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S1. Convergence analysis of HSAS/FFT 

Convergence of the HSAS/FFT is proved in this part. The evolutionary process of HSAS/FFT can be 

regarded as a series of the stochastic sequence. The stochastic sequence is used to analyse the 

process of HSAS/FFT. And the convergence of the HSAS/FFT is proved by the criterion in (Peng 

and Xie 2012). Meanwhile, two theorems are presented to prove the convergence of HSAS/FFT. 

Definition 1. 𝑆 = 𝐼𝐷 is the search space, and 𝑓: 𝑆 → 𝐼+ is fitness. 𝐼 is the set of spaces 

divided by period that frequency corresponds to, 𝑎∗ denotes the global optimal area. Then the 

processing of the divided area which is searched by HSAS/FFT can be described as {𝑎 ∈ 𝐼|𝑓(𝑎∗) =

min𝑓(𝑎)}. 

Lemma 1. (Peng and Xie 2012) if a sequence is monotonous and no ascending as well as has 

lower bound, it must possess a limit. 

Lemma 2. (Peng and Xie 2012) if a sequence is monotonous and no ascending as well as has 

lower bound, its subsequence must possess a limit. 

Theorem 1. The direction of the population movement is monotonous, that is 𝑓(𝐴(𝑛 +

1)) ≤ 𝑓(𝐴(𝑛)), thus the sequence {𝑓(𝑎(𝑛))} is monotonous and no ascending as well as has lower 

bound. 

Theorem 2. HSAS/FFT can converge to the subspace with global optimum with the 

probability of 1. 



Theorem 1. Proof. According to the theory of HSAS/FFT, the direction of individuals 

toward optima is the maximum of gradient descent. If there is no gradient descent in the 

neighbourhood, individuals will stop moving. Therefore, the fitness of the population is not 

ascending that is 𝑓(𝐴(𝑛 + 1)) ≤ 𝑓(𝐴(𝑛)). In consequence, there exists 𝑓(𝑎(𝑛+1)) ≤ 𝑓(𝑎(𝑛)), 

where 𝑎(𝑛) presents the minimum of 𝑛-th  (𝑛 = 1,2, … , 𝑘) time iteration, 𝑘 is the maximum 

number of iteration and sufficiently large, 𝑓(𝑎(𝑛)) is the fitness of individual, 𝑓(𝐴(𝑛)) is the 

fitness of the population. It has 𝑓(𝑎(1)) ≥ 𝑓(𝑎(2)) ≥ ⋯ ≥ 𝑓(𝑎(𝑛)) ≥ ⋯, thus {𝑓(𝑎(𝑛))} is 

monotonic sequence. Definition 1 shows that the optimum problems exist global optimum, and so 

mean of sampling points in the subspace {𝑓(𝑎(𝑛))} is bounded. Therefore, {𝑓(𝑎(𝑛))} is monotonic, 

no ascending and bounded sequence. 

Theorem 2. Proof. According to Theorem 1, {𝑓(𝑎(𝑛))} is monotonic, non-ascending and 

bounded sequence, and then {𝑓(𝑎(𝑛))} must possess a limit with Lemmas 1 and 2. If 

lim
𝑛→+∞

𝑓(𝑎(𝑛)) = 𝑓(𝑎∗) exists and 𝑎∗ is the subspace with global optimum, and then {𝑓(𝑎(𝑛))} is 

globally convergent. lim
𝑛→+∞

𝑓(𝑎(𝑛)) = 𝑓(𝑎∗) is random event, as {𝑓(𝑎(𝑛))} is stochastic sequence. 

So when 𝑃( lim
𝑛→+∞

𝑓(𝑎(𝑛)) = 𝑓(𝑎∗)) = 1 is true, and then the sequence of {𝑓(𝑎(𝑛))} can converge 

with the probability of 1. It has been proved as follows. 

For ∀𝜀 ≥ 0, there exists 𝑇𝜀 = {𝑎 ∈ 𝐷, 𝑓(𝑎) − 𝑓(𝑎∗) < 𝜀} and the monotonic, 

non-ascending and bounded sequence {𝑓(𝑎(𝑛))} which is 𝑓(𝑎(1)) ≥ 𝑓(𝑎(2)) ≥ ⋯ ≥ 𝑓(𝑎(𝑛)) ≥ ⋯. 

