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Appendix A. Notation

Parameters:
a: Coefficient of imitation
λ: Speed at which consumers adaptively learn
v: Value that consumers place on the product
p: Price of the product in both channels
k: Service radius
c: Retailer’s unit purchasing cost
s: Lost sales cost per unit (s < c < p)
l: Delivery time for the online channel
T : Length of the planning time horizon, indexed by t = 1, 2, ..., T
b: Market size parameter

Decision Variables:
αt: Type I service level for the store channel in period t where t = 1, 2, ..., T
ω: The level of marketing efforts

Random Variables:
M : Market size (M ∼ U [0,b])
D: Consumer index for unwillingness to wait for delivery in the online channel (D ∼ U [0,1])
R: Consumer index for her distance to the store (R ∼ U [0,k])
Xt: Bernoulli variable (Xt=1 if the consumer has adopted the online channel option by time t, Xt=0

otherwise, with Pr(Xt = 1) = Ft(ω))

Dependent (intermediary) variables:

Ui,t( d, r): The utility that a consumer with indices (d, r) derives from channel i ∈ {s, o} in period t
where t = 1, 2, ..., T

β(αt): Type II service level for the store channel in period t where t = 1, 2, ..., T
ξt: Predicted availability level for the store channel in period t where t = 1, 2, ..., T
qi,t: Order quantity for channel i ∈ {s, o} in period t where t = 1, 2, ..., T
Zi,t: Random demand for option i ∈ {s, o, n} in period t where t = 1, 2, ..., T
Ii,t(ω, ξt) : Proportion of total demand for option i ∈ {s, n} in period t where t = 1, 2, ..., T
Iyo,t(ω, ξt) : Proportion of primary (y = 1) and secondary (y = 2) demand for the online channel in

period t where t = 1, 2, ..., T
Ft(ω): Proportion of the population who have adopted e-commerce by time t where t = 1, 2, ..., T

Table 6: Notation
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Appendix B. Proofs

Recall that W ≡ k
v−p , and B ≡ v−p

l . We also define, Yt ≡

{
[1−BFt(ω)]ξt

W , if ξt ≤W
[1−BFt(ω)], otherwise.

, for t = 1, ..., T .

Proof of Lemma 1. In order for no choice-based lost demand to occur (i.e. (Bn,t|Xt = 0 ∪Bn,t|Xt = 1) =
∅), both e-commerce adopters and non-adopters must receive positive utility from at least one chan-
nel. Since the only available channel for the e-commerce non-adopters is the store channel, it must
hold that THr,t = k ⇔ ξt > k/(v−p) = W , i.e. all e-commerce non-adopters derive a positive utility
from the store. This condition also implies that all e-commerce adopters derive a positive utility from
the store, thus, completing the proof. �

Proof of Lemma 2.
Proof of Part 1. The proof proceeds in two parts. First, we derive closed-form expressions for the
choice probabilities, Pr(Bj,t|Xt = 1), for j ∈ {o, c}, and Pr(Bi,t|Xt = x), for i ∈ {s, n}, x ∈ {0, 1};
and the expressions in Table 2 for Ii,t(ω, ξt), for i ∈ {s, n}, Iyo,t(ω, ξt), for y ∈ {1, 2}, follow directly
from Eqn. (1). Next, we show that Ii,t(ω, ξt), for i ∈ {s, n}, Iyo,t(ω, ξt), for y ∈ {1, 2}, are piece-wise
continuous functions of ξt.

In the following, we consider the case where THd,t < 1 ⇔ THd,t = (v − p)/l < 1, and THr,t < k ⇔
THr,t = ξt(v − p) < k (see Figure 2); other cases defined in Lemma 2 can be proven similarly (see
Table 7). We start with the segmentation of e-commerce adopters. Since the y-intercept (r = 0) of

the line THl,t is d(r=0) = (1−ξt)(v−p)
l , we can write:

Pr(Bo,t|Xt=1) =
1

k

[
k · v − p

l
− ξt(v − p)

2

(
v − p
l
− (1− ξt)(v − p)

l

)]
=

(v−p)[2k−ξ2t (v−p)]
2kl

. (8)

Similarly, it follows that:

Pr(Bs,t|Xt=1)=
ξt(v−p)[2l−2(v−p)+ξt(v−p)]

2kl
, Pr(Bn,t|Xt=1)=1−

∑
i∈{s,o}

Pr(Bi,t|Xt=1),

and Pr(Bc,t|Xt = 1) =
v − p
l
− Pr(Bo,t|Xt = 1).

(9)

Since the online channel is not an option for consumers with Xt = 0, consumers with {r : r < THr,t}
choose the store; otherwise, they choose to not make a purchase, leading to:

Pr(Bs,t|Xt = 0) =
ξt(v − p)

k
and Pr(Bn,t|Xt = 0) = 1− Pr(Bs,t|Xt = 0). (10)

By substituting Eqn.s. (8)-(10), along with the equalities, Pr(Xt = 1) = Ft(ω) and Pr(Xt = 0) =
1− Ft(ω), into Eqn. (1), we get:

I1o,t(ω, ξt) =

[
1− ξ2t

2W

]
BFt(ω), I2o,t(ω, ξt) = BFt(ω)− I1o,t(ω, ξt), Is,t(ω, ξt) =

ξt
W

[
1− (2− ξt)B

2
Ft(ω)

]
,

and In,t(ω, ξt) = 1−
∑

i∈{s,o}

Ii,t(ω, ξt).

Next, we show that function I1o,t(ω, ξt) is continuous in ξt. (Continuity proofs for Ii,t(ω, ξt), for
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i ∈ {s, n}, and I2o,t(ω, ξt) are similar.) From Table 1, we have that:

I1o,t(ω, ξt) =

B
[
1− ξ2t

2W

]
Ft(ω), if ξt <

k
v−p[

(1− ξt)B + BW
2

]
Ft(ω), otherwise.

(11)

We have that lim
ξt→ k

v−p
−
I1o,t(ω, ξt) = lim

ξt→ k
v−p

+
I1o,t(ω, ξt) =

[
B − BW

2

]
Ft(ω). Hence, Io,t(ω, ξt) is con-

tinuous in ξt.

