Supporting Information

Guerbet Glycolipids from Mannose: Liquid Crystals Properties

Melonney Patrick^a, N. Idayu Zahid^a, Manfred Kriechbaum^b, and Rauzah Hashim^a

^a Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.

^b Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria

Table of Contents

¹ H NMR and ¹³ C NMR data for the Guerbet mannosides
FTIR spectra for α -Man-OC ₁₄ C ₁₀ (Figure S1)
Small- and Wide- Angle X-ray scattering patterns for selected Guerbet mannosides (Figure
S2–S4)
Temperature dependence of the lattice parameter at selected water content for Guerbet
mannosides (Figure S5–S49)6
Lattice parameter of Guerbet mannosides as a function of water content and temperature
(Table S1–S5)9
¹ H NMR and ¹³ C NMR spectra for the Guerbet mannosides

¹H NMR and ¹³C NMR for the synthetic Guerbet mannosides

2-ethyl-hexyl-a-D-mannopyranoside, a-Man-OC₆C₂

¹H NMR (400 MHz, CD₃OD): δ (ppm) = 0.90–0.94 (t, 6H, J = 6.8 Hz, 2 x CH₃), 1.32–1.50 (m, 8H, CH₂), 1.52 (m, 1H, CH), 3.33 (m, 2H, OCH₂), 3.54 (ddd, 1H, J_{5,6a} = 2.4 Hz, H-5), 3.64 (t, 1H, J_{4,5} = 9.2 Hz, H-4), 3.68-3.76 (m, 1H, J_{5,6b} = 5.6 Hz, H-6b), 3.68-3.76 (m, 1H, J_{3,4} = 9.2 Hz, H-3), 3.80 (dd, 1H, J_{2,3} = 3.2 Hz, H-2), 3.83 (dd, 1H, J_{6a,6b} = 11.6 Hz, H-6a), 4.73 (d, 1H, J_{1,2} = 1.6 Hz, H-1)

¹³C NMR (400 MHz, CD₃OD): δ (ppm) = 100.4 (C-1), 73.3 (C-5), 71.3 (C-3), 70.9 (C-2), 69.8 (C-4), 67.2 (OCH₂), 61.5 (C-6), 39.6 (CH), 22.7–30.4 (CH₂), 13.0, 10.1 (CH₃)

2-butyl-octyl-α-D-mannopyranoside, α-Man-OC₈C₄

¹H NMR (400 MHz, CD₃OD): δ (ppm) = 0.90–0.94 (t, 6H, J = 6.8 Hz, 2 x CH₃), 1.32–1.50 (m, 16H, CH₂), 1.58 (m, 1H, CH), 3.33 (m, 2H, OCH₂), 3.54 (ddd, 1H, J_{5,6a} = 2.4 Hz, H-5), 3.64 (t, 1H, J_{4,5} = 9.2 Hz, H-4), 3.68-3.76 (m, 1H, J_{5,6b} = 5.6 Hz, H-6b), 3.68-3.76 (m, 1H, J_{3,4} = 9.2 Hz, H-3), 3.80 (dd, 1H, J_{2,3} = 3.0 Hz, H-2), 3.83 (dd, 1H, J_{6a,6b} = 11.6 Hz, H-6a), 4.72 (d, 1H, J_{1,2} = 1.2 Hz, H-1)

¹³C NMR (400 MHz, CD₃OD): δ (ppm) = 100.4 (C-1), 73.3 (C-5), 71.4 (C-3), 70.9 (C-2), 70.2 (C-4), 67.1 (OCH₂), 61.5 (C-6), 37.9 (CH), 22.3–31.6 (CH₂), 13.0 (CH₃)

