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Supplementary Materials for “Simultaneous Confidence Intervals Compatible with Sequentially Rejective 

Graphical Procedures” in Statistics in Biopharmaceutical Research by Olivier J. M. Guilbaud  

Appendix A: Detailed Illustration with a Fallback MTP, cf. Section 4.3.3 

We illustrate Algorithm 1 and the bounds (20) with the Fallback MTP that has default graph in Figure 

1(b) with 𝑣1 = 1/2, 𝑣2 = 𝑣3 = 1/4, and 𝛼 = 0.025, using the same data as in Guilbaud (2009, sec. 

3.1.3). These sequence weights 𝑣1, 𝑣2, 𝑣3 correspond to the choice 𝑤1 = 1/2 and 𝑤2 = 𝑤3 = 1/4 of a 

priori weights discussed at the end of Example 2. The data come from a study reported by Hartung et 

al. (2002) in which two doses of mitoxandrone were compared with placebo in multiple-sclerosis 

patients with respect to five primary efficacy variables (originally through a Fixed-Sequence MTP).  

For our illustration we consider only the high-dose vs. placebo comparison with respect to the first 

three primary efficacy variables, as in Guilbaud (2009, sec. 3.1.3). Briefly, these three variables are, in 

relevant order: 𝑌1 = (change from baseline of expanded disability status scale), 𝑌2 = (change from 

baseline of ambulation index), and 𝑌3 = (number of relapses treated with corticosteroids). For each 

𝑖 = 1, 2, 3, the comparison was in terms of the quantity 𝜃𝑖 = Pr[𝑌𝑖′ > 𝑌𝑖 ′′] − Pr[𝑌𝑖
′ < 𝑌𝑖′′], where 𝑌𝑖 ′ 

and 𝑌𝑖 ′′ denote independent random 𝑌𝑖-variables from underlying patient populations treated with 

placebo and active dose, respectively; and the aim was to show that 𝜃𝑖 > 0, i.e. to reject the null 

hypothesis that 𝜃𝑖 ≤ 0. This is thus in accordance with the setup in Section 2, with hypotheses 𝐻𝑖 in 

(1) that have target/boundary values 𝜃𝑖,0 = 0.  

The observed values of 𝜃𝑖, 𝑠𝑒𝑖 , and 𝑝𝑖 are based on large-sample marginal two-sided 95% confidence 

intervals of the form 𝜃𝑖 ± 1.96 𝑠𝑒𝑖  reported by Hartung et al. (2002); see Guilbaud (2009, section 

3.1.3) for details. The subsequent inferences based on these observed values are approximate (the 

underlying asymptotic argument amounts to pretending that each (𝜃𝑖 − 𝜃𝑖)/𝑠𝑒𝑖  ~ 𝒩(0, 1) and that 

each 𝑠𝑒𝑖-value is a known constant). The observed values of 𝜃𝑖, 𝑠𝑒𝑖 , and 𝑝𝑖 are given in Table A.1 for 

Outcome Scenario 1. Another Outcome Scenario 2 is also given in Table A.1 where the 𝜃1-value has 

been increased and the 𝜃2-value has been decreased, to illustrate what happens with another ℛ-

outcome. These outcome scenarios are the same as in Guilbaud (2009, table 3) where alternative 

confidence bounds were considered. These two scenarios were also used by Schmidt and Brannath 

(2015, tables 1 and 2).      

Now, consider Outcome Scenario 1. We first verify that Algorithm 1 rejects all hypotheses 𝐻1, 𝐻2, 𝐻3. 