Proof of Part 2. First, notice that we are slightly abusing the notation since the time index t in
Eqn. (2) stands for the time elapsed after e-commerce for the specific product becomes available to
consumers (for a given set of ω and a), while the time index t in Eqn. (7) stands for the time period
within the planning time horizon. Hence, in order to mimic the behavior of the diffusion curve given
in Eqn. (2) for a given set of ω and a, we first provide the following transformation. Let t∗(ω) denote
the diffusion time that the retailer’s planning time horizon starts; that is, Ft∗(ω)(ω) ≡ F0, where
ω > 0, as ω = 0 implies that Ft = 0, ∀t ≥ 0. Then, using Eqn. (2), the following must hold:

Ft∗(ω)(ω) =
1− e−(ω+a)t∗(ω)

1 + a
ωe
−(ω+a)t∗(ω) = F0 ⇒ t∗(ω) = − 1

ω + a
ln

(
ω(1− F0)

ω + aF0

)
. (12)

Then, using Eqn. (2), the adoption level at time period t within the planning horizon as a function
of ω is as follows:

Ft(ω) =
1− e−(ω+a)(t∗(ω)+t−1)

1 + a
ωe
−(ω+a)(t∗(ω)+t−1) , ω > 0, t = 1, ..., T. (13)

Since Eqn. (13) is continuous and differentiable, it trivially follows that Ii,t(ω, ξt), i∈{s, n}, and
Iyo,t(ω, ξt), y∈{1, 2} are continuous and differentiable in ω.

Table 7: Choice probabilities

THd,t = 1⇔ l ∈ (0, v − p] THd,t < 1⇔ l ∈ (v − p,∞)

Pr(Bs,t|Xt = 1) =

{
0 if ξt ≤ 1− l

v−p
[l−(1−ξt)(v−p)]2

2kl otherwise
Pr(Bs,t|Xt = 1) = ξt(v−p)[2l−2(v−p)+ξt(v−p)]

2kl

Pr(Bo,t|Xt = 1) = 1− Pr(Bs,t|Xt = 1) Pr(Bo,t|Xt = 1) =
(v−p)[2k−ξ2t (v−p)]

2kl

THr,t < k ⇔ Pr(Bn,t|Xt = 1) = 0 Pr(Bn,t|Xt = 1) = 1−
∑

i∈{s,o} Pr(Bi,t|Xt = 1)

ξt < W Pr(Bc,t|Xt = 1) = 1− Pr(Bo,t|Xt = 1) Pr(Bc,t|Xt = 1) = v−p
l − Pr(Bo,t|Xt = 1)

Pr(Bs,t|Xt = 0) = ξt(v−p)
k Pr(Bs,t|Xt = 0) = ξt(v−p)

k

Pr(Bn,t|Xt = 0) = 1− Pr(Bs,t|Xt = 0) Pr(Bn,t|Xt = 0) = 1− Pr(Bs,t|Xt = 0)

Pr(Bs,t|Xt = 1) =


0 if ξt ≤ 1− l

v−p
[l−(1−ξt)(v−p)]2

2kl 1− l
v−p < ξt ≤ 1− l−k

v−p
1− 2(1−ξt)(v−p)+k

2l otherwise

Pr(Bs,t|Xt = 1) = 1− 2(1−ξt)(v−p)+k
2l

Pr(Bo,t|Xt = 1) = 1− Pr(Bo,t|Xt = 1) Pr(Bo,t|Xt = 1) = 1− Pr(Bs,t|Xt = 1)

THr,t = k ⇔ Pr(Bn,t|Xt = 1) = 0 Pr(Bn,t|Xt = 1) = 0

ξt ≥W Pr(Bc,t|Xt = 1) = 1− Pr(Bo,t|Xt = 1) Pr(Bc,t|Xt = 1) = v−p
l − Pr(Bo,t|Xt = 1)

Pr(Bs,t|Xt = 0) = 1 Pr(Bs,t|Xt = 0) = 1

Pr(Bn,t|Xt = 0) = 0 Pr(Bn,t|Xt = 0) = 0
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Derivation of the Expected Profit Function. Recall that M∼U [0, b]. Then, using Eqn.s (1),
(3) and (4), we derive the following:

E[min(Zs,t, qs,t)] =

∫ qs,t

0

zs,t
1

bIs,t(ω, ξt)
d zs,t +

∫ bIs,t(ω,ξt)

qs,t

qs,t
1

bIs,t(ω, ξt)
d zs,t

=
1

bIs,t(ω, ξt)

[
q2s,t
2

+ qs,t

(
bIs,t(ω, ξt)− qs,t

)]
= αtbIs,t(ω, ξt)

[
1− αt

2

]
,

E[(Zs,t − qs,t)+] =

∫ bIs,t(ω,ξt)

qs,t

(zs,t − qs,t)
1

bIs,t(ω, ξt)
d zs,t

=
1

bIs,t(ω, ξt)

[
b2Is,t(ω, ξt)

2 − q2s,t
2

− qs,t
(
bIs,t(ω, ξt)− qs,t

)]
=
bIs,t(ω, ξt)(1− αt)2

2
,

E[Zo,t] =
bI1o,t(ω, ξt)

2
+
I2o,t(ω, ξt)

Is,t(ω, ξt)
E[(Zs,t − qs,t)+] =

bI1o,t(ω, ξt)

2
+
bI2o,t(ω, ξt)(1− αt)2

2
,

E[Zn,t] =
bIn,t(ω, ξt)

2
=
b(1− Is,t(ω, ξt)− I1o,t(ω, ξt))

2
.

(14)

Then, Eqn. (7) follows by substituting the terms derived in Eqn. (14), along with Eqn.s (1)-(4), into
Eqn (6). This completes the proof. �

Proof of Lemma 3. In the following, we consider the case where THd,t < 1⇔ THd,t = (v−p)/l < 1;
the case where THd,t = 1 ⇔ THd,t = (v − p)/l ≥ 1 can be proven similarly. Before we present the
proof for Lemma 3, we derive several properties.

Property 1. 1. [I1o,t(ω, ξt)+I2o,t(ω, ξt)] = BFt(ω) ≥ 0 which implies that
∂[I1o,t(ω,ξt)+I

2
o,t(ω,ξt)]

∂ξt
= 0;

2. [Is,t(ω, ξt)− I2o,t(ω, ξt)] = Yt > 0, and ∂Yt
∂ξt
≥ 0;

3. Given that ξt = λβ(αt−1) + λξt−1, where β(αt) = αt(1− ln(αt)), it holds that ∂ξt
∂αt−i

= −λ(1−
λ)i−1 lnαt−i, for t ≤ T , and i ≤ t− 1.

Proof of Property 1. Throughout the proof, we consider the range αt ∈ (0, 1], for t = 1, 2, ..., T ,
as lnαt is undefined at αt = 0.
Proof of Parts 1 and 2. The results directly follow from Table 1.

Proof of Part 3. The result directly follows from the definition of ξt.