Let 𝑓(𝑎(1)) ≥ 𝑓(𝑎(2)) ≥ ⋯ ≥ 𝑓(𝑎(𝑛)) ≥ ⋯ subtract 𝑓(𝑎∗), so 𝑓(𝑎(1)) − 𝑓(𝑎∗) ≥ 𝑓(𝑎(2)) −

𝑓(𝑎∗) ≥ ⋯ ≥ 𝑓(𝑎(𝑛)) − 𝑓(𝑎∗) ≥ ⋯. Let 𝐶 = {𝑎(𝑖) ∈ 𝑇𝜀 , 𝑖 ∈ (1,2, . . . 𝑘)} represent the iterated 

sequence which stuck into the neighborhood 𝑇𝜀 for 𝑖 − 𝑡ℎ times. Thus, there exists 𝐶1 ⊆ 𝐶2 ⊆



⋯ ⊆ 𝐶𝑖 ⊆ ⋯ for 𝜀, thereby the inequality 𝑃(𝐶1) ≤ 𝑃(𝐶2) ≤ ⋯ ≤ 𝑃(𝐶𝑖) ≤ ⋯ is true. And as 0 ≤

𝑃(𝐶1) ≤ 1, lim
𝑖→+∞

𝑃(𝐶𝑖) is existent. 

The stochastic sequence is presented by: 

 𝜁𝑖 = {
1, 𝑖th iteration drop into T𝜀

0, 𝑖th iteration do not drop into T𝜀
     𝑖 = 1,2, ⋯ , 𝑘 (1) 

and 𝐶𝑖 = {𝜁𝑖 = 1}. Let 𝑃{𝜁𝑖 = 1} = 𝑞𝑖, 𝑃{𝜁𝑖 = 0} = 1 − 𝑞𝑖. Therefore, 𝐵𝑖 =
1

𝑖
∑ 𝜁𝑗

𝑖
𝑗=1 , there 

exists: 

 𝐸(𝐵𝑖) =
1

𝑖
∑ 𝑞𝑗

𝑖

𝑗=1
,    𝑖 = 1,2, ⋯ , 𝑘 (2) 

 𝐷(𝐵𝑖) =
1

𝑖2
∑ 𝐷(𝜁𝑖) =

1

𝑖2
𝑖
𝑗=1 ∑ 𝑞𝑗(1 − 𝑞𝑗)𝑖

𝑗=1 , 𝑖 = 1,2, ⋯ , 𝑘 (3) 

where 𝐸(𝐵𝑖), 𝐷(𝐵𝑖) are the expected value and standard deviation of the sequence 𝐵𝑖(𝑖 =

1,2, ⋯ , 𝑘), respectively. And due to Chebyshev inequality, there exists: 

 𝑃{|𝐵𝑖 − 𝐸(𝐵𝑖) < 𝜀|} ≥ 1 −
𝐷(𝐵𝑖)

𝜀2  (4) 

and 𝑞𝑗(1 − 𝑞𝑗) ≤
1

4
 is true in equation (9), therefore, 

 𝑃{|𝐵𝑖 − 𝐸(𝐵𝑖)| < 𝜀} ≥ 1 −
1

4𝑖𝜀2 (5) 

 lim
𝑖→+∞

𝑃{|𝐵𝑖 − 𝐸(𝐵𝑖)| < 𝜀} = 1 (6) 

and because of 𝜁𝑖 = 𝑖𝐵𝑖 − (𝑖 − 1)𝐵𝑖−1,  𝑖 = 1,2, ⋯ , 𝑘, there exists: 

 lim
𝑖→+∞

𝑃{|𝜁𝑖 − 𝐸(𝜁𝑖)| < 𝜀} = 1 (7) 



The sequence of stochastic variables 𝜁𝑖  (𝑖 = 1,2, ⋯ , 𝑘) converges with the probability, so 

that the sequence of stochastic event 𝐵𝑖 (𝑖 = 1,2, ⋯ , 𝑘) also converges with the probability, that is 

lim
𝑖→+∞

𝑃{𝐵𝑖} = 1. Therefore, there exists: 

 lim
𝑛→+∞

𝑃{|𝑓(𝐴(𝑛)) − 𝑓(𝐴∗)| < 𝜀} = 1 (8) 

For ∀𝜀 ≥ 0, when 𝜀 tend to very small, that is: 

 lim
𝜀→0

|𝑓(𝑎(𝑛)) − 𝑓(𝑎∗)| = 0 (9) 

 lim
𝜀→0

𝑓(𝑎(𝑛)) = 𝑓(𝑎∗) (10) 

Thus, 

 lim
𝑛→+∞

𝑃{𝑓(𝑎(𝑛)) = 𝑓(𝑎∗)} = 1 (11) 

Namely, the sequence {𝑓(𝑎(𝑛))} can converge to the global optimum with the probability of 

1. 