For simplicity we may consider the informal description of this algorithm given in the third paragraph 

of Section 3. In the first step of the algorithm, both 𝐻1 and 𝐻3 are rejected because 𝑝1 ≤ 𝛼𝑣1 =

0.025(1/2) and 𝑝3 ≤ 𝛼𝑣3 = 0.025(1/4), whereas 𝐻2 is not rejected because 𝑝2 > 𝛼𝑣2 =

0.025(1/4). However, in the second step, also 𝐻2 becomes rejected because 𝑝2 ≤ 𝛼(𝑣1 + 𝑣2) =

0.025(1/2 + 1/4). Thus, ℛ = {1, 2, 3} in this scenario.  
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It then follows from (19) and (20) that �̃�𝑖 = 𝜃𝑖,0 ∨ 𝑝𝑖
−1(𝛼𝑖) for 𝑖 = 1, 2, 3; because all three sequences 

in Figure 1(b) have been entirely rejected. Here 𝜃𝑖,0 = 0, 𝛼𝑖 = 𝛼𝑣𝑖, and we have from (8) that 

𝑝𝑖
−1(𝑢) = 𝜃𝑖 − Φ−1(1 − 𝑢) 𝑠𝑒𝑖 ; which leads to the lower confidence bounds �̃�1, �̃�2, �̃�3 given in the 

last row of Table A.1 for Outcome Scenario 1. Note that the relations �̃�1 > 𝜃1,0, �̃�2 = 𝜃2,0, �̃�3 > 𝜃3,0, 

are in accordance with the facts that 𝑝1 ≡ 𝑝1(𝜃1,0) ≤ 𝛼𝑣1, 𝑝2 ≡ 𝑝2(𝜃2,0) > 𝛼𝑣2, 𝑝3 ≡ 𝑝3(𝜃3,0) ≤

𝛼𝑣3, respectively. In particular, note that although ℛ = {1, 2, 3}, the assertion “�̃�2 < 𝜃2” about 𝜃2 is 

not sharper than the rejection assertion “𝜃2,0 < 𝜃2”. 

Next, consider Outcome Scenario 2. We first verify that Algorithm 1 rejects 𝐻1 and 𝐻3, but not 𝐻2. In 

the first step of the algorithm, both 𝐻1 and 𝐻3 are rejected because 𝑝1 ≤ 𝛼𝑣1 = 0.025(1/2) and 𝑝3 ≤

𝛼𝑣3 = 0.025(1/4), whereas 𝐻2 is not rejected because 𝑝2 > 𝛼𝑣2 = 0.025(1/4), as in Outcome 

Scenario 1. However, in contrast to Outcome Scenario 1, the hypothesis 𝐻2 is not rejected in the 

second step, because 𝑝2 > 𝛼(𝑣1 + 𝑣2) = 0.025(1/2 + 1/4). Thus, ℛ = {1, 3} in this scenario. 

It then follows from (19) and (20) that �̃�1 = 𝜃1,0 ∨ 𝑝1
−1(𝛼1), �̃�2 = 𝑝2

−1(𝛼2(ℛ)), and �̃�3 = 𝜃3,0 ∨

𝑝3
−1(𝛼3). Here 𝜃𝑖,0 = 0, 𝛼1 = 0, 𝛼2(ℛ) = 𝛼(𝑣1 + 𝑣2), and 𝛼3 = 𝛼𝑣3, because 𝒮1 is not entirely 

rejected, 𝐻2 in 𝒮2 is not rejected, and 𝒮3 is entirely rejected; and 𝑝𝑖
−1(𝑢) = 𝜃𝑖 − Φ−1(1 − 𝑢) 𝑠𝑒𝑖 ; 

which leads to the lower bounds �̃�1, �̃�2, �̃�3 given in the last row of Table A.1 for Outcome Scenario 2. 

Note that the relations �̃�1 = 𝜃1,0, �̃�2 < 𝜃2,0, �̃�3 > 𝜃3,0, are in accordance with the facts that 𝑝1
−1(0) =

−∞, 𝑝2 ≡ 𝑝2(𝜃2,0) > 𝛼(𝑣1 + 𝑣2), 𝑝3 ≡ 𝑝3(𝜃3,0) ≤ 𝛼𝑣3, respectively.  

Table A.1 Quantities involved in simultaneous 1 − 𝛼 confidence bounds �̃�1, �̃�2, �̃�3 given by (20) for 𝜃1, 𝜃2, 𝜃3 

based on the default graph in Figure 1(b) with 𝑣1 = 1/2, 𝑣2 = 𝑣3 = 1/4, and 𝛼 = 0.025, under two outcome 

scenarios, where ℛ = {1, 2, 3} and ℛ = {1, 3} under Outcome Scenario 1 and 2, respectively. 

