Appendix for "Information-Based Optimal Subdata Selection for Big Data Linear Regression"
 HaiYing Wang, Min Yang, and John Stufken

A Proofs and Technical Details

A. 1 Proof of Theorem 1

We will use the following convexity result (cf. Nordström, 2011) in the proof of Theorem 1.
Lemma 1. For any positive definite matrices \mathbf{B}_{1} and \mathbf{B}_{2} of the same dimension,

$$
\begin{equation*}
\left\{\alpha \mathbf{B}_{1}+(1-\alpha) \mathbf{B}_{2}\right\}^{-1} \leq \alpha \mathbf{B}_{1}^{-1}+(1-\alpha) \mathbf{B}_{2}^{-1} \tag{1}
\end{equation*}
$$

in the Loewner ordering, where $0 \leq \alpha \leq 1$.
Proof of Theorem 1. The unbiasedness can be verified by direct calculation,

$$
\mathrm{E}\left\{\tilde{\boldsymbol{\beta}}_{L} \mid \mathbf{Z}, I_{\Delta}\left(\boldsymbol{\eta}_{L}\right)=1\right\}=\mathrm{E}_{\boldsymbol{\eta}_{L}}\left[\mathrm{E}_{\mathbf{y}}\left\{\tilde{\boldsymbol{\beta}}_{L} \mid \mathbf{Z}, I_{\Delta}\left(\boldsymbol{\eta}_{L}\right)=1\right\}\right]=\mathrm{E}_{\boldsymbol{\eta}_{L}}(\boldsymbol{\beta})=\boldsymbol{\beta}
$$

Let $\mathbf{W}=\operatorname{diag}\left(w_{1} \eta_{L 1}, \ldots, w_{n} \eta_{L n}\right)$. The variance-covariance matrix of the sampling-based estimators can be written as

$$
\begin{align*}
\mathrm{V}\left\{\tilde{\boldsymbol{\beta}}_{L} \mid \mathbf{Z}, I_{\Delta}\left(\boldsymbol{\eta}_{L}\right)=1\right\} & =\mathrm{E}_{\boldsymbol{\eta}_{L}}\left[\mathrm{~V}_{\mathbf{y}}\left\{\tilde{\boldsymbol{\beta}}_{L} \mid \mathbf{Z}, I_{\Delta}\left(\boldsymbol{\eta}_{L}\right)=1\right\}\right]+\mathrm{V}_{\boldsymbol{\eta}_{L}}\left[\mathrm{E}_{\mathbf{y}}\left\{\tilde{\boldsymbol{\beta}}_{L} \mid \mathbf{Z}, I_{\Delta}\left(\boldsymbol{\eta}_{L}\right)=1\right\}\right] \\
& =\sigma^{2} \mathrm{E}_{\boldsymbol{\eta}_{L}}\left\{\left(\mathbf{X}^{\mathrm{T}} \mathbf{W} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\mathrm{T}} \mathbf{W}^{2} \mathbf{X}\right)\left(\mathbf{X}^{\mathrm{T}} \mathbf{W X}\right)^{-1}\right\}+\mathrm{V}_{\boldsymbol{\eta}_{L}}(\boldsymbol{\beta}) \\
& =\sigma^{2} \mathrm{E}_{\boldsymbol{\eta}_{L}}\left[\left\{\left(\mathbf{X}^{\mathrm{T}} \mathbf{W} \mathbf{X}\right)\left(\mathbf{X}^{\mathrm{T}} \mathbf{W}^{2} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\mathrm{T}} \mathbf{W} \mathbf{X}\right)\right\}^{-1}\right] \\
& \geq \sigma^{2}\left[\mathrm{E}_{\boldsymbol{\eta}_{L}}\left\{\left(\mathbf{X}^{\mathrm{T}} \mathbf{W} \mathbf{X}\right)\left(\mathbf{X}^{\mathrm{T}} \mathbf{W}^{2} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\mathrm{T}} \mathbf{W} \mathbf{X}\right)\right\}\right]^{-1} . \tag{2}
\end{align*}
$$

The last inequality is due to Lemma 1. Notice that $\mathbf{W X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{W}^{2} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{W}=\operatorname{pr}(\mathbf{W} \mathbf{X})$, the orthogonal projection matrix onto the column space of $\mathbf{W X}$. Define

$$
\mathbf{B}_{W X}=\left[\begin{array}{lll}
w_{1} \eta_{L 1} \mathbf{x}_{1}^{\mathrm{T}} & & \\
& \ddots & \\
& & w_{n} \eta_{L n} \mathbf{x}_{n}^{\mathrm{T}}
\end{array}\right]
$$

Notice that the column-space of $\mathbf{W X}=\left(w_{1} \eta_{L 1} \mathbf{x}_{1}, \ldots, w_{n} \eta_{L n} \mathbf{x}_{n}\right)^{\mathrm{T}}$ is contained in the columnspace of $\mathbf{B}_{W X}$. Hence we have $\operatorname{pr}(\mathbf{W X}) \leq \operatorname{pr}\left(\mathbf{B}_{W X}\right)$ in the Loewner ordering, i.e.,

$$
\mathbf{W X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{W}^{2} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{W} \leq\left[\begin{array}{lll}
\mathbf{x}_{1}^{\mathrm{T}}\left(\mathbf{x}_{1} \mathbf{x}_{1}^{\mathrm{T}}\right)^{-} \mathbf{x}_{1} I\left(\eta_{L 1}>0\right) & & \\
& \ddots & \\
& & \mathbf{x}_{n}^{\mathrm{T}}\left(\mathbf{x}_{n} \mathbf{x}_{n}^{\mathrm{T}}\right)^{-} \mathbf{x}_{n} I\left(\eta_{L n}>0\right)
\end{array}\right]
$$

where $I()$ is the indicator function. From this result, it can be shown that

$$
\begin{equation*}
\mathbf{X}^{\mathrm{T}} \mathbf{W} \mathbf{X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{W}^{2} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{W} \mathbf{X} \leq \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathrm{T}} I\left(\eta_{L i}>0\right) \tag{3}
\end{equation*}
$$