S2. Description of CEC2017 benchmark set 

To assess the performance of the proposed algorithm on single objective real-parameter numerical 

optimization, thirty benchmark functions on the CEC 2017 test suite are employed in the following 

experiments. A brief description of these functions with different characteristics which used to 

conduct the performance analysis of the proposed algorithms is listed in Table 1. 𝑓1 − 𝑓3 are 

unimodal functions. Simple Multimodal Functions consists of seven functions from 𝑓4 − 𝑓10 are 

multimodal functions with a lot of local optima, so it is easy to trap into local optima. Considering 

that in the real-world optimization problems, different subcomponents of the variables may have 



different properties, therefore functions from 𝑓11 − 𝑓20 are proposed as the hybrid functions. The 

remaining functions of the test suite are composition functions. All these benchmark functions are 

evaluated as the minimization problems. More details about the definition of these functions can be 

found in the literature (Awad et al. 2016). 

Table 1. Summary of the CEC 2017 test functions. 

Class No. Functions 𝐹𝑖
∗ = 𝐹𝑖(𝑥∗) 

Unimodal 

Functions 

1 Shifted and Rotated Bent Cigar Function 100 

2 Shifted and Rotated Sum of Different Power Function 200 

3 Shifted and Rotated Zakharov Function 300 

Simple 

Multimodal 

Functions 

4 Shifted and Rotated Rosenbrock’s Function 400 

5 Shifted and Rotated Rastrigin’s Function 500 

6 Shifted and Rotated Expanded Scaffer’s F6 Function 600 

7 Shifted and Rotated Lunacek Bi_Rastrigin Function 700 

8 
Shifted and Rotated Non-Continuous Rastrigin’s 

Function 
800 

9 Shifted and Rotated Levy Function 900 

10 Shifted and Rotated Schwefel’s Function 1000 

Hybrid 

Functions 

11 Hybrid Function 1 (N=3) 1100 

12 Hybrid Function 2 (N=3) 1200 

13 Hybrid Function 3 (N=3) 1300 

14 Hybrid Function 4 (N=4) 1400 

15 Hybrid Function 5 (N=4) 1500 

16 Hybrid Function 6 (N=4) 1600 

17 Hybrid Function 6 (N=5) 1700 

18 Hybrid Function 6 (N=5) 1800 

19 Hybrid Function 6 (N=5) 1900 

20 Hybrid Function 6 (N=6) 2000 

Composition 

Functions 

21 Composition Function 1 (N=3) 2100 

22 Composition Function 2 (N=3) 2200 

23 Composition Function 3 (N=4) 2300 

24 Composition Function 4 (N=4) 2400 

25 Composition Function 5 (N=5) 2500 

26 Composition Function 6 (N=5) 2600 

27 Composition Function 7 (N=6) 2700 

28 Composition Function 8 (N=6) 2800 



29 Composition Function 9 (N=3) 2900 

30 Composition Function 10 (N=3) 3000 

Search Range: [-100,100]D 

According to the guidelines requirements of CEC2017 benchmark competition, all 

experimental algorithms are performed. More specifically, when the solution found by the 

experimental algorithm is smaller than 10−8, the error is set to 0. The dimension number (𝐷) of these 

test functions is set to 10, 30, 50, and 100, respectively. The maximum evaluated times is set to 

𝐷 × 10,000 on each run. Each problem is evaluated at 51 times. Moreover, five statistical metrics 

are designed, such as Best, Worse, Median, Mean, and Standard deviation (Std.) (Awad et al. 2016). 

These metrics can be employed to evaluate the solving performance of these various algorithms. 