This completes the proof. �

Proof of Lemma 3. Using Property 1, for λ ∈ [0, 1] it follows that:

E[πt(ω, αt, ξt)] = −G(ω) + bBFt(ω)

[
p+s

2
−c
]

+bYt

[
(p+s−c)αt−(p+s)

α2
t

2

]
− bs

2
(15)

⇒ ∂E[πt(ω, αt, ξt)]

∂αt−i
= −b∂Yt

∂ξt
λ(1−λ)i−1 lnαt−i

[
(p+s−c)αt − (p+s)

α2
t

2

]
, for i < t (16)

∂E[πt(ω, αt, ξt)]

∂αt
= bYt [p+s−c−(p+s)αt] (17)
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⇒ ∂2E[πt(ω, αt, ξt)]

∂α2
t−i

= −b∂Yt
∂ξt

λ(1−λ)i−1
1

αt−i

[
(p+s−c)αt − (p+s)

α2
t

2

]
, for i < t (18)

∂2E[πt(ω, αt, ξt)]

∂αt−iαt−j
= 0, for i, j < t, i 6= j (19)

∂2E[πt(ω, α, ξt)]

∂αt−iαt
= −b∂Yt

∂ξt
λ(1−λ)i−1 lnαt−i [p+s−c− (p+s)αt] , for i < t (20)

∂2E[πt(ω, αt, ξt)]

∂α2
t

= −bYt (p+s) (21)

Using the definition of Yt, Property 1 and Eqn. (15), it follows that E[πt(ω, αt, ξt)] is continuous in
αj ∈ (0, 1], for j ≤ t. Also, Eqn.s. (16) and (17) imply that E[πt(ω, αt, ξt)] is strictly increasing in

αj ∈ (0, CF ), for j ≤ t. Let A− ≡ {(α1, α2, ..., αt−1) : CF·−→1 ≤(α1, α2, ..., αt−1)≤
−→
1 , ξt < W} and

A+ ≡ {(α1, α2, ..., αt−1) : CF·−→1≤ (α1, α2, ..., αt−1) ≤
−→
1 , ξt ≥W} , where ξt = λβ(αt−1)+(1−λ)ξt−1.

Letting T ≡ bλ
[
(p+s−c)αt − (p+s)

α2
t
2

]
, and V ≡ bλ [p+s−c− (p+s)αt], the Hessian matrix for

−E[πt(ω, αt, ξt)] for A− in this case, where the entries are in the order of α1, α2, ..., αt, is as follows.

HA−=
[1−BFt(ω)]

W



T (1−λ)t−2

α1
0 · · · 0 0 V (1−λ)t−2 lnα1

0 T (1−λ)t−3

α2
· · · 0 0 V (1−λ)t−3 lnα2

...
...

. . .
...

...
...

0 0 · · · T (1−λ)1
αt−2

0 V (1−λ)1 lnαt−2

0 0 · · · 0 T (1−λ)0
αt−1

V (1−λ)0 lnαt−1
V (1−λ)t−2 lnα1 V (1−λ)t−3 lnα2 · · · V (1−λ)1 lnαt−2 V (1−λ)0 lnαt−1 ξt(p+ s)



Using the definitions of T and V , it follows that T > 0 and V ≤ 0, for αt ∈ [CF, 1]. In order to
prove that E[πt(ω, αt, ξt)] is jointly concave in αt ∈ [CF, 1] and (α1, α2, ..., αt−1) ∈ A−, it is sufficient
to show that HA− is positive semi-definite (PSD) in αj ∈ [CF, 1], for j ≤ t. For that, we need to

show that all principal minors of HA− , which we denote by Di, are greater than or equal to zero for
αj ∈ [CF, 1], for j ≤ t. Clearly, D1 = ξt(p + s) ≥ 0. In order to show that HA− is PSD, we only
need to show that D2 ≥ 0, then Dj ≥ 0 for j > 2 can be proven by induction. In order to show that
D2 ≥ 0 for αj ∈ [CF, 1], for j ≤ t, we need to show that:

D2 =
T (1−λ)0

αt−1
ξt(p+ s)− V 2(lnαt−1)

2 ≥ 0. (22)

It follows that D2 is decreasing for αt ∈ [CF, 1]; hence, for any given αt−1, D2 is minimized at αt = 1.
Therefore, in order for D2 to be positive at αt = 1, it must hold that:

λ

[
p+ s

2
− c
]
ξt(p+ s)

αt−1
− λ2c2(lnαt−1)2 ≥ 0⇒

[
p+ s

2
− c
]
ξt(p+ s)

αt−1
− c2(lnαt−1)2 ≥ 0

⇒ f1 =

[
p+ s

2
− c
]
ξt(p+ s)− c2(lnαt−1)2αt−1 ≥ 0 (23)

f1 is increasing for αt−i ∈ [CF, 1], for i < t. Thus, it must hold that:[
p+ s

2
− c
]
CF (1− lnCF )− c2(lnCF )2CF ≥ 0⇒

[
p+ s

2
− c
]

(1− lnCF )− c2(lnCF )2 ≥ 0 (24)
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Recall that CF = p+s−c
p+s , letting η ≡ p+s

c and simplifying, we can rewrite Eqn. (24) as:

f2 = η

[
η − 2

2

](
1− ln

η − 1

η

)
−
(

ln
η − 1

η

)2

≥ 0 (25)

f2 is increasing in η, which implies that any η that is greater than the root of f2 satisfies Eqn. (25),
which assures that D2 ≥ 0. By numerically solving, we get: f2 = 0 at η = 2.206. Thus, we prove
that D2 ≥ 0 for η ≥ 2.206, which implies that HA− is PSD for η ≥ 2.206. Thus, E[πt(ω, αt, ξt)] is
concave in A−. Next, the Hessian matrix for −E[πt(ω, ξt)] for A+ is:

HA+
=[1−BFt(ω)]



0 0 · · · 0 0 0
0 0 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 0 0 0
0 0 · · · 0 0 0
0 0 · · · 0 0 (p+ s)


which is PSD for ∀αj ∈ (0, 1], j ≤ t. Then, E[πt(ω, αt, ξt)] is jointly concave in αj ∈ [CF, 1], for
j ≤ t since E[πt(ω, αt, ξt)] is: 1) jointly concave in ∀αj , j ≤ t in both regions A− and A+, 2) con-

tinuous and differentiable in αt, and 3) ∂E[πt(ω,αt,ξt)]
∂αt−i

≥ 0, i < t, for (α1, α2, ..., αt−1) ∈ A−, and
∂E[πt(ω,αt,ξt)]

∂αt−i
= 0, i < t, for (α1, α2, ..., αt−1) ∈ A+ (using Eqn. (16)).

Proof of Remark 1. Using Property 1, it follows that ξt = β(α0) for λ = 0. Hence, E[πt(ω, αt, ξt)]
is independent of αj , for ∀j 6= t. Then, Eqn.s. (17) and (21) imply that the FOC for E[πt(ω, αt, ξt)],
∀t, for λ = 0, is satisfied at αt = CF for t ≤ T .