2-hexyl-decyl-a-D-mannopyranoside, a-Man-OC10C6

¹H NMR (400 MHz, CD₃OD): δ (ppm) = 0.90–0.94 (t, 6H, J = 6.4 Hz, 2 x CH₃), 1.32–1.50 (m, 24H, CH₂), 1.59 (m, 1H, CH), 3.33 (m, 2H, OCH₂), 3.54 (ddd, 1H, J_{5,6a}= 2.4 Hz, H-5), 3.64 (t, 1H, J_{4,5} = 9.2 Hz, H-4), 3.67-3.76 (m, 1H, J_{5,6b} = 5.6 Hz, H-6b), 3.67-3.76 (m, 1H, J_{3,4} = 9.2 Hz, H-3), 3.80 (dd, 1H, J_{2,3} = 3.2 Hz, H-2), 3.83 (dd, 1H, J_{6a,6b} = 11.6 Hz, H-6a), 4.72 (d, 1H, J_{1,2} = 1.6 Hz, H-1)

¹³C NMR (400 MHz, CD₃OD): δ (ppm) = 100.5 (C-1), 73.2 (C-5), 71.4 (C-3), 70.9 (C-2), 70.2 (C-4), 67.1 (OCH₂), 61.5 (C-6), 37.9 (CH), 22.3–31.7 (CH₂), 13.0 (CH₃)

2-octyl-dodecyl-a-D-mannopyranoside, a-Man-OC12C8

¹H NMR (400 MHz, CD₃OD): δ (ppm) = 0.90–0.94 (t, 6H, J = 6.4 Hz, 2 x CH₃), 1.32–1.50 (m, 32H, CH₂), 1.59 (m, 1H, CH), 3.33 (m, 2H, OCH₂), 3.54 (ddd, 1H, J_{5,6a} = 2.4 Hz, H-5), 3.65 (t, 1H, J_{4,5} = 9.6 Hz, H-4), 3.67-3.76 (m, 1H, J_{5,6b} = 5.6 Hz, H-6b), 3.67-3.76 (m, 1H, J_{3,4} = 9.2 Hz, H-3), 3.80 (dd, 1H, J_{2,3} = 3.2 Hz, H-2), 3.83 (dd, 1H, J_{6a,6b} = 11.6 Hz, H-6a), 4.72 (d, 1H, J_{1,2} = 1.6 Hz, H-1)

¹³C NMR (400 MHz, CD₃OD): δ (ppm) = 100.5 (C-1), 73.2 (C-5), 71.4 (C-3), 70.9 (C-2), 70.2 (C-4), 67.1 (OCH₂), 61.5 (C-6), 37.9 (CH), 22.3–31.7 (CH₂), 13.0 (CH₃)

2-decyl-tetradecyl-a-D-mannopyranoside, a-Man-OC14C10

¹H NMR (400 MHz, CD₃OD): δ (ppm) = 0.90–0.94 (t, 6H, J = 6.4 Hz, 2 x CH₃), 1.32–1.48 (m, 40H, CH₂), 1.59 (m, 1H, CH), 3.33 (m, 2H, OCH₂), 3.54 (ddd, 1H, J_{5,6a} = 2.4 Hz, H-5), 3.65 (t, 1H, J_{4,5} = 9.2 Hz, H-4), 3.67-3.76 (m, 1H, J_{5,6b} = 5.2 Hz, H-6b), 3.67-3.76 (m, 1H, J_{3,4} = 9.6 Hz, H-3), 3.80 (dd, 1H, J_{2,3} = 3.6 Hz, H-2), 3.83 (dd, 1H, J_{6a,6b} = 11.6 Hz, H-6a), 4.72 (d, 1H, J_{1,2} = 1.6 Hz, H-1)

¹³C NMR (400 MHz, CD₃OD): δ (ppm) = 100.5 (C-1), 73.2 (C-5), 71.4 (C-3), 70.9 (C-2), 70.2 (C-4), 67.1 (OCH₂), 61.5 (C-6), 37.9 (CH), 22.4–31.7 (CH₂), 13.1 (CH₃)

Fourier Transform Infra Red (FTIR)

Figure S1. FTIR spectra for α -Man-OC₁₄C₁₀ at the room temperature in dry (after lyophilised in freeze dryer for at least 48 hours), left in ambient moisture for 96 hours and in excess water form.