  Outcome Scenario 1  Outcome Scenario 2 

Quantity  𝑖 = 1 𝑖 = 2 𝑖 = 3  𝑖 = 1 𝑖 = 2 𝑖 = 3 

𝜃𝑖,0  0 0 0  0 0 0 

𝜃𝑖  0.240 0.210 0.385  0.300 0.190 0.385 

𝑠𝑒𝑖  0.102 0.097 0.105  0.102 0.097 0.105 

𝑝𝑖   0.0093 0.0151 0.0001  0.0016 0.0250 0.0001 

𝐻𝑖  rejected?  Yes Yes Yes  Yes No Yes 

�̃�𝑖  0.011 0 0.124  0 −0.012 0.124 
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Finally, we note from Section 4.3.3 that if in another Outcome Scenario, the last hypothesis 𝐻3 is not 

rejected, then the confidence bound �̃�𝑖 of any rejected hypothesis 𝐻𝑖 with 𝑖 < 3 is necessarily equal to 

𝜃𝑖,0, i.e. not larger/sharper than 𝜃𝑖,0, even if the 𝑝𝑖-value is extremely small. As shown in Remark 6, 

the last hypothesis in the given sequence of hypotheses has this crucial role not only for the particular 

confidence bounds (20) or their equivalent version (22), but also for any alternative confidence bounds 

based on Strassburger and Bretz (2008, eq. (8)) for a Fallback MTP. 

Appendix B: Comparisons of Confidence Bounds for a Fallback MTP, cf. Section 4.3.3 

Consider the Original Fallback MTP with default graph shown in Figure 1(b) that has 𝐾 = 𝑚 = 3 

sequences 𝒮𝑘 with weights 𝑣𝑘 equal to the a priori weights 𝑤𝑘. This MTP was discussed in Examples 

2 and 4, and some results concerning confidence bounds were mentioned in Section 4.3.3 and Remark 

6. This MTP was also used for the illustration in Appendix A. In the present Appendix B we compare 

the confidence bounds (20), with the confidence bounds based on the expression in Dmitrienko et al. 

(2009, p. 72). The latter bounds are valid for the special case with equal a priori weights 𝑤𝑖 = 1/𝑚. 

Therefore, in order to illustrate and discuss differences between these two sets of confidence bounds, 

we assume in the remaining part of this Appendix that 𝑚 = 3 and 𝑤1 = 𝑤2 = 𝑤3 = 1/3, so that 𝑣1 =

𝑣2 = 𝑣3 = 1/3 in Figure 1(b).      

Guilbaud (2009, sec. 3) discussed alternative confidence bounds that can take advantage of the fact 

that the Fallback MTP is not 𝛼-exhaustive. In the particular situation considered here, we let 

  ℒ1
(𝑥)

, ℒ2
(𝑥)

, ℒ3
(𝑥)

, (B.1) 

denote a set of such alternative lower confidence bounds for 𝜃1, 𝜃2, 𝜃3, where 𝑥 is a pre-specified 

parameter that can assume any value in the interval [0, 1/3]. There are thus infinitely many sets of 

compatible confidence bounds (B.1) indexed by 𝑥 ∈ [0, 1/3] even for this simple Fallback MTP. We 

do not go into details about all these alternative bounds, except to say that their description and 

determination is far from simple and transparent (they can be obtained from Guilbaud (2009, table 2) 

with 𝑤′1 = 𝑤′2 = 𝑤′3 = 1/3 and any given 0 ≤ 𝑥 ≤ 1/3).   

It turns out that the confidence bounds (20) and the Dmitrienko et al. (2009, p.72) confidence bounds 

are special cases of the bounds (B.1). More precisely, the Dmitrienko et al. (2009, p. 72) bounds 

correspond to the parameter value 𝑥 = 1/6; whereas the bounds (20) correspond to the parameter 

value 𝑥 = 1/3. It also turns out that these two sets of bounds are equal for all outcomes of the 

rejection-index set ℛ, except for ℛ = {3} and ℛ = {1, 3}. To illustrate and discuss differences, we 

therefore only have to consider these two ℛ-outcomes.   
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Consider first the outcome ℛ = {3}, i.e. the outcome 𝑝1 > 𝛼/3, 𝑝2 > 𝛼/3, and 𝑝3 ≤ 𝛼/3. In this 

case, the (𝑥 = 1/6)-bounds of Dmitrienko et al. (2009, p. 72) and the (𝑥 = 1/3)-bounds (20) for 