For sampling with replacement,

$$
P\left(\eta_{L i}>0 \mid \mathbf{Z}\right)=1-\left(1-\pi_{i}\right)^{k}=\pi_{i} \sum_{i=1}^{k}\left(1-\pi_{i}\right)^{i-1} \leq k \pi_{i}
$$

For sampling without replacement,

$$
P\left(\eta_{L i}>0 \mid \mathbf{Z}\right)=P\left(\eta_{L i}=1 \mid \mathbf{Z}\right)=k \pi_{i}
$$

Thus, in either case, $P\left(\eta_{L i}>0 \mid \mathbf{Z}\right) \leq k \pi_{i}$. Therefore,

$$
\begin{align*}
P\left\{\eta_{L i}>0 \mid \mathbf{Z}, I_{\Delta}\left(\boldsymbol{\eta}_{L}\right)=1\right\} & =\frac{P\left\{\eta_{L i}>0, I_{\Delta}\left(\boldsymbol{\eta}_{L}\right)=1 \mid \mathbf{Z}\right\}}{P\left\{I_{\Delta}\left(\boldsymbol{\eta}_{L}\right)=1 \mid \mathbf{Z}\right\}} \\
& \leq \frac{P\left(\eta_{L i}>0 \mid \mathbf{Z}\right)}{P\left\{I_{\Delta}\left(\boldsymbol{\eta}_{L}\right)=1 \mid \mathbf{Z}\right\}} \leq \frac{k \pi_{i}}{P\left\{I_{\Delta}\left(\boldsymbol{\eta}_{L}\right)=1 \mid \mathbf{Z}\right\}} \tag{4}
\end{align*}
$$

Combining (2), (3) and (4), we have

$$
\begin{aligned}
\mathrm{V}\left\{\tilde{\boldsymbol{\beta}}_{L} \mid \mathbf{Z}, I_{\Delta}\left(\boldsymbol{\eta}_{L}\right)=1\right\} & \geq \sigma^{2}\left[\mathrm{E}_{\boldsymbol{\eta}_{L}}\left\{\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathrm{T}} I\left(\eta_{L i}>0\right)\right\}\right]^{-1} \\
& =\sigma^{2}\left[\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathrm{T}} P\left\{\eta_{L i}>0 \mid \mathbf{Z}, I_{\Delta}\left(\boldsymbol{\eta}_{L}\right)=1\right\}\right]^{-1} \\
& \geq \frac{\sigma^{2} P\left\{I_{\Delta}\left(\boldsymbol{\eta}_{L}\right)=1 \mid \mathbf{Z}\right\}}{k}\left\{\sum_{i=1}^{n} \pi_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathrm{T}}\right\}^{-1}
\end{aligned}
$$

A. 2 Proof of Theorem 2

Proof. Let $\breve{z}_{i j}=\left\{2 z_{i j}-\left(z_{(n) j}+z_{(1) j}\right)\right\} /\left(z_{(n) j}-z_{(1) j}\right)$. Then we have,

$$
\begin{equation*}
\sum_{i=1}^{n} \delta_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathrm{T}}=k \mathbf{B}_{3}^{-1} \breve{\mathbf{M}}(\boldsymbol{\delta})\left(\mathbf{B}_{3}^{\mathrm{T}}\right)^{-1} \tag{5}
\end{equation*}
$$

where

$$
\breve{\mathbf{M}}(\boldsymbol{\delta})=\left[\begin{array}{cccc}
1 & k^{-1} \sum_{i=1}^{n} \delta_{i} \breve{z}_{i 1} & \ldots & k^{-1} \sum_{i=1}^{n} \delta_{i} \breve{z}_{i d} \\
k^{-1} \sum_{i=1}^{n} \delta_{i} \breve{z}_{i 1} & k^{-1} \sum_{i=1}^{n} \delta_{i} \breve{z}_{i 1}^{2} & \ldots & k^{-1} \sum_{i=1}^{n} \delta_{i} \breve{z}_{i 1} \breve{z}_{i p} \\
\vdots & \vdots & \ddots & \vdots \\
k^{-1} \sum_{i=1}^{n} \delta_{i} \breve{z}_{i p} & k^{-1} \sum_{i=1}^{n} \delta_{i} \breve{z}_{i 1} \breve{z}_{i p} & \ldots & k^{-1} \sum_{i=1}^{n} \delta_{i} \breve{z}_{i p}^{2}
\end{array}\right],
$$

and

$$
\mathbf{B}_{3}=\left[\begin{array}{cccc}
1 & & & \tag{6}\\
-\frac{z_{(n) 1}+z_{(1) 1}}{z_{(n) 1}-z_{(1) 1}} & \frac{2}{z_{(n) 1}-z_{(1) 1}} \\
\vdots & & \ddots & \\
-\frac{z_{(n) p}+z_{(1) p}}{z_{(n) p}-z_{(1) p}} & & & \frac{2}{z_{(n) p}-z_{(1) p}}
\end{array}\right]
$$