Small- and Wide-Angle X-Ray Scattering (SWAXS)

Figure S2. Small-angle X-ray scattering pattern for α -Man-OC₁₀C₆ obtained at (a) Australian Synchrotron; (b) Graz University of Technology. Both patterns measured with a point-shaped beam.

Figure S3. X-ray scattering pattern including wide-angle region for (a) α -Man-OC₈C₄ at 25°C and (b) α -Man-OC₁₀C₆ at 25°C.

Figure S4. Small-angle X-ray scattering pattern at 25°C for (a) α -Man-OC₆C₂ at 30% (w/w) and 40% (w/w) showing an L_{α} and L_{1} reflection respectively; (b) α -Man-OC₁₀C₆ at (w/w) and 70% (w/w) displaying 40% coexistence of *Ia3d* (denoted by the symbol (+) with reciprocal spacing ratios $\sqrt{6}$, $\sqrt{8}$, $\sqrt{14}$) and Pn3m (denoted by the symbol (*) with reciprocal spacing ratios $\sqrt{2}$, $\sqrt{3}$, $\sqrt{4}$, $\sqrt{6}$, $\sqrt{8}$, $\sqrt{9}$) phases and (c) α -Man-OC₁₂C₈ at 7.5% (w/w) portraying coexistence of Pn3m (denoted by the symbol (*) with reciprocal spacing ratios $\sqrt{2}$, $\sqrt{3}$) and H₂ phase denoted by the symbol (x) with reciprocal spacing ratios $\sqrt{1}$, $\sqrt{3}$, $\sqrt{4}$, $\sqrt{7}$. All phases were formed at excess water region except in (c).

Figure S5. Temperature dependence of the lattice parameter for α -Man-OC₆C₂/water system. Symbols: • (L_a) and • (L₁).

Figure S6. Temperature dependence of the lattice parameter for α -Man-OC₈C₄/water system. Symbols: • (L_{α}).

Figure S7. Temperature dependence of the lattice parameter for α -Man-OC₁₀C₆/water system. Symbols: ×(*Ia*3*d*) and \diamond (*Pn*3*m*).

Figure S8. Temperature dependence of the lattice parameter for α -Man-OC₁₂C₈/water system. Symbols: (Pn3m) and (H_2) .

Figure S9. Temperature dependence of the lattice parameter for α -Man-OC₁₄C₁₀/water system. Symbols: \triangle (H₂).

Water Content	Temperature	Lattice par	ameter (Å)
(% (w/w))	(°C)	L_{lpha}	L_1
0	25	20.6	
0	37	20.6	
0	50	20.6	
0	60	20.6	
10	25	22.3	
10	37	22.2	
10	50	22.0	
10	60	21.9	
20	25	24.1	
20	37	23.9	
20	50	23.5	
20	60	23.1	
30	25	25.7	
30	37	25.5	
30	50	25.2	
30	60	24.8	
40	25		28.5
40	37		28.5
40	50		28.5
40	60		28.5
60	25		27.3
60	37		27.3
60	50		27.3
60	60		27.3
90	25		24.6
90	37		24.6
90	50		24.6
90	60		24.6

Table S1. Lattice parameter of α -Man-OC₆C₂ as a function of water content and temperature.

Error in lattice parameter measurements is ± 0.1 Å.

Water Content	Temperature	Lattice parameter (Å)
(% (w/w))	(°C)	Lα
0	25	19.5, 22.6 ^a
0	37	19.5, 22.5 ^a
0	50	22.4
0	60	22.3
10	25	25.3
10	37	25.2
10	50	24.9
10	60	24.8
20	25	26.6
20	37	26.4
20	50	26.1
20	60	25.9
27.5	25	27.2
27.5	37	27.1
27.5	50	27.1
27.5	60	27.2
40	25	27.1
40	37	27.2
40	50	27.2
40	60	27.4
60	25	27.2
60	37	27.2
60	50	27.4
60	60	27.5
90	25	27.2
90	37	27.2
90	50	27.4
90	60	27.5

Table S2. Lattice parameter of α -Man-OC₈C₄ as a function of water content and temperature.