𝜃1, 𝜃2, 𝜃3 are 

𝑝1
−1(𝛼/3),  𝑝2

−1(𝛼/3),  𝜃3,0; (B.2) 

𝑝1
−1(𝛼/3),  𝑝2

−1(𝛼/3),  𝜃3,0 ∨ 𝑝3
−1(𝛼/3); (B.3) 

respectively. Here the lower bounds 𝑝1
−1(𝛼/3) and 𝑝2

−1(𝛼/3) for 𝜃1 and 𝜃2 in (B.2) and (B.3) are 

below their critical values 𝜃1,0 and 𝜃2,0, because 𝑝1(𝜃1,0) > 𝛼/3 and 𝑝2(𝜃2,0) > 𝛼/3; whereas the 

lower bound for 𝜃3 in (B.3) is above its critical value 𝜃3,0 (unless equality occurs in the rejection 

inequality 𝑝3 ≤ 𝛼/3). Thus, the bounds (B.3) dominates the bounds (B.2) in that they always are at 

least as sharp, typically sharper.  

Consider next the outcome ℛ = {1, 3}, i.e. the outcome 𝑝1 ≤ 𝛼/3, 𝑝2 > 𝛼2/3, and 𝑝3 ≤ 𝛼/3. In this 

case, the (𝑥 = 1/6)-bounds of Dmitrienko et al. (2009, p. 72) and the (𝑥 = 1/3)-bounds (20) for 

𝜃1, 𝜃2, 𝜃3 are 

𝜃1,0 ∨ 𝑝1
−1(𝛼/6),  𝑝2

−1(𝛼2/3),  𝜃3,0 ∨ 𝑝3
−1(𝛼/6); (B.4) 

𝜃1,0,  𝑝2
−1(𝛼2/3),  𝜃3,0 ∨ 𝑝3

−1(𝛼/3); (B.5) 

respectively. Here the lower bound 𝑝2
−1(𝛼2/3) for 𝜃2 in (B.4) and (B.5) is below its critical value 𝜃2,0. 

It can be verified that neither of the two sets (B.4) and (B.5) of bounds dominates the other, because 

𝑝3
−1(𝛼/6) < 𝑝3

−1(𝛼/3), and possibly also 𝑝𝑖
−1(𝛼/6) < 𝜃𝑖,0 for 𝑖 = 1 and/or 𝑖 = 3.  

This illustrates the difference between the Dmitrienko et al. (2009, p. 72) bounds and the bounds (20), 

i.e. between two of the many alternative sets of bounds (B.1) indexed by 𝑥 ∈ [0, 1/3].  

Appendix C: Direct Proof that �̃�𝟏, … , �̃�𝒎 Satisfy Inequality (21) 

C.1 Idea Behind the Direct Proof  

Let 𝑇 be the unknown subset of 𝑀 ≡ {1, … , 𝑚} that consists of the indexes 𝑖 of the hypotheses 𝐻𝑖 

which are true. The complementary set 𝑀\𝑇 then consists of the indexes 𝑖 of the hypotheses 𝐻𝑖 which 

are false. The subsequent developments are as if the sets 𝑇 and 𝑀\𝑇 are both non-empty, but the 

modifications in case one of these two sets is empty are straightforwards. Note that Algorithm 1 makes 

no erroneous rejection (of a true hypothesis) if and only if ℛ ⊂ 𝑀\𝑇.  