Note that $\breve{z}_{i j} \in[-1,1]$ for all $i=1, \ldots, n$ and $j=1, \ldots, p$, which implies $k^{-1} \sum_{i=1}^{n} \delta_{i} \breve{z}_{i j}^{2} \leq 1$ for all $1 \leq j \leq p$. Thus,

$$
\begin{equation*}
|\breve{\mathbf{M}}(\boldsymbol{\delta})|=\prod_{j=0}^{p} \lambda_{j} \leq\left(\frac{\sum_{j=0}^{p} \lambda_{j}}{p+1}\right)^{p+1}=\left(\frac{1+\sum_{j=1}^{p} k^{-1} \sum_{i=1}^{n} \delta_{i} \breve{z}_{i j}^{2}}{p+1}\right)^{p+1} \leq 1 \tag{7}
\end{equation*}
$$

where $\lambda_{j}, j=0,1, \ldots, p$ are eigenvalues of $\breve{\mathbf{M}}(\boldsymbol{\delta})$. From (5), (6) and (7),

$$
\left|\sum_{i=1}^{n} \delta_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathrm{T}}\right|=k^{p+1}\left|\mathbf{B}_{3}\right|^{-2}|\stackrel{\mathbf{M}}{ }(\boldsymbol{\delta})| \leq k^{p+1}\left|\prod_{j=1}^{p} \frac{2}{z_{(n) j}-z_{(1) j}}\right|^{-2}=\frac{k^{p+1}}{4^{p}} \prod_{j=1}^{p}\left(z_{(n) j}-z_{(1) j}\right)^{2} .
$$

If the subdata consists of the 2^{p} points $\left(a_{1}, \ldots, a_{p}\right)^{\mathrm{T}}$ where $a_{j}=z_{(n) j}$ or $z_{(1) j}, j=1,2, \ldots, p$, each occurring equally often, then the $\boldsymbol{\delta}^{o p t}$ corresponding to this subdata satisfies $\breve{\mathbf{M}}(\boldsymbol{\delta})=\mathbf{I}$. This $\boldsymbol{\delta}^{\text {opt }}$ attains equality in (7) and corresponds therefore to D-optimal subdata.

A. 3 Proof of Theorem 3

Proof. As before, for $i=1, \ldots, n, j=1, \ldots, p$, let $z_{(i) j}$ be the i th order statistic for $z_{1 j}, \ldots, z_{n j}$. For $l \neq j$, let $z_{j}^{(i) l}$ be the concomitant of $z_{(i) l}$ for z_{j}, i.e., if $z_{(i) l}=z_{s l}$ then $z_{j}^{(i) l}=z_{s j}$,
$i=1, \ldots, n$. For the subdata obtained from Algorithm 1 , let \bar{z}_{j}^{*} and $\operatorname{var}\left(z_{j}^{*}\right)$ be the sample mean and sample variance for covariate z_{j}. From Algorithm 1, the values $z_{j}, j=1, \ldots, p$, in the subdata consist of $z_{(m) j}$, and $z_{j}^{(m) l}, l=1, \ldots j-1, j+1, \ldots, p, m=1, \ldots, r, n-r+1, \ldots, n$. Note that the subdata may not contain exactly the r smallest and r largest values for each covariate since some data points may be removed in processing each covariate. However, since r is fixed when n goes to infinity, this will not affect the final result. Therefore, for easy of presentation, we abuse the notation and write the range of values of m as $1, \ldots, r$, $n-r+1, \ldots, n$. The information matrix based on the subdata can be written as

$$
\left(\mathbf{X}_{\mathrm{D}}^{*}\right)^{\mathrm{T}} \mathbf{X}_{\mathrm{D}}^{*}=\mathbf{B}_{4}^{-1}\left[\begin{array}{cc}
k & \mathbf{0}^{\mathrm{T}} \tag{8}\\
\mathbf{0} & (k-1) \mathbf{R}
\end{array}\right]\left(\mathbf{B}_{4}^{\mathrm{T}}\right)^{-1}
$$

where

$$
\mathbf{B}_{4}=\left[\begin{array}{cccc}
1 & & & \tag{9}\\
-\frac{\bar{z}_{1}^{*}}{\sqrt{\operatorname{var}\left(z_{1}^{*}\right)}} & \frac{1}{\sqrt{\operatorname{var}\left(z_{1}^{*}\right)}} & & \\
\vdots & & \ddots & \\
-\frac{\bar{z}_{p}^{*}}{\sqrt{\operatorname{var}\left(z_{p}^{*}\right)}} & & & \frac{1}{\sqrt{\operatorname{var}\left(z_{p}^{*}\right)}}
\end{array}\right]
$$

From (8) and (9),

$$
\begin{equation*}
\left|\left(\mathbf{X}_{\mathrm{D}}^{*}\right)^{\mathrm{T}} \mathbf{X}_{\mathrm{D}}^{*}\right|=k|(k-1) \mathbf{R}| \prod_{j=1}^{p} \operatorname{var}\left(z_{j}^{*}\right) \geq k(k-1)^{p} \lambda_{\min }^{p}(\mathbf{R}) \prod_{j=1}^{p} \operatorname{var}\left(z_{j}^{*}\right) . \tag{10}
\end{equation*}
$$