Error in lattice parameter measurements is ± 0.1 Å. ^aCo-existence of two lamellar phases.

Water Content	Temperature	Lattice parameter (Å)				
(% (w/w))	(°C)	Metastable	Lα	$V_2(Ia3d)$	$V_2(Pn3m)$	L_2
0	25	?				
0	37		23.8			
0	50		23.7			
0	60					-
7.5	25			68.0		
7.5	37			67.3		
7.5	50			66.6		
7.5	60			66.4		
20	25			79.9		
20	37			78.6		
20	50			77.4		
20	60			76.4		
40	25			81.8	53.8	
40	37			82.4	53.0	
40	50			82.4	52.8	
40	60			81.8	52.6	
70	25			83.5	53.6	
70	37			83.2	53.4	
70	50			83.2	53.2	
70	60			83.4	53.4	
90	25				56.5	
90	37				56.8	
90	50				56.6	
90	60				56.6	

Table S3. Lattice parameter of α -Man-OC₁₀C₆ as a function of water content and temperature.

Error in lattice parameter measurements is ± 0.1 Å.

Water Content	Tomporatura		Lattice para	umeter (Å)	
(% (w/w))	(°C)	$V_2(Ia3d)$	V ₂ (<i>Pn</i> 3 <i>m</i>)	H_2	L_2
0	25	63.0			
0	37	63.0			
0	50				-
0	60				-
7.5	25		42.5	35.0	
7.5	37			34.7	
7.5	50			34.2	
7.5	60			33.6	
20	25			41.4	
20	37			41.3	
20	50			41.0	
20	60			40.7	
40	25			41.4	
40	37			41.1	
40	50			40.8	
40	60			40.7	
70	25			41.0	
70	37			40.7	
70	50			40.5	
70	60			40.2	
90	25			41.9	
90	37			41.8	
90	50			41.5	
90	60			41.4	

Table S4. Lattice parameter of α -Man-OC₁₂C₈ as a function of water content and temperature.

Water Content	Temperature	Lattice parameter (Å)
(% (w/w))	(°C)	H_2
0	25	30.0
0	37	29.8
0	50	29.8
0	60	29.8
7.5	25	35.6
7.5	37	35.5
7.5	50	35.1
7.5	60	34.7
15	25	38.9
15	37	38.7
15	50	38.2
15	60	37.5
30	25	42.5
30	37	42.2
30	50	41.9
30	60	41.4
50	25	42.5
50	37	42.2
50	50	41.7
50	60	41.2
70	25	42.3
70	37	41.9
70	50	41.6
70	60	41.3
90	25	42.2
90	37	41.8
90	50	41.4
90	60	41.2

Table S5. Lattice parameter of α -Man-OC₁₄C₁₀ as a function of water content and temperature.

Error in lattice parameter measurements is ± 0.1 Å.

¹H NMR- 2-ethyl-hexyl-*a*-D-mannopyranoside, *a*-Man-OC₆C₂

¹³C NMR- 2-ethyl-hexyl-*a*-D-mannopyranoside, *a*-Man-OC₆C₂

¹H NMR- 2-butyl-octyl-*a*-D-mannopyranoside, *a*-Man-OC₈C₄

¹³C NMR- 2-butyl-octyl-α-D-mannopyranoside, α-Man-OC₈C₄

¹H NMR- 2-hexyl-decyl-*a*-D-mannopyranoside, *a*-Man-OC₁₀C₆

¹³C NMR- 2-hexyl-decyl-α-D-mannopyranoside, α-Man-OC₁₀C₆

¹H NMR- 2-octyl-dodecyl-*a*-D-mannopyranoside, *a*-Man-OC₁₂C₈

¹³C NMR- 2-octyl-dodecyl-α-D-mannopyranoside, α-Man-OC₁₂C₈

¹H NMR- 2-decyl-tetradecyl-*a*-D-mannopyranoside, *a*-Man-OC₁₄C₁₀

¹³C NMR- 2-decyl-tetradecyl-α-D-mannopyranoside, α-Man-OC₁₄C₁₀