Proof of Theorem 1. In the following, we consider the case where THd,t < 1⇔ THd,t = (v−p)/l <
1; the case where THd,t = 1 ⇔ THd,t = (v − p)/l ≥ 1 can be proven similarly. For a given ω > 0,
since ξt is a function of all αi, i < t, it follows that:

E[Π(ω,−→α )] = −G(ω) +

T∑
t=1

E[πt(ω, αt, ξt)]⇒
∂E[Π(ω,−→α )]

∂αt
=

T−t∑
i=0

∂E[πt+i(ω, αt+i, ξt+i)]

∂αt
, for t ≤ T.

⇒ ∂E[Π(ω,−→α )]

∂αt
= Yt[p+s−c−(p+s)αt]− λ lnαt

T−t∑
i=1

∂Yt+i
∂ξt+i

(1−λ)i−1
[
(p+s−c)αt+i − (p+s)

α2
t+i

2

]
. (26)

Then using Eqn. (26), α∗T = CF . Let ξ∗t , for t ≤ T, denote ξt at optimality. Then, using Eqn.s. (16)
and (17), it follows that the FOC for αt, for t ≤ T, is satisfied at α∗t = CF if ξ∗t = β(CF ) > W ;
otherwise, there exists a vector, say, −→α ′′ = (α′′1, α

′′
2, ..., α

′′
T−1), that satisfies the FOC if ξ′′t (ω) ≤

W, ∀t ≤ T , where ξ′′t (ω) = λβ(α′′t−1) + (1 − λ)ξt−1, with ξ′′1 = β(α0); thus, (α∗1, α
∗
2, ..., α

∗
T−1) = −→α ′′.

If β(CF ) ≤ W < min
1<t≤T

{ξ′′t (ω)}, then E[Π(ω,−→α )] is increasing in all directions in (α1, α2, ..., αT−1)

when ξt ≤ W, ∀t ∈ [2, T ]; therefore, it follows that (α∗1, α
∗
2, ..., α

∗
T−1) = −→α ′′′prior ≡ {(α1, α2, ..., αT−1) :

ξt = W, ∀t ∈ [2, T ]}. Consequently, if min
1<t≤T

{ξ′′t (ω)} ≤ W < max
1<t≤T

{ξ′′t (ω)}, then α′′′t ≤ α∗t ≤ α′′t since

E[Π(ω,−→α )] is decreasing at −→α ′′ in some directions while maximized in others. This completes the
proof. �

Proof of Theorem 2. In the following, we consider the case where THd,t < 1⇔ THd,t = (v−p)/l <
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1, and THr,t < k ⇔ THr,t = ξt(v− p) < k (see Figure 2); other cases can be proven similarly. Before
we present the proof, we derive the following property.

Property 2. ∂Ft(ω)
∂ω < 0 for ω > 0, t = 2, ..., T .

Proof of Property 2. Using Eqns. (12) and (13), it follows that:

Ft(ω) =
ω + aF1 − ω(1− F1)e

−(ω+a)(t−1)

ω + aF1 + a(1− F1)e−(ω+a)(t−1)
= 1− (a+ ω)(1− F1)e

−(ω+a)(t−1)

ω + aF1 + a(1− F1)e−(ω+a)(t−1)

= 1− (a+ ω)(1− F1)

(ω + aF1)e(ω+a)(t−1) + a(1− F1)

⇒ ∂Ft(ω)

∂ω
= (1− F1)

(ω + aF1)e
(ω+a)(t−1) + a(1− F1)− (a+ ω)e(ω+a)(t−1)(1 + (ω + aF1)(t− 1))(

(ω + aF1)e(ω+a)(t−1) + a(1− F1)
)2

= (1− F1)e
(ω+a)(t−1) (ω + aF1) + a(1− F1)e

−(ω+a)(t−1) − (a+ ω)(1 + (ω + aF1)(t− 1))(
(ω + aF1)e(ω+a)(t−1) + a(1− F1)

)2
= (1− F1)e

(ω+a)(t−1)a(1− F1)(e
−(ω+a)(t−1) − 1)− (a+ ω)(ω + a)(ω + aF1)(t− 1)(

(ω + aF1)e(ω+a)(t−1) + a(1− F1)
)2 < 0.

Proof of Theorem 2. Using Eqn.s. (3), (4), Property (2), and Theorem 3, when β(CF ) < W , it
holds that:

q∗s,t(ω) = CF b Is,t(ω, β(CF ))⇒
∂q∗s,t(ω)

∂ω
= −bCF (2− β(CF ))β(CF )B

2W

∂Ft(ω)

∂ω
< 0

q∗o,t(ω) = b I1o,t(ω, β(CF )) + (1− CF ) b [BFt(ω)− I1o,t(ω, β(CF ))]

⇒
∂q∗o,t(ω)

∂ω
= bCF B

[
1− β(CF )2

2W

]∂Ft(ω)

∂ω
+ b (1− CF )B

∂Ft(ω)

∂ω
> 0

⇒
∂q∗s,t(ω)

∂ω
+
∂q∗o,t(ω)

∂ω
= bB(1− CFβ(CF )) > 0.

This completes the proof. �

Proof of Lemma 4. In the following, we consider the case where THd,t < 1⇔ THd,t = (v−p)/l < 1;
the case where THd,t = 1 ⇔ THd,t = (v − p)/l ≥ 1 can be proven similarly. From Eqn. (15), it
follows that:

∂E[πt(ω, αt, ξt)]

∂ω
= −∂G(ω)

∂ω
+ bB

∂Ft(ω)

∂ω

[
p+ s

2
− c
]
− b∂Yt

∂ω

[
(p+s−c)αt − (p+s)

α2
t

2

]
(27)

By assumption, G(ω) is increasing in ω. Then, using the definition of Yt and Property 2, the proof
follows. �

Proof of Theorem 3. From Theorem 1, if W < β(CF ), then −→α ∗ = CF · −→1 ⇒ ξ∗t = β(CF ) >

W, ∀t = 1, ..., T . Since, p+s
2 − c

[
(p+s−c)α∗t − (p+s)

(α∗t )
2

2

]
≤ 0 at α∗t = CF , and ∂α∗t /∂ω = 0, using

Lemma 4, the proof follows. �
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Proof of Lemma 5. Given that ξPt =β(αt)⇒ ∂ξPt
∂αt

=−lnαt, and using Property 1, it follows that:

E[πPt (ω, αt, ξt)] = bBFt(ω)

[
p+s

2
−c
]

+bYt

[
(p+s−c)αt−(p+s)

α2
t

2

]
− bs

2
(28)

⇒ ∂E[πPt (ω, αt, ξt)]

∂αt
= −b∂Yt

∂ξt
lnαt

[
(p+ s− c)αt − (p+ s)

α2
t

2

]
+ bYt [p+ s− c− (p+ s)αt] (29)

⇒ ∂2E[πPt (ω, αt, ξt)]

∂α2
t

= −b∂Yt
∂ξt

1

αt

[
(p+s−c)αt−(p+s)

α2
t

2

]
−2b

∂Yt
∂ξt

lnαt [p+s−c−(p+s)αt]−bYt(p+s) (30)