For each non-empty set 𝒟 ⊂ 𝑀, let 𝛼1(𝒟), … , 𝛼𝑚(𝒟) be the 𝛼-fractions defined by 



5 
 

 𝛼𝑖(𝒟) = 𝛼 × (
sum of weights 𝑣𝑘 over indexes 𝑘 of sequences 𝒮𝑘 for

which 𝐻𝑖 is the first hypothesis and 𝐼(𝒮𝑘) ⊂ 𝒟 
) ; (C.1) 

where 𝐼(𝒮𝑘) denotes the set of indexes of the hypotheses in sequence 𝒮𝑘, and the right-hand side of 

(C.1) is defined as zero if there is no 𝒮𝑘 for which 𝐻𝑖 is the first hypothesis and 𝐼(𝒮𝑘) ⊂ 𝒟. In 

particular, 𝛼𝑖(𝒟) = 0 if 𝑖 ∈ 𝑀\𝒟. These 𝛼-fractions are monotonic in 𝒟 in that,  

 𝛼𝑖(𝒟′) ≤ 𝛼𝑖(𝒟′′)  if  𝑖 ∈ 𝒟′ ⊂ 𝒟′′ ⊂ 𝑀 . (C.2) 

This monotonicity can be verified as follows. Let 𝜅𝑖(𝒟) denote the set of indexes 𝑘 over which the 

sum in (C.1) is taken. Suppose that 𝑖 ∈ 𝒟′ ⊂ 𝒟′′ ⊂ 𝑀 are given. We then have the relation 𝜅𝑖(𝒟′) ⊂

𝜅𝑖(𝒟′′), because 𝐼(𝒮𝑘) ⊂ 𝒟′ ⇒ 𝐼(𝒮𝑘) ⊂ 𝒟′′; and therefore the sum of weights 𝑣𝑘 over 𝑘 ∈ 𝜅𝑖(𝒟′) is at 

most as large as over 𝑘 ∈ 𝜅𝑖(𝒟′′).  

The confidence bounds �̃�1, … , �̃�𝑚 given by (20) can then be expressed as,  

 �̃�𝑖 = {
𝜃𝑖,0 ∨ 𝑝𝑖

−1 (𝛼𝑖(ℛ)) , if 𝑖 ∈ ℛ ,

𝑝𝑖
−1(𝛼𝑖(ℛ)), if 𝑖 ∈ 𝑀\ℛ ,

   (C.3) 

in terms of the 𝛼-fractions 𝛼𝑖(ℛ) and 𝛼𝑖(ℛ) given by (C.1) and (10). 

The idea behind the proof of inequality (21) is to compare the bounds �̃�1, … , �̃�𝑚 with the unobervable 

bounds �̃�1
∗ , … , �̃�𝑚

∗  given by  

 �̃�𝑖
∗ = {

𝜃𝑖,0 ∨ 𝑝𝑖
−1 (𝛼𝑖(𝑀\𝑇)) , if 𝑖 ∈ 𝑀\𝑇 ,

𝑝𝑖
−1(𝛼𝑖(𝑀\𝑇)), if 𝑖 ∈ 𝑇 ,

   (C.4) 

and: (a) show that the unobservable bounds �̃�𝑖
∗ have simultaneous coverage probability satisfying 

 Pr[�̃�𝑖
∗ < 𝜃𝑖 for all 𝑖 ∈ 𝑀] ≥ 1 − 𝛼 ; (C.5) 

and (b) show that if a coverage error is made with the bounds �̃�𝑖, then a coverage error is made with 

the unobservable bounds �̃�𝑖
∗, i.e. show the relation 

 [𝜃𝑖 ≤ �̃�𝑖  for some 𝑖 ∈ 𝑀] ⊂ [𝜃𝑖 ≤ �̃�𝑖
∗ for some 𝑖 ∈ 𝑀]  (C.6) 

between non-coverage events. It follows from relations (C.5) and (C.6) by considering complementary 

events that the bounds �̃�𝑖 have simultaneous coverage probability satisfying 

 Pr[�̃�𝑖 < 𝜃𝑖  for all 𝑖 ∈ 𝑀] ≥ 1 − 𝛼 . (C.7) 
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We therefore only have to show the relations (C.5) and (C.6). This is done in the next two sections. It 

may be noted that this proof of (21) is direct in that it is essentially based on the monotonicity relations 

(13) and (C.2); that is, it does not involve closed-testing or partitioning arguments. 