S3. Parameters analysis 

The parameter setting plays an important part in the performance of HSAS/FFT. In HSAS/FFT, there 

are five crucial parameters: reduction factor 𝑊𝑇, population size 𝑁, population convergence 

threshold 𝐶, reinitializing probability 𝑃𝑟, and number of samples 𝑆. To analyse the influence of 

each parameter in HSAS/FFT, the Taguchi method (Montgomery 2008) of design for the 

experiments is adopted. In the experiment, the CEC2017 benchmark functions (Awad et al. 2016) is 

adopted to calibrate the proposed algorithm. The various values of 𝑊𝑇, 𝑁, 𝐶, 𝑃𝑟 and 𝑆 are listed 

in Table 2. The parameter combinations and average error values yielded by HSAS/FFT are listed in 

Table 3. Table 4 lists each parameter’s significance rank according to Table 3. Meanwhile, the trend 

of the parameters is described in Figure 1. 

From Table 4 it is observed that 𝑊𝑇 is the most significant one among them, which implies 

that 𝑊𝑇 is important to HSAS/FFT. The large 𝑊𝑇 can improve the solution accuracy. But too large 

𝑊𝑇 will always need oversize computational budget. 𝑁 ranks the second place, which illustrates 



that it is also an important factor in HSAS/FFT. A small 𝑁 would cause the population easily fall 

into the local optimum. A large 𝑁 can lead the algorithm to search in the global space, but also will 

take a huge time to evaluate the population. 𝐶 ranks the third place. A large 𝐶 represents a strict 

criterion of population convergence. But it will slow down the evolutionary speed. From Figure 1, 

the change trend of 𝑃𝑟 and 𝑆 is relatively stable, which means it has slight effect on the 

performance of HSAS/FFT. A small 𝑃𝑟 and 𝑆 can improve the convergence rate. A large 𝑃𝑟 and 

𝑆 can lead the algorithm search in the global space to improve the quality of the solution. According 

to the results of Taguchi method, the parameters in HSAS/FFT are suggested as follows: 𝑊𝑇 = 1/3, 

𝑁 = 10, 𝐶 = 80%, 𝑃𝑟 = 0.05 and 𝑆 = 20. 

Table 2. The parameters for different levels. 

Parameters 
Levels 

1 2 3 4 

𝑊𝑇 1/10 1/5 1/3 1/2 

𝑁 5 10 50 100 

𝐶 60% 70% 80% 90% 

𝑃𝑟 0.005 0.01 0.05 0.1 

𝑆 10 20 50 100 

 

Table 3. Parameter combinations and average error values. 

No. 
Parameter combinations Average error 

values 𝑊𝑇 𝑁 𝐶 𝑃𝑟 𝑆 

1 1/10 5 60% 0.005 10 9703.61 

2 1/10 10 70% 0.010 20 7395.42 

3 1/10 50 80% 0.050 50 8137.62 

4 1/10 100 90% 0.100 100 14248.33 

5 1/5 5 70% 0.050 100 3456.47 

6 1/5 10 60% 0.100 50 3200.08 

7 1/5 50 90% 0.005 20 3881.52 

8 1/5 100 80% 0.010 10 4909.01 

9 1/3 5 80% 0.100 20 953.01 

10 1/3 10 90% 0.050 10 781.77 



11 1/3 50 60% 0.010 100 1793.55 

12 1/3 100 70% 0.005 50 3668.54 

13 1/2 5 90% 0.010 50 1877.22 

14 1/2 10 80% 0.005 100 763.18 

15 1/2 50 70% 0.100 10 2314.92 

16 1/2 100 60% 0.050 20 3375.24 

 

Table 4. Response table for means. 

Levels 𝑊𝑇 𝑁 𝐶 𝑃𝑟 𝑆 

1 9871 3998 4518 4504 4427 

2 2083 3035 4209 3994 3901 

3 1799 4032 3691 3938 4221 

4 3862 6550 5197 5179 5065 

Delta 8072 3515 1507 1241 1164 

Rank 1 2 3 4 5 

 

  

  



 

Figure 1. The trend of parameters of the HSAS/FFT. 