For each sample variance,

$$
\begin{aligned}
(k-1) \operatorname{var}\left(z_{j}^{*}\right) & =\sum_{i=1}^{k}\left(z_{i j}^{*}-\bar{z}_{j}^{*}\right)^{2} \\
& =\left(\sum_{i=1}^{r}+\sum_{i=n-r+1}^{n}\right)\left(z_{(i) j}-\bar{z}_{j}^{*}\right)^{2}+\sum_{l \neq j}\left(\sum_{i=1}^{r}+\sum_{i=n-r+1}^{n}\right)\left(z_{j}^{(i) l}-\bar{z}_{j}^{*}\right)^{2} \\
& \geq\left(\sum_{i=1}^{r}+\sum_{i=n-r+1}^{n}\right)\left(z_{(i) j}-\bar{z}_{j}^{* *}\right)^{2} \\
& =\sum_{i=1}^{r}\left(z_{(i) j}-\bar{z}_{j}^{* l}\right)^{2}+\sum_{i=n-r+1}^{n}\left(z_{(i) j}-\bar{z}_{j}^{* u}\right)^{2}+\frac{r}{2}\left(\bar{z}_{j}^{* u}-\bar{z}_{j}^{* l}\right)^{2} \\
& \geq \frac{r}{2}\left(\bar{z}_{j}^{* u}-\bar{z}_{j}^{* l}\right)^{2}
\end{aligned}
$$

$$
\begin{equation*}
\geq \frac{r}{2}\left(z_{(n-r+1) j}-z_{(r) j}\right)^{2} \tag{11}
\end{equation*}
$$

where $\bar{z}_{j}^{* *}=\left(\sum_{i=1}^{r}+\sum_{i=n-r+1}^{n}\right) z_{(i) j} /(2 r), \bar{z}_{j}^{* l}=\sum_{i=1}^{r} z_{(i) j} / r$, and $\bar{z}_{j}^{* u}=\sum_{i=n-r+1}^{n} z_{(i) j} / r$. From (11),

$$
\begin{equation*}
\operatorname{var}\left(z_{j}^{*}\right) \geq \frac{r\left(z_{(n) j}-z_{(1) j}\right)^{2}}{2(k-1)}\left(\frac{z_{(n-r+1) j}-z_{(r) j}}{z_{(n) j}-z_{(1) j}}\right)^{2} . \tag{12}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
\left|\left(\mathbf{X}_{\mathrm{D}}^{*}\right)^{\mathrm{T}} \mathbf{X}_{\mathrm{D}}^{*}\right| & \geq k(k-1)^{p} \lambda_{\min }^{p}(\mathbf{R}) \prod_{j=1}^{p} \frac{r\left(z_{(n) j}-z_{(1) j}\right)^{2}}{2(k-1)}\left(\frac{z_{(n-r+1) j}-z_{(r) j}}{z_{(n) j}-z_{(1) j}}\right)^{2} \\
& =\frac{r^{p}}{2^{p}} k \lambda_{\min }^{p}(\mathbf{R}) \prod_{j=1}^{p}\left(z_{(n) j}-z_{(1) j}\right)^{2} \times \prod_{j=1}^{p}\left(\frac{z_{(n-r+1) j}-z_{(r) j}}{z_{(n) j}-z_{(1) j}}\right)^{2}
\end{aligned}
$$

This shows that

$$
\frac{\left|\left(\mathbf{X}_{\mathrm{D}}^{*}\right)^{\mathrm{T}} \mathbf{X}_{\mathrm{D}}^{*}\right|}{\frac{k^{p+1}}{4^{p}} \prod_{j=1}^{p}\left(z_{(n) j}-z_{(1) j}\right)^{2}} \geq \frac{\lambda_{\min }^{p}(\mathbf{R})}{p^{p}} \times \prod_{j=1}^{p}\left(\frac{z_{(n-r+1) j}-z_{(r) j}}{z_{(n) j}-z_{(1) j}}\right)^{2}
$$

A. 4 Proof of Theorem 4

Proof. From (8) and (9),

$$
\mathrm{V}\left(\hat{\boldsymbol{\beta}}^{\mathrm{D}} \mid \mathbf{Z}\right)=\sigma^{2}\left\{\left(\mathbf{X}_{\mathrm{D}}^{*}\right)^{\mathrm{T}} \mathbf{X}_{\mathrm{D}}^{*}\right\}^{-1}=\sigma^{2} \mathbf{B}_{4}^{\mathrm{T}}\left[\begin{array}{cc}
\frac{1}{k} & \mathbf{0}^{\mathrm{T}} \\
\mathbf{0} & \frac{1}{k-1} \mathbf{R}^{-1}
\end{array}\right] \mathbf{B}_{4} .
$$

Thus

$$
\begin{equation*}
\mathrm{V}\left(\hat{\beta}_{0}^{\mathrm{D}} \mid \mathbf{Z}\right)=\sigma^{2}\left(\frac{1}{k}+\frac{1}{k-1} \mathbf{u}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{u}\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{V}\left(\hat{\beta}_{j}^{\mathrm{D}} \mid \mathbf{Z}\right)=\frac{\sigma^{2}}{k-1} \frac{\left(\mathbf{R}^{-1}\right)_{j j}}{\operatorname{var}\left(z_{j}^{*}\right)} \tag{14}
\end{equation*}
$$

where $\mathbf{u}=\left\{-\bar{z}_{1}^{*} / \sqrt{\operatorname{var}\left(z_{1}^{*}\right)}, \ldots,-\bar{z}_{p}^{*} / \sqrt{\operatorname{var}\left(z_{p}^{*}\right)}\right\}^{\mathrm{T}}$ and $\left(\mathbf{R}^{-1}\right)_{j j}$ is the j th diagonal element of \mathbf{R}^{-1}.