Using the definition of Yt, Property 1 and Eqn. (28), it follows that E[πPt (ω, αt, ξt)] is continuous in
αt ∈ (0, 1], for a given ω > 0. Let αTH ≡ {αt : ξt = W}, where ξt = β(αt). Then, there are three
cases to consider: Case 1. If 0 < αTH ≤ CF ⇔ 0 < W ≤ β(CF ), then E[πt(ω, αt, ξt)] is strictly
increasing in αt ∈ (0, CF ), and strictly concave and differentiable in αt ∈ [CF, 1] with a maximizer at
α∗Pt = CF . Case 2. If CF < αTH ≤ 1⇔ β(CF ) < W ≤ 1, then E[πPt (ω, αt, ξt)] is strictly increasing
in αt ∈ (0, CF ), strictly concave in αt ∈ (CF,αTH), and strictly concave decreasing in αt ∈ (αTH , 1]
with lim

αt→αTH−
∂E[πPt (ω, αt, ξt)]/∂αt > lim

αt→αTH+
∂E[πPt (ω, αt, ξt)]/∂αt by using Eqn. (29), which im-

plies that E[πPt (ω, αt, ξt)] is strictly concave in αt ∈ [CF, 1] with a maximizer at α∗Pt ∈ (CF,αTH ].
Case 3. If αTH > 1⇔W > 1, then E[πPt (ω, αt, ξt)] is strictly increasing in αt ∈ (0, CF ) and strictly
concave in αt ∈ [CF, 1] with a maximizer at α∗Pt ∈ (CF, 1). Also, using Eqn. (29), it follows that the
first derivative of E[πPt (ω, αt, ξt)] is independent of the adoption level Ft(ω); therefore, α∗Pt = α∗P

for t ≤ T. This completes the proof. �

Proof of Theorem 4.
Proof of Part 1. It directly follows from Lemma 5 that, for a given ω > 0, if 0 < αTH ≤ CF ⇔
0 < W ≤ β(CF ), then α∗P = CF . If, on the other hand, CF < αTH ≤ 1⇔ β(CF ) < W ≤ 1, then
α∗P ∈ (CF,αTH ]; that is, the maximizer of E[πPt (ω, αt, ξt)] is also the maximizer of E[πPt (ω, αt, ξt)]
when ξt ≤W (equivalently, αt < αTH). Let α′ denote the point that sets the FOC of E[πPt (ω, αt, ξt)]
when ξt ≤ W equal to zero. It follows from Eqn. (29) that α′ ∈ (0, 1). Then, there are two cases to
consider: Case 1. If αTH < α′ (equivalently, W < β(α′)) then α∗P = αTH , and Case 2. If αTH ≥ α′
(equivalently, W ≥ β(α′)) then α∗P = α′.
Proof of Part 2. Proof follows similar to the proof of Theorem 2.
Proof of Part 3. Proof follows similar to the proof of Theorem 3.
This completes the proof. �

Proof of Theorem 5. Before we present the proof for Theorem 5, we derive the following property.

Property 3. ∂2E[Π(ω,−→α )]/∂αt∂αj ≤ 0, for ∀αt, αj ∈ (CF, 1), j, t ≤ T .

Proof of Property 3. Taking the derivative of Eqn. (26) with respect to αj , for j ≤ T , it follows
that ∂2E[Π(ω, αt, ξt)]/∂αt∂αj ≤ 0 for j,∀t ≤ T . This completes the proof. �

Proof of Theorem 5.
Proof of Part 1. The proof follows from Theorems 1 and 4.
Proof of Part 2. The proof proceeds in three parts. First, we derive the expression for the upper
bound UBα∗t (λ,CF ) on α∗t , t = 1, 2, ..., T − 1, for a given pair of (λ,CF ) and for any ω > 0. Next,
we show that UBα∗t (λ,CF ) is decreasing in t and increasing λ, and hence UB(CF ) ≡ UBα∗1(1, CF )

is an upper bound on −→α ∗ for a given CF . Finally, we complete the proof by showing that α∗P ≤
UBα∗P ≡ α′ < UB(CF ).
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Factoring out p+ s in Eqn. (26), we get:

∂E[Π(ω,−→α )]

∂αt
= (p+ s)Yt[CF − αt]− (p+ s)λ lnαt

T−t∑
i=1

∂Yt+i
∂ξt+i

(1−λ)i−1
[
CFαt+i −

α2
t+i

2

]
(31)

For a given ω, when ξ∗t ≤ W, ∀t = 2, ..., T ; that is −→α ∗(ω) = −→α ′′(ω), it follows that ∂E[Π(ω,−→α )]/∂αt
is decreasing in αj , for j ≤ T (using Property 3), and increasing in [1−BFt+i(ω)]

[1−BFt(ω)]
, for i∈ [1, T−t] (from

Eqn. (31)). Then, UBα′′t (λ,CF ) sets Eqn (31) equal to zero when αj = CF, ∀j ≤ T, j 6= t, i.e. at its

lower bound, and [1−BFt+i]
[1−BFt]

= 1, i.e. at its maximum, which is obtained by setting Ft(ω) = Ft+i(ω),

for i ∈ [1, T − t] (Hence, UBα∗t (λ,CF ) is independent of B,ω and a.).

When αj = CF, for ∀j ≤ T, j 6= t, and Ft = Ft+i, for i ∈ [1, T − t], the first term in Eqn. (31) is the
same for all ∂E[Π(ω,−→α )]/∂αt; however, the second term is a summation over all αt+i, i ∈ [1, T − t].
Thus, for a larger t, the second term in Eqn. (31) is less positive; hence, UBα′′t (λ,CF ) is decresing
in t. Also, when αj = CF, for ∀j ≤ T, j 6= t, Eqn. (31) is decreasing in αt and increasing in λ. Thus,
UBα′′t (λ,CF ), t < T , is increasing in λ. Hence, UB(CF ) ≡ UBα∗1(1, CF ) is an upper bound on −→α ∗.