S4. Statistical results of the HSAS/FFT 

In this section, the proposed algorithm is run independently 51 times, and five statistical 

metrics are calculated, such as Best, Worse, Median, Mean, and Std. (Awad et al. 2016). These 

metrics can be used to analyse the performance of the proposed algorithm. The maximum number of 

objective function evaluations is 𝐷 × 10,000. Table 5 and Table 6 show the computational results of 

the proposed algorithm in solving the CEC2017 competition on real-parameter optimization 

problems for dimension 10, 30, 50, and 100. Each column shows Best, Worse, Median, Mean, and 

Std. of the error value between the true optimal value and the best fitness values found by the 

algorithm in each run. Max and Min represent the maximum and minimum fitness values of the 

algorithm over the 51 runs, respectively. Median denotes the median of the fitness values over the 51 

runs. Mean represents the average value of the result fitness values over the 51 runs. Std. stands for 

standard deviation. It is worth noting that the error values smaller than 1.00E − 08 has been set as 

zero. 

From the results obtained in Table 5 for dimension 10, and 30, the HSAS/FFT could perform 

good results in unimodal problems from 𝑓1 to 𝑓3. While for multimodal function, the optimal 

solution is still available on 𝑓4, 𝑓6, 𝑓9 in dimension 10, and available on 𝑓6, 𝑓9 in dimension 30. 



For 𝑓5, 𝑓7, 𝑓8, the error value is still smaller than 1.00E − 01 in dimension 10. While for all the 

hybrid functions, the error value is still small than 1.00E − 01 on 𝑓15, 𝑓16, 𝑓18, 𝑓19 and 𝑓20 for 

dimension 10. As for the remaining composition functions, the best error value is larger than 

1.00E + 02 except 𝑓21, 𝑓22, 𝑓24 for dimension 10. 

Similarly, Table 6 for dimension 50, and 100 presents the statistical results. From the 

comparisons regarding the unimodal problems, the proposed algorithm performs good results on 𝑓1 

for dimension 50 and 100. For multimodal functions, the error value of the proposed algorithm is 

smaller than 1.00E − 01 on 𝑓6, 𝑓9. While for all the hybrid functions, the error value is still small 

than 1.00E + 03 except 𝑓12, 𝑓16, 𝑓17 for dimension 50 and small than 1.00E + 04 except 𝑓12, 

𝑓16, 𝑓17, 𝑓20 for dimension 100. As for the remaining composition functions, the best error value is 

still less than 1.00E + 04 except 𝑓30 in dimension 50. 

In summary, the proposed algorithm has obtained good results on the most of functions from 

low dimension to high dimension. Compared with solving unimodal functions, the proposed 

algorithm is difficult to solve multimodal functions, hybrid functions, and composition functions. 

  



Table 5. The statistical results of HSAS/FFT on the CEC2017 benchmarks for 𝐷 = 10, 30 

dimensions. 

Func. 
10D  30D 

Best Worst Median Mean Std.  Best Worst Median Mean Std. 

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00  0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00  0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00  0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00  2.13E-03 3.13E-03 5.86E+01 2.67E-03 4.59E-03 

F5 0.00E+00 1.99E+00 9.95E-01 1.09E+00 6.96E-01  5.07E+00 8.66E+00 6.96E+00 5.66E+00 5.51E+00 

F6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00  0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F7 1.05E+01 1.23E+01 1.19E+01 1.16E+01 5.66E-01  6.61E+02 8.33E+02 3.73E+01 7.32E+02 2.54E+02 

F8 9.95E-01 2.98E+00 1.99E+00 1.59E+00 6.60E-01  2.60E+00 3.93E+00 6.96E+00 3.37E+00 7.29E+00 

F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00  0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F10 3.48E+00 2.45E+02 1.04E+01 4.47E+01 7.47E+01  1.22E+03 2.30E+03 1.43E+03 1.88E+03 1.15E+02 

F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00  5.07E+00 9.87E+00 3.48E+00 5.34E+00 1.89E+00 