From (13), $\mathrm{V}\left(\hat{\beta}_{0}^{\mathrm{D}} \mid \mathbf{Z}\right) \geq \sigma^{2} / k$ because $\mathbf{u}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{u} \geq 0$.

Denote the spectral decomposition of \mathbf{R} as $\mathbf{R}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}$. Since $\boldsymbol{\Lambda}^{-1} \leq \lambda_{\min }^{-1}(\mathbf{R}) \mathbf{I}_{p}$, $\mathbf{R}^{-1}=\mathbf{V} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathrm{T}} \leq \mathbf{V} \lambda_{\text {min }}^{-1}(\mathbf{R}) \mathbf{I}_{p} \mathbf{V}^{\mathrm{T}}=\lambda_{\text {min }}^{-1}(\mathbf{R}) \mathbf{I}_{p}^{\mathrm{T}}$. Thus $\mathbf{R}_{j j}^{-1} \leq \lambda_{\text {min }}^{-1}(\mathbf{R})$ for all j. From this fact, and (14) and (12), we have

$$
\begin{equation*}
\mathrm{V}\left(\hat{\beta}_{j}^{\mathrm{D}} \mid \mathbf{Z}\right)=\frac{\sigma^{2}}{k-1} \frac{\left(\mathbf{R}^{-1}\right)_{j j}}{\operatorname{var}\left(z_{j}^{*}\right)} \leq \frac{4 p \sigma^{2}}{k \lambda_{\min }(\mathbf{R})\left(z_{(n-r+1) j}-z_{(r) j}\right)^{2}} \tag{15}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\mathrm{V}\left(\hat{\beta}_{j}^{\mathrm{D}} \mid \mathbf{Z}\right)=\frac{\sigma^{2}}{k-1} \frac{\left(\mathbf{R}^{-1}\right)_{j j}}{\operatorname{var}\left(z_{j}^{*}\right)} \geq \frac{4 \sigma^{2}}{k \lambda_{\max }(\mathbf{R})\left(z_{(n) j}-z_{(1) j}\right)^{2}} \tag{16}
\end{equation*}
$$

Here we utilize the following inequality

$$
\begin{equation*}
\operatorname{var}\left(z_{j}^{*}\right) \leq \frac{1}{k-1} \sum_{i=1}^{k}\left(z_{i j}^{*}-\frac{z_{(n) j}+z_{(1) j}}{2}\right)^{2} \leq \frac{k}{4(k-1)}\left(z_{(n) j}-z_{(1) j}\right)^{2} \tag{17}
\end{equation*}
$$

where the last inequality is due to the fact $\left|z_{i j}^{*}-\frac{z_{(n) j}+z_{(1) j}}{2}\right| \leq \frac{z_{(n) j}-z_{(1) j}}{2}$ for all $i=1, \ldots, k$.

A. 5 Proof of Theorem 5

Proof. For (21), it is a direct result from (20).
For (22), we consider the five cases in the following. For the first case that r is fixed, from results in Theorems 2.8.1 and 2.8.2 in Galambos (1987), we have that

$$
\begin{equation*}
\frac{z_{(n-r+1) j}-z_{(r) j}}{z_{(n) j}-z_{(1) j}}=O_{P}(1) \quad \text { and } \quad \frac{z_{(n) j}-z_{(1) j}}{z_{(n-r+1) j}-z_{(r) j}}=O_{P}(1) \tag{18}
\end{equation*}
$$

Combining (21) and (18), (22) follows.
For the second case when $r \rightarrow \infty, r / n \rightarrow 0$, and the support of F_{j} is bounded, (18) can be easily verified.

For the third case when the upper endpoint for the support of F_{j} is ∞ and the lower endpoint for the support of F_{j} is finite, and $r \rightarrow \infty$ slow enough such that (23) holds, if we can show that $z_{(n-r+1) j} / z_{(n) j}=1+o_{P}(1)$, then the result in (22) follows. Let $b_{n, j}=$ $F_{j}^{-1}\left(1-n^{-1}\right)$. From Hall (1979), we only need to show that $z_{(n-r+1) j} / b_{n, j}=1+o_{P}(1)$ in order to show that $z_{(n-r+1) j} / z_{(n) j}=1+o_{P}(1)$. For this, from the proof of Theorem 1 of Hall (1979), it suffices to show that

$$
\left[\frac{1-F_{j}\left(b_{n, j}\right)}{1-F_{j}\left\{(1-\epsilon) b_{n, j}\right\}}\right]^{-1 / 2}\left[1-\frac{r\left\{1-F_{j}\left(b_{n, j}\right)\right\}}{1-F_{j}\left\{(1-\epsilon) b_{n, j}\right\}}\right] \rightarrow \infty
$$

which holds by directly applying the assumption in (23) and the fact that $r \rightarrow \infty$.
For the fourth case, it can be proved by using an approach similar to the one used for the third case. It can also be proved by noting that $z_{(r) j}=-(-z)_{(n-r+1) j}, z_{(1) j}=-(-z)_{(n) j}$, and the fact that the condition in (24) on \mathbf{z} becomes the condition in (23) on $-\mathbf{z}$.