Setting λ = 1, αj = CF, ∀j ≤ T, j 6= 1, and F1 = F1+i, for i = 1, ..., T − 1, in Eqn. (31), the FOC for
α1 follows:

β(CF ) [CF − UB(CF )]− ln (UB(CF ))

[
CF 2

2

]
= 0. (32)

When β(α′) ≤W ; that is α∗P = α′, at optimality it must hold that (using Eqn. 29):

β(α′)[CF − α′]− lnα′

[
CFα′ − α′2

2

]
= 0. (33)

That is, using Eqn.s. (32) and (33),

β(CF ) [CF − UB(CF )]− ln (UB(CF ))

[
CF 2

2

]
= β(α′)[CF − α′]− lnα′

[
CFα′ − α′2

2

]
(34)

We prove that α∗P ≤ UBα∗P ≡ α′ < UB(CF ) by contradiction. Assume that α′ ≥ UB(CF ) >
β(CF ), then using Eqn. (34), it must hold that:

β(CF ) [CF−UB(CF )]−β(α′)[CF − α′] = ln (UB(CF ))

[
CF 2

2

]
−lnα′

[
CFα′−α

′2

2

]
> 0. (35)

In addition, ln (UB(CF )) < lnα′ < 0 and CF 2

2 > CFα′ − α′2

2 > 0 ⇒ ln (UB(CF ))
[
CF 2

2

]
−

lnα′
[
CFα′ − α′2

2

]
< 0, which poses a contradiction with Eqn. (35). Hence, it must hold that

α∗P ≤ UBα∗P ≡ α′ < UB(CF ), which implies that |α∗P −α∗t | < UB(CF )−CF . This completes the
proof. �
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Appendix C. Justification of Assumptions

In this section, we provide justifications for some of the modeling assumptions:

• The online (store) channel has 100% (limited) availability. The assumption of 100%
availability for the online channel is not unreasonable given the current online retailing practices,
and does not modify the important tradeoffs that we aim to model in this paper. Indeed, it is
common for online retailers to target extremely high levels of online inventory availability. For
example, the Journal of Commerce (2016) reports that “US retailers reducing inventory, but
e-commerce stock balance still tricky,” one reason being that “the goal of lowering inventory
(and related costs) can clash with the desire to sell more products.” Such pressure is inevitably
higher in the online market due to the fierce competition between an ever-increasing number
of retailers, and as a result, it is not uncommon for online channels to hold more inventory
than their store counter-parts. This is also in line with our own experience with industry
partners, including a leading global retailer in the sporting goods sector, which strategically
targets a minimum of 95% availability in its online channel, and Bol.com, the leading Dutch
online retailer, which targets an online availability of at least 96% for the majority of its product
offerings. In reality, both companies provide higher availability (see Kiemeneij 2017). Second,
modeling limited availability in the store channel is of main importance, because this has a
major impact on the consumer’s channel choice. Due to the time and energy consumers invest
in their shopping trips: “Consumers would not patronize a firm without some form of assurance
that they can find what they are looking for” (Su and Zhang 2009). While consumers incur
a travel/time cost for visiting the store before product availability is actually observed, they
can easily check the availability in the online channel on their smartphones, tablets, etc. at a
negligible cost before finalizing their purchasing decision. Given that the focus of our paper is
on the shaping of consumer demand, this simplifying assumption preserves the essential aspects
of the problem, and is in line with the literature (see Chen et al. 2008, Gao and Su 2016, 2017
with similar assumptions).

• Market size is stochastic, exogenous, and identical across the different time pe-
riods. Retailers commonly face stochasticity in market size. Hence, they may execute their
inventory planning based on a probability distribution of total demand, which relies on histor-
ical data and/or expert opinion. Since the focus of this paper is on tactical planning, it is not
unreasonable to assume that this distribution can be used for the planning of inventory over the
entire planning horizon. In other words, the operational aspect of continuously updating the
demand distribution in each period based on recently observed data is beyond the scope of this
work. The exogeneity in total market size is also a common assumption in the multi-channel
retailing literature, as the main goal in such studies is to study the impact of multiple sales
channels on the channel migration behavior of existing consumers, who would shop through a
single channel in the absence of alternatives (e.g. Cattani et al. 2006, Chen et al. 2008, Yoo
and Lee 2011, and Gao and Su 2016).

• Diffusion of e-commerce adoption depends on the retailer’s marketing efforts and
the word of mouth effect. In reality, the diffusion of e-commerce adoption may depend
on a variety of other factors such as the online delivery lead time and consumer’s distance to
the store as well as product availability, customer service quality and convenience of returns.
However, accounting for all these factors would lead to a significant increase in the parameter
space, leading to a much less tractable problem. We consider a subset of the aforementioned
factors in our discrete choice model, as explained in Section 3.2.

A-10



• The retailer’s business setting is determined by the exogenous parameters k and l.
The retailer’s store service radius, k, is a strategic decision, as it strategically places its store to
serve a neighborhood of consumers. In addition, the delivery time, l, for the online channel can
be highly constrained by the current supply chain infrastructure and/or contracts with third
party logistics providers. Since the retailer’s strategic decisions and contracts with external
parties are outside the scope of this paper, we characterize the retailer’s business setting in
terms of parameters k and l.

• Consumers are homogeneous in their learning speed and predicted store availabil-
ity levels. Our model assumes that all consumers learn at the same speed. Even though it
may be desirable to introduce heterogeneity of the learning speed, this would highly compli-
cate the problem. The assumption that consumers are homogeneous in their learning speed
captures the essential component of the problem, and, thus, is commonly used in the literature
that utilizes adaptive learning within multi-period settings, see Section 2. Also, our learning
model implies that consumers are homogeneous in their predicted store availability (i.e. ξt is
the same for all consumers). This is not an unreasonable assumption, as today’s consumers
can easily share information with each other through word of mouth, social media, etc. to
gather information about the past availability levels in order to form a common prediction of
the current availability level (βt) of the company (Bernstein and Federgruen 2004). Of course it
would be interesting to study the setting in which consumers construct individual availability
predictions based on their own history of stock-outs. However, this approach would require
tracking each individual’s stock availability experience over the planning horizon (either 0% or
100%), resulting in a substantially more complicated model. Further, as Liu and Van Ryzin
(2011) emphasizes, “assuming customers only form expectations based on their individual pur-
chase experience is equally unrealistic. It would suggest, for example, that we could only know
whether a car maker’s automobiles are overstocked if we attempt to buy one.” Hence, espe-
cially for products that are not purchased repeatedly, updating of the predicted availability
levels based on individual history is the opposite extreme. Even though the reality lies some-
where in between, our stylized model (which assumes that consumers have the same availability
expectation, similar to Dana and Petruzzi 2001, Liu and Van Ryzin 2011, Gao and Su 2016,
among others) captures the essence of the problem, and applies to a wide selection of products
that are purchased repeatedly or not, and to consumers who have previously purchased the
product through the store channel or not.

• The unit purchasing cost is uniform across channels. In reality, there may be a multitude
of other costs related to each channel that the retailer operates, such as the cost of operating
a physical store (e.g. rent, labor cost, utilities), the cost of operating an online channel (e.g.
web hosting, IT resources, cyber security), fulfillment cost associated with an online channel
(e.g. rent for the warehouse, labor cost for order picking/packaging, utilities, cost of delivery
to consumer), fulfillment cost associated with a store channel (e.g. rent for the distribution
center, labor cost, utilities, cost of delivery to store). Such costs would be highly dependent on
the business models that retailers adopt for their operations. Even though most of these costs
can be easily incorporated into our model, such an approach would make our parameter space
quite large. Therefore, in order to improve the exposition of the paper and to keep our analysis
general, we normalize certain costs, and focus on those that are most relevant within the scope
of our paper. This allows us to create a parsimonious model that incorporates the essential
cost components of the problem that we study and to derive analytical insights related to the
retailer’s tactical decisions, which are our main focus.
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Appendix D. Additional Analyses

1. An example of the retailer’s optimal service levels for a given ω

Example 1 depicts the change in optimal service levels with service radius, k, for a given ω.

