35), for An = diag
{

1, exp
(
σ1

√
2 log n

)
, ..., exp

(
σp
√

2 log n
)}

,

A−1
n (X∗D)TX∗DA−1

n = A−1
n

k vT

v Ω

A−1
n =

 k rvT
1

rv1 rB5,

+ oP (1) (36)

where v1 = (eµ1 , ..., eµp)T and B5 = diag(e2µ1 , ..., e2µp). From (36),

V(Anβ̂
D
|X) = σ2An{(X∗D)TX∗D}−1An = σ2

 k rvT
1

rv1 rB5,

−1

+ oP (1)

=
2σ2

k

 1 −uT

−u pΛ + uuT,

+ oP (1).
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A.7 Proof of results in Table 1

When the covariate has a t distribution, from Theorem 4, for simple linear model, the

variance of the estimator of β1 using the D-OPT IBOSS approach is of the same order

as (z(n)1 − z(1)1)−2. From Theorems 2.1.2 and 2.9.2 of Galambos (1987), we obtain that

z(n)1 − z(1)1 �P n1/ν . Thus, the variance is of the order n−2/ν .

For the full data approach, the variance of the estimator of β1 is of the same order

as (
∑n

i=1 z
2
i1)−1. When z1 has a t distribution with degrees of freedom ν > 2, from Kol-

mogorov’s strong law of large numbers (SLLN),
∑n

i=1 z
2
i1 = O(n) almost surely. If ν ≤ 2,

E[{z2
i1}1/(2/ν+α)] <∞ for any α > 0. Thus, from Marcinkiewicz-Zygmund SLLN (Theorem

2 of Section 5.2 of Chow and Teicher, 2003),
∑n

i=1 z
2
ij = o(n2/ν+α) almost surely for any

α > 0. This shows that the order of (
∑n

i=1 z
2
i1)−1 is slower than n−(2/ν+α) for any α > 0.

For the UNI approach, the lower bound for the variance of the estimator of β1 is of the

same order as n(
∑n

i=1 z
2
i1)−1, which is of order O(1) when ν > 2 and is slower than n2/ν−1+α

for any α > 0 when ν ≤ 2.

For the intercept β0, the variance of the estimator is of the same order as the inverse of

the sample size used in each method.
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