C.2 Proof that the Unobservable Bounds �̃�𝟏
∗ , … , �̃�𝒎

∗  Satisfy Inequality (C.5) 

The simplifying aspect of the lower bounds �̃�𝑖
∗ given by (C.4) is that they do not involve the rejection 

index-set ℛ which is random. Clearly, the non-coverage event to the right of ⊂ in (C.6) is equal to the 

union of the two events 𝐸1 = [𝜃𝑖 ≤ �̃�𝑖
∗ for some 𝑖 ∈ 𝑀\𝑇] and 𝐸2 = [𝜃𝑖 ≤ �̃�𝑖

∗ for some 𝑖 ∈ 𝑇]. We 

consider these two events 𝐸1 and 𝐸2 separately in the next two subsections. 

C.2.1 The Event 𝐸1. Let us first consider the event 𝐸1 which equals the union over 𝑖 ∈ 𝑀\𝑇 of the 

events [𝜃𝑖 ≤ �̃�𝑖
∗]. The following sequence of relations for the probability Pr(𝐸1) can be verified using 

(C.4):     

 

Pr(𝐸1) = Pr (⋃ [𝜃𝑖 ≤ 𝜃𝑖,0 ∨ 𝑝𝑖
−1 (𝛼𝑖(𝑀\𝑇))]𝑖∈𝑀\𝑇 ) ,

= Pr (⋃ [𝜃𝑖 ≤ 𝑝𝑖
−1 (𝛼𝑖(𝑀\𝑇))]𝑖∈𝑀\𝑇 ) ,

≤ ∑ Pr ([𝜃𝑖 ≤ 𝑝𝑖
−1 (𝛼𝑖(𝑀\𝑇))])𝑖∈𝑀\𝑇  ,

≤ ∑ 𝛼𝑖(𝑀\𝑇)𝑖∈𝑀\𝑇  .

  (C.8) 

Here: the equality sign = in the second row follows from the fact that 𝜃𝑖,0 < 𝜃𝑖 for each 𝑖 ∈ 𝑀\𝑇, 

because each 𝐻𝑖 with 𝑖 ∈ 𝑀\𝑇 is false; the inequality sign ≤ at the beginning of the third row follows 

from Boole’s inequality; and the inequality sign ≤ in the fourth row follows from (4). Now, it follows 

from expression (C.1) with 𝒟 = 𝑀\𝑇 that each original sequence 𝒮𝑘 with 𝐼(𝒮𝑘) ⊂ 𝑀\𝑇 contributes 

with its weight 𝑣𝑘 to the last sum in (C.8), and that 

 Pr(𝐸1) ≤ 𝛼 × (
sum of weights 𝑣𝑘 over indexes 𝑘 of sequences

𝒮𝑘 for which 𝐼(𝒮𝑘) ⊂ 𝑀\𝑇 
)  , (C.9) 

where 𝐼(𝒮𝑘) ⊂ 𝑀\𝑇 means that 𝒮𝑘 consists only of false hypotheses. 

C.2.2 The Event 𝐸2. Let us next consider the event 𝐸2 which equals the union over 𝑖 ∈ 𝑇 of the events 

[𝜃𝑖 ≤ �̃�𝑖
∗]. The following sequence of relations for the probability Pr(𝐸2) can then be verified using 

(C.4): 

 

Pr(𝐸2) = Pr(⋃ [𝜃𝑖 ≤ 𝑝𝑖
−1(𝛼𝑖(𝑀\𝑇))]𝑖∈𝑇 ) ,

≤ ∑ Pr([𝜃𝑖 ≤ 𝑝𝑖
−1(𝛼𝑖(𝑀\𝑇))])𝑖∈𝑇  ,

≤ ∑ 𝛼𝑖(𝑀\𝑇)𝑖∈𝑇  .