F12 0.00E+00 1.35E+02 6.56E+01 5.22E+01 6.17E+01  1.69E+02 4.66E+02 7.17E+02 2.70E+02 1.87E+01 

F13 0.00E+00 5.39E+00 4.84E+00 3.58E+00 2.15E+00  2.03E+02 2.11E+02 1.88E+01 2.09E+02 2.04E+01 

F14 0.00E+00 2.00E+01 0.00E+00 2.10E+00 5.97E+00  3.26E+00 6.10E+00 2.20E+01 4.20E+00 2.05E+00 

F15 4.16E-03 5.00E-01 4.12E-01 2.67E-01 1.99E-01  1.84E+00 8.12E+00 2.59E+00 3.69E+00 7.95E-01 

F16 1.09E-03 1.46E+00 6.05E-01 6.13E-01 5.57E-01  1.97E+00 9.12E+00 2.19E+01 4.01E+00 6.44E+00 

F17 1.97E-02 2.03E+01 2.11E-01 2.16E+00 6.06E+00  2.04E+02 3.23E+02 3.27E+01 2.76E+02 8.09E+01 

F18 4.23E-04 5.00E-01 3.31E-01 2.64E-01 1.93E-01  8.98E-01 2.52E+01 2.15E+01 2.32E+01 1.17E+00 

F19 0.00E+00 3.92E-02 1.97E-02 1.47E-02 1.18E-02  2.06E+01 3.54E+01 5.79E+00 2.38E+01 1.64E+01 

F20 0.00E+00 3.12E-01 3.12E-01 1.56E-01 1.56E-01  2.71E+01 6.82E+01 2.75E+01 3.08E+01 4.41E+00 

F21 1.00E+02 2.04E+02 2.03E+02 1.82E+02 4.12E+01  3.98E+02 8.27E+02 2.08E+02 4.53E+02 3.65E+02 

F22 1.00E+02 1.00E+02 1.00E+02 1.00E+02 0.00E+00  1.00E+02 1.09E+02 1.00E+02 1.03E+02 5.51E-02 

F23 3.00E+02 3.05E+02 3.00E+02 3.01E+02 1.92E+00  3.52E+02 3.73E+02 3.55E+02 3.62E+02 5.78E+01 

F24 1.00E+02 3.32E+02 3.30E+02 3.07E+02 6.91E+01  4.35E+02 4.60E+02 4.30E+02 4.52E+02 9.98E+01 

F25 3.98E+02 4.46E+02 4.21E+02 4.16E+02 2.25E+01  3.76E+02 3.81E+02 3.87E+02 3.79E+02 1.86E+01 

F26 3.00E+02 3.00E+02 3.00E+02 3.00E+02 0.00E+00  8.45E+02 9.48E+02 9.89E+02 9.45E+02 1.46E+01 

F27 3.89E+02 3.90E+02 3.90E+02 3.89E+02 2.05E-01  5.00E+02 5.00E+02 5.08E+02 5.00E+02 1.18E-03 

F28 3.00E+02 6.12E+02 5.84E+02 4.47E+02 1.48E+02  3.00E+03 3.00E+03 3.00E+02 3.00E+03 2.68E-03 

F29 2.32E+02 2.40E+02 2.34E+02 2.34E+02 2.63E+00  4.19E+02 4.82E+02 4.28E+02 4.75E+02 2.65E+02 

F30 3.95E+02 4.64E+02 3.95E+02 4.04E+02 2.07E+01  4.23E+02 5.51E+02 1.97E+03 4.43E+02 1.26E+01 

 

  



Table 6. The statistical results of HSAS/FFT on the CEC2017 benchmarks for 𝐷 = 50, 100 

dimensions. 

Func. 
50D  100D 

Best Worst Median Mean Std.  Best Worst Median Mean Std. 

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00  0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F2 0.00E+00 1.00E+00 0.00E+00 2.00E-01 4.00E-01  7.00E+00 9.47E+11 4.72E+04 9.47E+10 2.84E+11 

F3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00  7.99E-07 1.97E-05 7.90E-06 7.70E-06 5.80E-06 

F4 3.75E+00 1.42E+02 1.26E+02 8.07E+01 5.43E+01  1.92E+02 2.27E+02 1.99E+02 2.02E+02 1.10E+01 

F5 8.95E+00 1.39E+01 1.19E+01 1.13E+01 1.62E+00  2.09E+01 3.59E+01 2.61E+01 2.65E+01 3.75E+00 

F6 0.00E+00 1.92E-07 2.40E-08 4.79E-08 7.43E-08  2.19E-05 5.58E-03 1.42E-03 1.33E-03 1.61E-03 

F7 5.98E+02 7.69E+02 7.37E+02 7.33E+02 3.07E+01  9.22E+02 9.36E+02 9.33E+02 9.30E+02 4.58E+01 

F8 6.96E+00 1.39E+01 1.09E+01 1.06E+01 1.94E+00  2.12E+01 3.16E+01 2.57E+01 2.55E+01 3.10E+00 

F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00  0.00E+00 5.44E-01 0.00E+00 1.09E-01 1.98E-01 

