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A Extended discussion of related work

In this section we summarize the major considerations that make the etl package a pro-

gressive step towards reproducible research on medium data for R users.

A.1 Reproducible research

To understand the current challenges we face in conducting reproducible research on PAM-

DAS, one must start with the notion of literate programming (Knuth 1984). In literate

programming, source code is woven into an annotated narrative, so that one could read the

source code and understand not just the code itself, but also how each piece of code fits

into the larger design.

This idea leads to the notion of reproducibility in computational science. Donoho (2010)

paraphrases Claerbout (1994):

An article about a computational result is advertising, not scholarship. The

actual scholarship is the full software environment, code and data, that pro-

duced the result.

Ioannidis (2005) argues that most published research is false, and while his arguments

are statistical rather than computational, they only help to underscore the importance of

computational reproducibility.

In academia, a diverse set of fields including computer science (Donoho et al. 2009), eco-

nomics (Ball & Medeiros 2012), archeology (Marwick 2017) and neuroscience (Eglen et al.

2017) are actively debating how they will recognize reproducible research. Organizations

like Project TIER (http://www.projecttier.org/) and the Open Science Framework

(https://osf.io/) provide protocols for conducting reproducible research, while statistics

and data science educators are instilling reproducible practices in their students (Baumer

et al. 2014). Top-tier journals like the Journal of the American Statistical Association have

appointed reproducibility editors (Fuentes 2016).

Thus, while the need for research in all fields to be reproducible is clear, the specifi-

cations for what qualifies as reproducible are less clear, and the path towards achieving

reproducibility is murkier still.

2

http://www.projecttier.org/
https://osf.io/


A.2 Medium data

In the past few years, big data has become an omnipresent buzzword that taps into our

collective fascination with things that are massive. However, while a few enormous compa-

nies (e.g., Google, Facebook, Amazon, Walmart, etc.) generate and analyze truly big data

(on the order of exabytes (EB), which are equal to 1000 petabytes (PB), which are equal

to 1000 terabytes (TB), which are equal to 1000 gigabytes (GB)), most people who analyze

data will never interact meaningfully with data of that size.

Most people will only encounter data that is small (a few gigabytes at most). These

data fit effortlessly into a computer’s memory, and thus the user experiences no challenges

related to the data’s size. Because a computer can access data in memory at lightning-

fast speeds, efficient data analysis algorithms like searching (O(n)), sorting (O(n log n)),

and multiplying matrices (e.g., fitting a regression model) (O(n2.376) (Williams 2012)) will

run nearly instantly—even on a laptop. 1 Thus, for people working with small data,

fundamental computer science concepts like the distinction between hardware and software,

algorithmic efficiency, and bus speeds are immaterial.

For the vast majority of us who are unlikely to ever interact meaningfully with truly big

data, medium data is both a viable solution and an accessible introduction to the challenges

of big data (Horton et al. 2015). In Table 1, we constrast the relative sizes of data from the

point of view of a personal computer user. Medium data is on the order of several gigabytes

to a few terabytes. These data are large enough that they will not comfortably fit in

memory on a personal computer without consequences, making a memory-only application

like (vanilla) R a dubious candidate for data analysis. However, medium data are not so

large they won’t fit on a single hard disk, making them accessible to a single user without

access to a computing cluster. An SQL-based RDBMS remains an appropriate storage and

retrieval solution for medium data.

1Computer scientists use Big-O notation to describe the running time of algorithms by comparing the
order of magnitude of the number of steps the algorithm takes to execute on an input of size n. An
algorithm that runs in O(n) time is linear, in the sense that the amount of time it will take to run is
linearly proportional to the size of the input.
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A.3 Existing challenges

The fundamental challenge of big data is scalability, but medium data comes with its own

challenges. In the end, investment in properly setting up an RDBMS pays off in more

efficient analysis.

First, everything with medium data takes a little longer, since the aforementioned algo-

rithms are no longer instantaneous. A single line of code might take one minute to execute

instead of a millisecond, but these brief delays compound. Thus, those who employ efficient

code and workflows are rewarded for their efforts with shorter execution times.