Example 1. Let a = 0.0065, ω = 0.0003, λ = 0.4, v = 29.99, p = 24.99, c = 10.75, s = 0, l = 3,
T = 4, and α0 = CF = 0.57. Figure 4 depicts the optimal service levels as a function of service radius,

k, for e-commerce adoption level vector
−→
F = (F1, F2, F3, F4) = (0.0299, 0.0304, 0.0309, 0.0314).

Figure 4: −→α ∗ as a function of k.

2. Sensitivity analysis with respect to parameters k, l, and v

A sensitivity analysis was conducted to observe the change in the optimal solution with respect to low,
medium and high values of k, l, and v parameters for each product; namely, l = 2, 6, 10, k = 15, 22, 29,
and v = p+ 1, p+ 5, p+ 9 when λ = 0.5 (all other parameters have been kept the same as in Section
6). Table 8 shows a summary of the results obtained for 33 experiments (i.e. problems with different
parameter values) per product. That is, after computing the optimal solution for 33 problems, we
report the mean, minimum, and maximum (optimal) service levels, level of marketing efforts, and
profit, which are represented by α∗y, ω

∗
y , and E[Π∗y], for y ∈ {mean, min, max}, respectively.

Table 8: Summary of the sensitivity analysis..

Product ω∗mean [ω∗min, ω
∗
max] α∗mean [α∗min, α

∗
max] E[Π∗mean]

[
E[Π∗min], E[Π∗max]

]
Candle 0.0797 [0, 0.1675] 0.625 [0.570, 0.640] 3,866 [554, 8,716]
Wallet 0.0690 [0, 0.1730] 0.606 [0.550, 0.621] 6,951 [1,107, 15,296]

Auto navigator 0.2139 [0, 0.3797] 0.631 [0.580, 0.650] 25,834 [4,495, 45,546]

Below, we present a subset of our results (for the candle example as a representative product;
other products show similar patterns). Columns 1-3 show the results for the case with v = p+ 5 and
k = 22 with varying l, columns 4-6 show the results for the case with v = p+5 and l = 10 with varying
k, and columns 7-9 show the results for the case with l = 10 and k = 22 with varying v. The results
show a profit increase as delivery lead time gets smaller, as this allows more consumers to patronize
the retailer. Not surprisingly, the same trend prevails for the store radius. Similarly, the retailer’s
profit increases as the value that consumers place on the product increases. When consumers have
a higher valuation of the product, they are willing to accomodate higher inconvenience costs. This
lowers choice-based lost demand. Some findings, which have been described in Section 6, also show in
Table 9. For example, as inventory service levels increase, we see a decrease in the level of e-commerce
marekting efforts due to the cost trade-off between the sets of two decisions.
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Table 9: A subset of sensitivity results for the candle example.

l = 2 l = 6 l = 10 k = 15 k = 22 k = 29 v = p+ 1 v = p+ 5 v = p+ 9

ω∗ 0.1462 0.1285 0.0873 0.0553 0.0873 0.1018 0.0363 0.1018 0.1006
α∗1 0.628 0.632 0.637 0.638 0.637 0.636 0.640 0.636 0.633
α∗2 0.622 0.625 0.629 0.630 0.629 0.628 0.631 0.628 0.626
α∗3 0.608 0.610 0.612 0.612 0.612 0.612 0.613 0.612 0.610
α∗4 0.570 0.570 0.570 0.570 0.570 0.570 0.570 0.570 0.570

E[Π∗] 4,088 3,897 3,577 4,977 3,577 2,871 554 2,871 4,878

3. Sensitivity analysis with respect to parameter T

A sensitivity analysis was conducted to demonstrate the impact of the length of the planning horizon,
T , on the retailer’s optimal decisions. Table 10 presents the summary of results for the candle example
for different values of T when λ = 0.5 and λ = 1 (all other parameters have been kept the same
as in Section 6). Our results show that the optimal service levels continue to follow a monotone
decreasing pattern in t, i.e. α∗1 > α∗2 > α∗3 > α∗4, for smaller λ (i.e. λ = 0.5), regardless of the
length of the planning horizon. However, the magnitude of the service levels tends to increase as
the planning horizon gets longer, since this strategy allows the retailer to increase consumers’ service
level expectations early in the planning horizon to attract demand. The findings for the case with
larger λ (i.e. λ = 1) show that the optimal service levels continue to follow a non-monotonic pattern,
regardless of the length of the planning horizon. However, in this setting, we consistently see the
pattern that towards the end of the planning horizon, the optimal service levels get quite close to
that of the perfect information case – with the exception of the last period, where the optimal service
level will always equal to CF .

Table 10: Retailer’s optimal decisions for different planning horizons.

λ=0.5 λ=1

T 4 6 8 10 12 4 6 8 10 12

w∗ 0.0553 0.0677 0.0757 0.0807 0.0835 0.0542 0.0670 0.0753 0.0803 0.0832
α∗1 0.638 0.643 0.643 0.643 0.643 0.646 0.646 0.646 0.646 0.645
α∗2 0.630 0.640 0.642 0.642 0.642 0.644 0.643 0.643 0.643 0.643
α∗3 0.612 0.636 0.641 0.642 0.642 0.645 0.644 0.643 0.643 0.643
α∗4 0.570 0.629 0.639 0.641 0.642 0.570 0.644 0.643 0.643 0.643
α∗5 N/A 0.612 0.636 0.641 0.642 N/A 0.645 0.644 0.643 0.643
α∗6 N/A 0.570 0.629 0.639 0.641 N/A 0.570 0.644 0.644 0.643
α∗7 N/A N/A 0.612 0.636 0.641 N/A N/A 0.645 0.644 0.644
α∗8 N/A N/A 0.570 0.629 0.639 N/A N/A 0.570 0.644 0.644
α∗9 N/A N/A N/A 0.612 0.636 N/A N/A N/A 0.645 0.644
α∗10 N/A N/A N/A 0.570 0.629 N/A N/A N/A 0.570 0.644
α∗11 N/A N/A N/A N/A 0.612 N/A N/A N/A N/A 0.645
α∗12 N/A N/A N/A N/A 0.570 N/A N/A N/A N/A 0.570
E[Π∗] 4,975 7,571 10,224 12,926 15,668 5,010 7,609 10,263 12,965 15,707

In order to evaluate the optimal solution in longer planning horizons, we solved the problem for
T = 20, 40, 60, 80, 100, and we observed a similar behavior. That is, in the long term when the
planning horizon approaches to an infinite horizon case, we observe that the optimal service levels
approach to that of the perfect information case. For instance, when we solve the problem for T
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= 100, we observe that the optimal service levels from period 42 to 98 are identical to the optimal
service level of the perfect information case with the accuracy of four decimal places (α∗P = 0.6453).
Note that the service level in the last period will always equal CF (and the service level set in the
period before may be slightly higher due to the drop in service in the last period – in our case these
numbers correspond to α∗99 = 0.6464 and α∗100 = 0.5700).