F10 2.41E+03 3.71E+03 3.24E+03 3.14E+03 3.66E+02  7.14E+03 1.02E+04 9.50E+03 9.07E+03 8.37E+02 

F11 2.72E+01 4.11E+01 3.32E+01 3.35E+01 4.01E+00  1.34E+02 3.09E+02 2.43E+02 2.29E+02 4.84E+01 

F12 1.65E+03 2.77E+03 1.91E+03 1.97E+03 3.59E+02  1.13E+04 3.89E+04 2.52E+04 2.13E+04 8.55E+03 

F13 1.65E+01 1.16E+02 4.87E+01 4.79E+01 2.67E+01  1.57E+02 2.96E+02 2.34E+02 2.21E+02 4.12E+01 

F14 2.30E+01 3.02E+01 2.58E+01 2.59E+01 1.94E+00  1.07E+02 2.01E+02 1.28E+02 1.39E+02 2.71E+01 

F15 2.50E+01 3.28E+01 2.80E+01 2.75E+01 2.40E+00  1.94E+02 3.77E+02 3.02E+02 2.83E+02 5.88E+01 

F16 1.29E+02 6.50E+02 4.13E+02 3.74E+02 1.48E+02  5.08E+02 1.87E+03 1.63E+03 1.45E+03 3.69E+02 

F17 7.73E+01 4.40E+02 2.51E+02 2.39E+02 1.15E+02  7.26E+02 1.48E+03 1.05E+03 1.05E+03 2.30E+02 

F18 2.47E+01 6.41E+01 2.84E+01 3.14E+01 1.13E+01  1.93E+02 3.05E+02 2.51E+02 2.44E+02 3.82E+01 

F19 1.27E+01 1.81E+01 1.67E+01 1.60E+01 1.50E+00  1.46E+02 2.11E+02 1.63E+02 1.69E+02 2.28E+01 

F20 3.70E+01 2.75E+02 8.50E+01 9.40E+01 6.26E+01  4.23E+02 1.45E+03 1.10E+03 1.06E+03 3.13E+02 

F21 2.09E+02 2.22E+02 2.15E+02 2.15E+02 3.14E+00  2.45E+02 2.61E+02 2.55E+02 2.54E+02 4.86E+00 

F22 1.00E+02 3.79E+03 3.12E+03 2.03E+03 1.59E+03  8.24E+03 1.09E+04 9.71E+03 9.40E+03 8.78E+02 

F23 4.29E+02 4.42E+02 4.37E+02 4.36E+02 3.93E+00  5.58E+02 5.94E+02 5.75E+02 5.75E+02 9.83E+00 

F24 5.10E+02 5.19E+02 5.13E+02 5.14E+02 2.60E+00  9.08E+02 9.35E+02 9.25E+02 9.21E+02 8.61E+00 

F25 4.80E+02 4.80E+02 4.80E+02 4.80E+02 2.42E-02  6.58E+02 7.77E+02 7.68E+02 7.42E+02 3.83E+01 

F26 1.13E+03 1.36E+03 1.23E+03 1.22E+03 6.42E+01  3.32E+03 3.60E+03 3.44E+03 3.42E+03 7.70E+01 

F27 5.18E+02 5.75E+02 5.34E+02 5.38E+02 1.72E+01  5.91E+02 6.55E+02 6.29E+02 6.26E+02 1.89E+01 

F28 4.59E+02 4.59E+02 4.59E+02 4.59E+02 0.00E+00  4.78E+02 5.76E+02 5.26E+02 5.29E+02 2.71E+01 

F29 3.09E+02 3.54E+02 3.39E+02 3.34E+02 1.48E+01  8.47E+02 1.81E+03 1.32E+03 1.26E+03 2.65E+02 

F30 5.79E+05 8.62E+05 6.20E+05 6.35E+05 7.93E+04  2.15E+03 2.57E+03 2.34E+03 2.34E+03 1.07E+02 



S5. Comparison of HSAS/FFT with some state-of-the-art algorithms under the CEC2017 

evaluation criteria 

The CEC2017 evaluation criteria (Awad et al. 2016) is adopted to analyse and compare the 

HSAS/FFT, jSO, RB-IPOP-CMA-ES, PPSO, and DE. The evaluation method for each algorithm is 

based on a score of 100. For detailed evaluation criteria, please refer to (Awad et al. 2016). 