  (C.10) 
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Here: the inequality sign ≤ at the beginning of the second row follows from Boole’s inequality; and 

the inequality sign ≤ in the third row follows from (4). Now, in the expression (10) with 𝒟 = 𝑀\𝑇 for 

the 𝛼-fraction 𝛼𝑖(𝑀\𝑇), the 𝒟-reduced sequences 𝒮𝑘
(−𝒟)

 consist of true hypotheses remaining after 

having deleted all false hypotheses from the original sequences. Each original sequence 𝒮𝑘 that 

contains at least one true hypothesis thus contributes with its weight 𝑣𝑘 to the last sum in (C.10). It 

then follows from (C.10) that 

 Pr(𝐸2) ≤ 𝛼 × (
sum of weights 𝑣𝑘  over indexes 𝑘 of sequences

𝒮𝑘  for which 𝐼(𝒮𝑘) ∩ 𝑇 ≠ ∅ 
)  , (C.11) 

where 𝐼(𝒮𝑘) ∩ 𝑇 ≠ ∅ means that 𝒮𝑘 contains at least one true hypothesis. 

C.2.3 The Inequality (C.5). Combining (C.9) and (C.11) we get from Boole’s inequality that 

Pr(𝐸1 ∪ 𝐸2) ≤ 𝛼; that is, we have shown the inequality (C.5) aimed at in this section C.2. 

C.3 Proof of the Relation (C.6) Between Non-Coverage Events 

In this section we show that for any outcome of the data (i.e. for any realization of random quantities) 

such that event to the left of ⊂ in (C.6) occurs, the event to the right of ⊂ necessarily occurs. We first 

consider the following two cases separately: (a) the case when the outcome of the data is such that 

ℛ ⊂ 𝑀\𝑇, i.e. when no erroneous rejection of a true hypothesis is made by Algorithm 1; and (b) the 

case when the outcome of the data is such that ℛ ∩ 𝑇 ≠ ∅, i.e. when at least one erroneous rejection of 

a true hypothesis is made with Algorithm 1.   

C.3.1 The case ℛ ⊂ 𝑀\𝑇. Assume that the outcome of the data is such that ℛ ⊂ 𝑀\𝑇. Suppose that 

there is an 𝑖 ∈ 𝑀 for which the non-coverage relation 𝜃𝑖 ≤ �̃�𝑖 occurs. Then this 𝑖 ∈ 𝑀 cannot belong 

to 𝑀 ∩ 𝑇𝑐 ∩ ℛ𝑐, because if it does (so that 𝐻𝑖 is false and non-rejected), then 𝜃𝑖,0 < 𝜃𝑖 and �̃�𝑖 < 𝜃𝑖,0, 

which contradicts the inequality 𝜃𝑖 ≤ �̃�𝑖. Thus the 𝑖 ∈ 𝑀 satisfies either 𝑖 ∈ ℛ or 𝑖 ∈ 𝑇, where ℛ and 𝑇 

are disjoint. We consider these two cases separately. 

Suppose first that 𝑖 ∈ ℛ is such that 𝜃𝑖 ≤ �̃�𝑖. Then because ℛ ⊂ 𝑀\𝑇, it follows from (C.2) that 

𝛼𝑖(ℛ) ≤ 𝛼𝑖(𝑀\𝑇). It therefore follows from the first row of (C.3) and (C.4) that the non-coverage 

relation 𝜃𝑖 ≤ �̃�𝑖
∗ occurs.  

Suppose instead that 𝑖 ∈ 𝑇 is such that 𝜃𝑖 ≤ �̃�𝑖. Then because ℛ ⊂ 𝑀\𝑇, it follows from (13) that 

𝛼𝑖(ℛ) ≤ 𝛼𝑖(𝑀\𝑇) where 𝑖 ∈ 𝑀\(𝑀\𝑇) = 𝑇. It therefore follows from the second row of (C.3) and 

(C.4) that the non-coverage relation 𝜃𝑖 ≤ �̃�𝑖
∗ occurs. 
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We thus have shown that if the outcome of the data is such that ℛ ⊂ 𝑀\𝑇, and there is an 𝑖 ∈ 𝑀 for 

which the non-coverage relation 𝜃𝑖 ≤ �̃�𝑖 occurs, then there is an 𝑖 ∈ 𝑀 for which the non-coverage 

relation 𝜃𝑖 ≤ �̃�𝑖
∗ occurs.  