For the fifth case, it can be proved by combining the results in the third case and the fourth case.

A. 6 Proof of Theorem 6

Let σ_{j} and $\rho_{j_{1} j_{2}}$ be the j th diagonal element of $\boldsymbol{\Phi}$ and entry $\left(j_{1}, j_{2}\right)$ of $\boldsymbol{\rho}$, respectively, for $j, j_{1}, j_{2}=1, \ldots, p$. As described in the proof of Theorem 3, from Algorithm 1, the values $z_{j}, j=1, \ldots, p$, in the subdata consist of $z_{(i) j}$, and $z_{j}^{(i) l}, l=1, \ldots j-1, j+1, \ldots, p, i=1, \ldots, r$, $n-r+1, \ldots, n$, where $z_{j}^{(i) l}$ are the concomitants for z_{j}.

Let $\mathbf{v}=\left(\mathbf{Z}_{\mathrm{D}}^{*}\right)^{\mathrm{T}} \mathbf{1}$ and $\boldsymbol{\Omega}=\left(\mathbf{Z}_{\mathrm{D}}^{*}\right)^{\mathrm{T}} \mathbf{Z}_{\mathrm{D}}^{*}$. Then

$$
\left(\mathbf{X}_{\mathrm{D}}^{*}\right)^{\mathrm{T}} \mathbf{X}_{\mathrm{D}}^{*}=\left[\begin{array}{ll}
k & \mathbf{v}^{\mathrm{T}} \tag{19}\\
\mathbf{v} & \boldsymbol{\Omega}
\end{array}\right]
$$

The j th diagonal element of $\boldsymbol{\Omega}$ is

$$
\begin{equation*}
\Omega_{j j}=\left(\sum_{i=1}^{r}+\sum_{i=n-r+1}^{n}\right) z_{(i) j}^{2}+\sum_{l \neq j}\left(\sum_{i=1}^{r}+\sum_{i=n-r+1}^{n}\right)\left(z_{j}^{(i) l}\right)^{2} \tag{20}
\end{equation*}
$$

while entry $\left(j_{1}, j_{2}\right), j_{1} \neq j_{2}$, is

$$
\begin{equation*}
\Omega_{j_{1} j_{2}}=\left(\sum_{i=1}^{r}+\sum_{i=n-r+1}^{n}\right)\left(z_{(i) j_{1}} z_{j_{2}}^{(i) j_{1}}+z_{(i) j_{2}} z_{j_{1}}^{(i) j_{2}}\right)+\sum_{l \neq j_{1} j_{2}}\left(\sum_{i=1}^{r}+\sum_{i=n-r+1}^{n}\right) z_{j_{1}}^{(i) l} z_{j_{2}}^{(i) l} . \tag{21}
\end{equation*}
$$

The j th element of \mathbf{v} is

$$
\begin{equation*}
v_{j}=\left(\sum_{i=1}^{r}+\sum_{i=n-r+1}^{n}\right) z_{(i) j}+\sum_{l \neq j}\left(\sum_{i=1}^{r}+\sum_{i=n-r+1}^{n}\right) z_{j}^{(i) l} . \tag{22}
\end{equation*}
$$

Now we consider the two specific distributions in Theorem 6 and prove the corresponding results in (26) and (27).

A.6.1 Proof of equation (26) in Theorem 6

Proof. When $\mathbf{z}_{i} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, using the results in Example 2.8.1 of Galambos (1987), we obtain

$$
\begin{array}{ll}
z_{(i) j}=\mu_{j}-\sigma_{j} \sqrt{2 \log n}+o_{P}(1), & i=1, \ldots, r, \tag{23}\\
z_{(i) j}=\mu_{j}+\sigma_{j} \sqrt{2 \log n}+o_{P}(1), & i=n-r+1, \ldots, n .
\end{array}
$$

Using an approach similar to Example 5.5.1 of Galambos (1987), we obtain

$$
\begin{align*}
& z_{j}^{(i) l}=\mu_{j}-\rho_{l j} \sigma_{j} \sqrt{2 \log n}+O_{P}(1), i=1, \ldots, r \tag{24}\\
& z_{j}^{(i) l}=\mu_{j}+\rho_{l j} \sigma_{j} \sqrt{2 \log n}+O_{P}(1), \quad i=n-r+1, \ldots, n
\end{align*}
$$

Using (23) and (24), from (20), (21) and (22), we obtain that

$$
\begin{align*}
\Omega_{j j} & =4 r \log n \sigma_{j}^{2} \sum_{l=1}^{p} \rho_{l j}^{2}+O_{P}(\sqrt{\log n}) \tag{25}\\
\Omega_{j_{1} j_{2}} & =4 r \log n \sigma_{j_{1}} \sigma_{j_{2}} \sum_{l=1}^{p} \rho_{l j_{1}} \rho_{l j_{2}}+O_{P}(\sqrt{\log n}) \tag{26}\\
v_{j} & =O_{P}(1) \tag{27}
\end{align*}
$$

respectively. From (25), (26) and (27), we have

$$
\begin{equation*}
\boldsymbol{\Omega}=4 r \log n \boldsymbol{\Phi} \boldsymbol{\rho}^{2} \boldsymbol{\Phi}+O_{P}(\sqrt{\log n}) \quad \text { and } \quad \mathbf{v}=O_{P}(1) \tag{28}
\end{equation*}
$$