4. Intermediary results with respect to Table 3

In this section, we report the values of some of the intermediary variables at the optimal solution of
the cases provided in Table 3. Specifically, for each λ value, we report the e-commerce adoption levels,
Ft, the expected sales in the store channel, E[min(Zs,t, qs,t)], and the expected sales in the online
channel, E[Zo,t], throughout the planning horizon, i.e. t = 1, 2, 3, 4 (the entries in brackets represents
the respective values in each period for a planning horizon of four periods). Additionally, for the
online sales, we present 1) the amount of sales due to lost sales recovery (i.e. number of consumers

who switch to online channel as a result of a stock-out in the store),
I2o,t(ω,ξt)

Is,t(ω,ξt)
E[(Zs,t − qs,t)+], and 2)

amount of sales due to market expansion through opening an online channel, I3o,t(ω, ξt) ∗ b/2, where
I3o,t(ω, ξt) = (1− ξt/W )BFt.

Table 11: Intermediary results with respect to Table 3.

(a) Adaptive learning (limited information) setting with various values of λ
λ Adoption levels Store sales Online sales Lost sales recovery Market expansion

0.00 [0.09, 0.14, 0.19, 0.24] [118, 116, 115, 113] [19, 31, 43, 54] [0.53, 0.85, 1.17, 1.47] [15, 25, 34, 42]
0.25 [0.09, 0.14, 0.19, 0.24] [124, 122, 119, 114] [19, 31, 43, 54] [0.41, 0.72, 1.07, 1.51] [15, 25, 34, 42]
0.50 [0.09, 0.14, 0.19, 0.24] [126, 126, 123, 116] [19, 31, 42, 54] [0.37, 0.66, 1.00, 1.55] [15, 24, 33, 42]
0.75 [0.09, 0.14, 0.19, 0.24] [127, 128, 126, 117] [19, 31, 42, 53] [0.36, 0.63, 0.94, 1.58] [15, 24, 33, 42]
1.00 [0.09, 0.14, 0.19, 0.24] [127, 130, 128, 118] [19, 31, 42, 53] [0.36, 0.64, 0.87, 1.60] [15, 24, 33, 42]

(b) Perfect information setting

[0.08, 0.13, 0.18, 0.23] [132, 130, 129, 127] [18, 29, 40, 50] [0.37, 0.60, 0.83, 1.04] [14, 23, 32, 40]

Expectedly, our results show that the volume of the store sales depend not only on the predicted
product availability but also on the e-commerce adoption level. For example, when λ = 0, the
optimal store service levels all equal CF ; hence, the predicted store availability levels are constant
throughout the planning horizon. As a result, when the e-commerce adoption, which is the only
dynamic component in the problem, increases over time, the store sales decline, and online sales
increase. The majority of the online sales can be attributed to the market expansion in this example,
while amount of online sales due to lost sales recovery (i.e. availability-based substitution) is minimal.
(It is also worth to mention that the number of consumers who would have shopped in the store
channel in the absence of the online channel – which constitute the remainder of the online sales,
but not explicitly shown in the above table due to space limitations – is also minimal.) On the
other hand, when λ starts to increase, we see that availability expectations also start to take effect.
For example, when λ = 1, we see that the store sales start slightly low at first due to relatively
low availability expectation (i.e. ξ1 = β(CF )). As store service levels increase, however, we see
that store sales slightly increase, then start to drop due to e-commerce adoption growth. Similar
to the smaller λ levels, we see that e-commerce sales increase over time. Note that the e-commerce
adoption levels are very similar across different λ values. Although this may seem surprising at first,
it is not unexpected, as the optimal marketing levels are very close to each other across different λ
values (They differ at the third decimal place, which has very little impact on the overall adoption
curve). Therefore, the difference in sales numbers can be mainly attributed to the changes in the
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service levels in Table 11. This is clearly demonstrated in the perfect information case: Constant
(and high) availability levels in the store results in more sales in the store channel. The combination
of high service levels with lower marketing efforts results in a decrease in the online sales and market
expansion.

5. Analysis of the setting under constant e-commerce adoption levels

In this section, we analyze the setting in which the growth in e-commerce adoption is ignored.
In other words, the e-commerce adoption levels throughout the planning horizon are constant, i.e.
a = 0, ω = 0. For this purpose, we use the candle example to construct Table 12, which is structured
in a similar way to Table 3 to facilitate comparison of results under growing vs. constant adoption
levels. Table 12 depicts the retailer’s optimal service level policy for different values of λ. The results
are intuitive. Specifically, in the perfect information case, the optimal service levels under constant
e-commerce adoption levels equal to that of the setting with evolving e-commerce levels. This is not
surprising, as the former is a special case of the latter setting. However, it is important to note that
the total inventory ordered throughout the planning horizon decreases. This is because the market
expansion that the online channel provides is limited (i.e. lower sales) when e-commerce adoption does
not show any growth over time. In the adaptive learning case with constant e-commerce adoption,
we observe that the optimal service levels follow the same pattern as in the growing adoption setting.
That is, while they follow a decreasing pattern in t when λ is relatively small, they follow a non-
monotone pattern when λ is large. However, we see that the service levels are slightly higher than
that of the growing adoption setting. This is not surprising, as this case represents the setting when
the retailer does not exert any e-commerce marketing effort. Hence, this enables the retailer to invest
more in her inventory levels.

Table 12: Retailer’s optimal decisions and resulting expected profit for the (a) adaptive learning, and
(b) perfect information settings, with Ft = 0.03, for t = 1, 2, 3, 4.

(a) Adaptive learning (limited information) setting with various values of λ

λ α∗1 α∗2 α∗3 α∗4 q∗total E[Π∗] ∆(%)

0.00 0.570 0.570 0.570 0.570 727 4,854 2.33
0.25 0.620 0.609 0.594 0.570 765 4,874 1.93
0.50 0.641 0.631 0.613 0.570 791 4,903 1.35
0.75 0.647 0.643 0.631 0.570 807 4,925 0.91
1.00 0.648 0.645 0.646 0.570 817 4,941 0.58

(b) Perfect information setting

α∗P1 α∗P2 α∗P3 α∗P4 q∗Ptotal E[Π∗P ]

0.645 0.645 0.645 0.645 850 4,970
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