F2 has been excluded because it shows unstable behaviour especially for higher dimensions, 

and significant performance variations for the same algorithm implemented in Matlab, C. The final 

ranking result is shown in Table 7. HSAS/FFT is ranked the second of the comparative algorithms 

according to the results in Table 7. 

Table 7. Ranking of HSAS/FFT, jSO, RB-IPOP-CMA-ES, PPSO, and DE obtained through the 

evaluation criteria in CEC2017. 

Algorithms Score1 Score2 Final Score Rank 

HSAS/FFT 4.7253E+01 3.2479E+01 7.9732E+01 2 

jSO 5.0000E+01 5.0000E+01 1.0000E+02 1 

RB-IPOP-CMA-ES 3.8162E+00 3.2386E+01 3.6203E+01 4 

PPSO 3.9494E+00 3.1405E+01 3.5354E+01 5 

DE 1.5719E+01 3.1579E+01 4.7298E+01 3 

In summary, the statistical analysis of the results obtained by the algorithms in the 

comparative study showed that the jSO is really the best because it outperformed the results of all the 

other significantly by solving the CEC2017 benchmark functions of all observed dimensions. Even 

though HSAS/FFT cannot get the best results on some test problems, it can get the suboptimal results 

compared with all experimental algorithms. The proposed HSAS/FFT is superior to 

RB-IPOP-CMA-ES, PPSO, and DE on the most of benchmark problems with a different dimension. 

Compared with other methods, HSAS/FFT can get the best results on the unimodal and hybrid 

functions with the different dimensions. On the rest of test problems, the proposed algorithm still 



keeps the stable solving performance. Meanwhile, the convergence rate of HSAS/FFT is much better 

than other algorithms in most of the functions in the early stage of the search, which benefited from 

fast Fourier transform and search space segmentation. More specifically, the correct reduction of 

search space accelerates the convergence process. 

S6. HSAS/FFT time complexity 

This subsection deal with an analysis of the HSAS/FFT time complexity as defined in (Awad et al. 

2016). The dunning time obtained by evaluating the benchmark function 𝑓18, is compared with a 

running time of the test program presented in Algorithm 3. The experiments are run in Windows 

Server 2012 R2 under the hardware environment of Intel Core i7-2760QM CPU @2.40GHz 

processor and 8.0 GB of RAM. The proposed algorithm is implemented using C++ programming 

language. 

Algorithm 3. The test program. 

1 Initialize: 𝑥 = 0.55 

2 Start 

3 For 𝑘 = 1: 𝐷 

4 𝑥 = 𝑥 + 𝑥;  

5 𝑥 = 𝑥 2⁄ ; 𝑥 = 𝑥 × 𝑥; 𝑥 = √𝑥;  

6  𝑥 = log(𝑥) ; 𝑥 = exp(𝑥) ;  

7 𝑥 = 𝑥/(𝑥 + 2)) 

8 End for 

9 End 

The computing time of the test program is denoted as 𝑇0. Variable 𝑇1 is the time required 

for evaluating the benchmark function 𝑓18 and variable 𝑇2 the time of HSAS/FFT execution for 

function 𝑓18 within 200,000 evaluations for each dimension. Variable 𝑇2̂ is an average of 𝑇2 

values obtained in five independent runs. Table 8 shows the algorithm complexities relationship with 

dimension. The computational complexity of the algorithm HSAS/FFT is reflected by the measured 



and calculated variables 𝑇0, 𝑇1, 𝑇2̂ and (𝑇2̂ − 𝑇1)/𝑇0 for each of the observed dimension 𝐷 =

{10, 30, 50, 100}. Obviously, this calculation is independent of the computing system and 

programming language in which the measured algorithm is implemented. According to Table 8, it is 

easy to conclude that more computational cost is required with the increasing number of dimensions 

for the benchmark functions. 

Table 8. The computational complexity of the algorithm HSAS/FFT (all times are in seconds). 

𝐷 𝑇0 𝑇1 𝑇2̂ (𝑇2̂ − 𝑇1)/𝑇0 

10 

0.147522 

0.270703 2.536710 15.360468 

30 0.914563 6.916988 40.688338 

50 1.995140 11.897618 67.125432 

100 6.741860 27.265260 139.120945 
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