The variance,

$$
\mathrm{V}\left(\hat{\boldsymbol{\beta}}^{\mathrm{D}} \mid \mathbf{X}\right)=\sigma^{2}\left[\begin{array}{ll}
k & \mathbf{v}^{\mathrm{T}} \tag{29}\\
\mathbf{v} & \boldsymbol{\Omega}
\end{array}\right]^{-1}=\frac{\sigma^{2}}{c}\left[\begin{array}{cc}
1 & -\mathbf{v}^{\mathrm{T}} \boldsymbol{\Omega}^{-1} \\
-\boldsymbol{\Omega}^{-1} \mathbf{v} & c \boldsymbol{\Omega}^{-1}+\boldsymbol{\Omega}^{-1} \mathbf{v}^{\mathrm{T}} \boldsymbol{\Omega}^{-1}
\end{array}\right]
$$

where $c=k-\mathbf{v}^{\mathrm{T}} \boldsymbol{\Omega}^{-1} \mathbf{v}=k+O_{P}(1 / \log n)$ and the second equality is from (28). Note that from (28) $\Omega^{-1}=O_{P}(1 / \log n)$, so

$$
\begin{aligned}
\boldsymbol{\Omega}^{-1}-\left(4 r \log n \boldsymbol{\Phi} \boldsymbol{\rho}^{2} \boldsymbol{\Phi}\right)^{-1} & =\boldsymbol{\Omega}^{-1}\left(4 r \log n \boldsymbol{\Phi} \boldsymbol{\rho}^{2} \boldsymbol{\Phi}-\boldsymbol{\Omega}\right)\left(4 r \log n \boldsymbol{\Phi} \boldsymbol{\rho}^{2} \boldsymbol{\Phi}\right)^{-1} \\
& =O_{P}\left(\frac{1}{\log n}\right) O_{P}(\sqrt{\log n}) O\left(\frac{1}{\log n}\right)=O_{P}\left\{\frac{1}{(\log n)^{3 / 2}}\right\} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\mathbf{\Omega}^{-1}=\frac{1}{4 r \log n}\left(\boldsymbol{\Phi} \boldsymbol{\rho}^{2} \boldsymbol{\Phi}\right)^{-1}+O_{P}\left\{\frac{1}{(\log n)^{3 / 2}}\right\} . \tag{30}
\end{equation*}
$$

Combining (19), (29) and (30), and using that $k=2 r p$

$$
\mathrm{V}\left(\hat{\boldsymbol{\beta}}^{\mathrm{D}} \mid \mathbf{X}\right)=\sigma^{2}\left[\begin{array}{cc}
\frac{1}{k}+O_{P}\left(\frac{1}{\log n}\right) & O_{P}\left(\frac{1}{\log n}\right) \\
O_{P}\left(\frac{1}{\log n}\right) & \frac{1}{4 r \log n}\left(\mathbf{\Phi} \boldsymbol{\rho}^{2} \boldsymbol{\Phi}\right)^{-1}+O_{P}\left\{\frac{1}{(\log n)^{3 / 2}}\right\}
\end{array}\right] .
$$

A.6.2 Proof of equation (27) in Theorem 6

Proof. When $\mathbf{z}_{i} \sim L N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Let $z_{i j}=\exp \left(U_{i j}\right)$ with $\mathbf{U}_{i}=\left(U_{i 1}, \ldots, U_{i p}\right)^{\mathrm{T}} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. From (23),

$$
\begin{align*}
& z_{(i) j}=\exp \left(U_{(i) j}\right)=\exp \left(-\sigma_{j} \sqrt{2 \log n}\right) O_{P}(1)=o_{P}(1), \quad i=1, \ldots, r, \tag{31}\\
& z_{(i) j}=\exp \left(U_{(i) j}\right)=\exp \left(\sigma_{j} \sqrt{2 \log n}\right)\left\{e^{\mu_{j}}+o_{P}(1)\right\}, \quad i=n-r+1, \ldots, n
\end{align*}
$$

Without loss of generality, assume that $\rho_{l j} \geq 0, l, j=1, \ldots, p$. From (24),

$$
\begin{align*}
z_{j}^{(i) l}=\exp \left(U_{j}^{(i) l}\right) & =\exp \left(-\rho_{l j} \sigma_{j} \sqrt{2 \log n}\right) O_{P}(1)=o_{P}(1), \quad i=1, \ldots, r \\
z_{j}^{(i) l}=\exp \left(U_{j}^{(i) l}\right) & =\exp \left\{\sigma_{j} \sqrt{2 \log n}-\left(1-\rho_{l j}\right) \sigma_{j} \sqrt{2 \log n}+\mu_{j}+O_{P}(1)\right\} \tag{32}\\
& =\exp \left(\sigma_{j} \sqrt{2 \log n}\right) o_{P}(1), \quad i=n-r+1, \ldots, n
\end{align*}
$$

Using (31) and (32), from (20), (21) and (22), we obtain that

$$
\begin{align*}
\Omega_{j j} & =r \exp \left(2 \sigma_{j} \sqrt{2 \log n}\right)\left\{e^{2 \mu_{j}}+o_{P}(1)\right\}, \tag{33}\\
\Omega_{j_{1} j_{2}} & =2 r \exp \left\{\left(\sigma_{j_{1}}+\sigma_{j_{2}}\right) \sqrt{2 \log n}\right\} o_{P}(1), \tag{34}\\
v_{j} & =r \exp \left(\sigma_{j} \sqrt{2 \log n}\right)\left\{e^{\mu_{j}}+o_{P}(1)\right\} . \tag{35}
\end{align*}
$$