C.3.2 The case ℛ ∩ 𝑇 ≠ ∅. Assume that the outcome of the data is such that ℛ ∩ 𝑇 ≠ ∅. There is then 

a first Step 𝑠 ≥ 1 (say 𝑠 = 𝕤) in Algorithm 1 in which the rejection index set ℛ𝑠 in (15) contains at 

least one index 𝑖 (say 𝑖 = 𝕚) of a true hypothesis 𝐻𝑖; that is, the integers 𝕤 and 𝕚 are such that 

 𝒟𝕤−1 ⊂ 𝑀\𝑇;  𝕚 ∈ ℛ𝕤 ∩ 𝑇; 𝜃𝕚 ≤ 𝜃𝕚,0; 𝑝𝕚 ≤ 𝛼𝕚(𝒟𝕤−1). (C.12) 

Note that the fact that 𝕚 ∈ ℛ𝕤 ∩ 𝑇 ⊂ ℛ implies that the non-coverage relation 𝜃𝕚 ≤ �̃�𝕚 occurs because: 

(a) 𝜃𝕚 ≤ 𝜃𝕚,0 since 𝕚 ∈ 𝑇; and (b) 𝜃𝕚,0 ≤ �̃�𝕚 according to the first row in (C.3) since 𝕚 ∈ ℛ. Now, 𝑝𝕚 ≡

𝑝𝕚(𝜃𝕚,0) in the last inequality ≤ in (C.12), so this inequality is equivalent to 𝜃𝕚,0 ≤ 𝑝𝕚
−1(𝛼𝕚(𝒟𝕤−1)). It 

then follows from this latter inequality, the first relation ⊂ in (C.12), and the monotonicity relation 

(13), that  

 𝜃𝕚,0 ≤ 𝑝𝕚
−1(𝛼𝕚(𝑀\𝑇)) where 𝕚 ∈ 𝑇; (C.13) 

so it follows from the second row in (C.4) that the non-coverage relation 𝜃𝕚 ≤ �̃�𝕚
∗ occurs.   

We thus have shown that if the outcome of the data is such that ℛ ∩ 𝑇 ≠ ∅, then there is an 𝑖 ∈ 𝑀 for 

which the non-coverage relations 𝜃𝑖 ≤ �̃�𝑖 and 𝜃𝑖 ≤ �̃�𝑖
∗ occur.  

C.3.3 The relation (C.6) between non-coverage events. Let 𝐸left denote the �̃�𝑖-based event to the left of 

⊂ in (C.6), and let 𝐸right denote the �̃�𝑖
∗-based event to the right of ⊂ in (C.6). In terms of these two 

non-coverage events, the results in section C.3.1 mean that 

 [ℛ ⊂ 𝑀\𝑇] ∩ 𝐸left  ⊂  [ℛ ⊂ 𝑀\𝑇] ∩ 𝐸right; (C.14) 

that is, if the intersection event to the left of ⊂ occurs, then the intersection event to the right of ⊂ 

occurs. Moreover, the results in section C.3.2 mean that  

 [ℛ ∩ 𝑇 ≠ ∅]  ⊂  [𝜃𝑖 ≤ �̃�𝑖 and 𝜃𝑖 ≤ �̃�𝑖
∗ for some 𝑖 ∈ 𝑀]. (C.15) 

Here, the event to the right of ⊂ is a subset of 𝐸left and a subset of 𝐸right, so that  

 [ℛ ∩ 𝑇 ≠ ∅] ∩ 𝐸left = [ℛ ∩ 𝑇 ≠ ∅] = [ℛ ∩ 𝑇 ≠ ∅] ∩ 𝐸right. (C.16) 

It then follows from (C.14) and (C.16 that  



9 
 

 ([ℛ ⊂ 𝑀\𝑇] ∪ [ℛ ∩ 𝑇 ≠ ∅]) ∩ 𝐸left  ⊂  ([ℛ ⊂ 𝑀\𝑇] ∪ [ℛ ∩ 𝑇 ≠ ∅]) ∩ 𝐸right. (C.17) 

But because [ℛ ⊂ 𝑀\𝑇] ∪ [ℛ ∩ 𝑇 ≠ ∅] is the union of two disjoint events that partition the sample 

space, it follows from (C.17) that 𝐸left ⊂ 𝐸right, which is the relation (C.6) aimed at in this section C.3.  