From (19), (33)-(35), for $\mathbf{A}_{n}=\operatorname{diag}\left\{1, \exp \left(\sigma_{1} \sqrt{2 \log n}\right), \ldots, \exp \left(\sigma_{p} \sqrt{2 \log n}\right)\right\}$,

$$
\mathbf{A}_{n}^{-1}\left(\mathbf{X}_{\mathrm{D}}^{*}\right)^{\mathrm{T}} \mathbf{X}_{\mathrm{D}}^{*} \mathbf{A}_{n}^{-1}=\mathbf{A}_{n}^{-1}\left[\begin{array}{cc}
k & \mathbf{v}^{\mathrm{T}} \tag{36}\\
\mathbf{v} & \boldsymbol{\Omega}
\end{array}\right] \mathbf{A}_{n}^{-1}=\left[\begin{array}{cc}
k & r \mathbf{v}_{1}^{\mathrm{T}} \\
r \mathbf{v}_{1} & r \mathbf{B}_{5}
\end{array}\right]+o_{P}(1)
$$

where $\mathbf{v}_{1}=\left(e^{\mu_{1}}, \ldots, e^{\mu_{p}}\right)^{\mathrm{T}}$ and $\mathbf{B}_{5}=\operatorname{diag}\left(e^{2 \mu_{1}}, \ldots, e^{2 \mu_{p}}\right)$. From (36),

$$
\begin{aligned}
\mathrm{V}\left(\mathbf{A}_{n} \hat{\boldsymbol{\beta}}^{\mathrm{D}} \mid \mathbf{X}\right)=\sigma^{2} \mathbf{A}_{n}\left\{\left(\mathbf{X}_{\mathrm{D}}^{*}\right)^{\mathrm{T}} \mathbf{X}_{\mathrm{D}}^{*}\right\}^{-1} \mathbf{A}_{n} & =\sigma^{2}\left[\begin{array}{cc}
k & r \mathbf{v}_{1}^{\mathrm{T}} \\
r \mathbf{v}_{1} & r \mathbf{B}_{5}
\end{array}\right]^{-1}+o_{P}(1) \\
& =\frac{2 \sigma^{2}}{k}\left[\begin{array}{cc}
1 & -\mathbf{u}^{\mathrm{T}} \\
-\mathbf{u} & p \boldsymbol{\Lambda}+\mathbf{u u}^{\mathrm{T}},
\end{array}\right]+o_{P}(1) .
\end{aligned}
$$

A. 7 Proof of results in Table 1

When the covariate has a t distribution, from Theorem 4, for simple linear model, the variance of the estimator of β_{1} using the D-OPT IBOSS approach is of the same order as $\left(z_{(n) 1}-z_{(1) 1}\right)^{-2}$. From Theorems 2.1.2 and 2.9.2 of Galambos (1987), we obtain that $z_{(n) 1}-z_{(1) 1} \asymp_{P} n^{1 / \nu}$. Thus, the variance is of the order $n^{-2 / \nu}$.

For the full data approach, the variance of the estimator of β_{1} is of the same order as $\left(\sum_{i=1}^{n} z_{i 1}^{2}\right)^{-1}$. When z_{1} has a t distribution with degrees of freedom $\nu>2$, from Kolmogorov's strong law of large numbers (SLLN), $\sum_{i=1}^{n} z_{i 1}^{2}=O(n)$ almost surely. If $\nu \leq 2$, $\mathrm{E}\left[\left\{z_{i 1}^{2}\right\}^{1 /(2 / \nu+\alpha)}\right]<\infty$ for any $\alpha>0$. Thus, from Marcinkiewicz-Zygmund SLLN (Theorem 2 of Section 5.2 of Chow and Teicher, 2003), $\sum_{i=1}^{n} z_{i j}^{2}=o\left(n^{2 / \nu+\alpha}\right)$ almost surely for any $\alpha>0$. This shows that the order of $\left(\sum_{i=1}^{n} z_{i 1}^{2}\right)^{-1}$ is slower than $n^{-(2 / \nu+\alpha)}$ for any $\alpha>0$.

For the UNI approach, the lower bound for the variance of the estimator of β_{1} is of the same order as $n\left(\sum_{i=1}^{n} z_{i 1}^{2}\right)^{-1}$, which is of order $O(1)$ when $\nu>2$ and is slower than $n^{2 / \nu-1+\alpha}$ for any $\alpha>0$ when $\nu \leq 2$.

For the intercept β_{0}, the variance of the estimator is of the same order as the inverse of the sample size used in each method.

References

Chow, Y. S. C. and Teicher, H. (2003). Probability Theory: Independence, Interchangeability, Martingales. Springer, New York.

Galambos, J. (1987). The asymptotic theory of extreme order statistics. Florida: Robert E. Krieger.

Hall, P. (1979). On the relative stability of large order statistics. In Mathematical Proceedings of the Cambridge Philosophical Society, vol. 86, 467-475. Cambridge Univ Press.

Nordström, K. (2011). Convexity of the inverse and Moore-Penrose inverse. Linear Algebra and its Applications 434, 6, 1489-1512.