Second, a data analyst has to know something about SQL administration in order to

set up a database. Many introductory data science courses that teach SQL focus on writing

SELECT queries to retrieve data from an existing database—not on writing table schemas

and defining keys and indexes (Hardin et al. 2015).

Third, getting PAMDAS set up involves often laborious ETL operations. Downloading

medium data is not instantaneous and is dependent on the speed of one’s Internet connec-

tion. Wrangling data is notoriously time-consuming work: reasonable estimates suggest

this may occupy as much as 50–80% of a data scientist’s time.

For these reasons, a responsible data scientist will record their ETL operations in a

script. But these scripts are often problematic, ad hoc solutions. Some common problems

include:

Portability Shell scripts may not port across operating systems. While Apple’s OS X

operating system is POSIX-compliant, not all flavors of GNU/Linux are. Microsoft

Windows requires additional software to implement a compatibility layer, and thus

any such scripts are not likely to run on Windows without careful modification.

Usability Under time pressure, data scientists are likely to write scripts that work for

them, and not necessarily for other people. Their scripts may be idiosyncratic and

difficult for another person to use or modify.

Version Control Even if a data scientist uses a formal version control system like git

and GitHub, a script that ran when it was written may not run at all points in the

future.
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Languages ETL scripts may be written in bash, Python, R, SQL, Perl, PHP, Ruby, Scala,

Julia, or any combination of these languages and others. There may be good reasons

for mixing different languages but ease of portability decreases with each additional

language.

One recommended solution for bundling ETL scripts for R users is to create an R pack-

age (Wickham 2015). Packages provide users with software that extends the core function-

ality of R, and often data that illustrates the use of that functionality. R packages hosted on

CRAN—the authoritative central repository—are checked for quality and documentation,

helping to ensure their usability. Since R is cross-platform, these packages are portable.

CRAN itself maintains distinct versioning, and while R packages are mostly written in R,

there are a number of ways in which code from other languages can be embedded into an

R package (e.g., Rcpp provides functionality to bundle C++ code (Eddelbuettel & François

2011)).

However, by design the types of data that can be contained in an R package hosted

on CRAN are limited. First, packages are designed to be small, so that the amount of

data stored in a package is supposed to be less than 5 megabytes. Furthermore, these data

are static, in that CRAN allows only monthly releases. Alternative package repositories—

such as GitHub—are also limited in their ability to store and deliver data that could be

changing in real-time to R users. In Table 1 we contrast two different CRAN packages

for on-time airline flight data (Wickham 2016, 2013), with an etl-dependent package that

allows the user to build their own database of flight data (Baumer 2017). We note the

change in scope that the airlines package allows: whereas the two existing data sets are

restricted to small, static data from flights departing two Houston-area airports in 2011, or

three New York City-area airports in 2013, respectively, the airlines package covers all

domestic flights since 1987 departing from more than 350 airports nationwide, with more

data available monthly.

Many R packages facilitate the retrieval of data from specific sources. In particular, the

rOpenSci group maintains dozens of such packages (Boettiger et al. 2015). Other popular

small CRAN packages that serve as APIs to large data sets include tigris (Walker & Rudis

2017) and UScensus2010 (Almquist 2010). While these packages are undoubtedly useful,
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package timespan airports size
hflights 2011 IAH, HOU 2.1 MB

nycflights13 2013 LGA, JFK, EWR 4.4 MB
airlines 1987–present ≈ 350 > 6 GB

Table 1: Alternative packaging of on-time flight data from the Bureau of Transportation
Statistics in R. We note that the full scope of flight data is only accessible through the
airlines package.

they are written by many different authors, and the syntax employed across packages varies

greatly. In short, there is no consistent “grammar” (see Section 3). These packages are

peripherals without a core.

Some dependency approaches do exist. Peng & Dominici (2008) illustrate how a small

package for CRAN that interacts with large data repositories not hosted on CRAN could

facilitate research in environmental epidemiology. These repositories are maintained by the

package author through the use of a second package (Eckel & Peng 2009). More recently, the

drat package provides a core that facilitates the creation of peripheral packages (Anderson

& Eddelbuettel 2017). In this scheme the peripheral packages contain large amounts of data.

The major drawback to both of these approaches is the requirement that the researcher

maintain the large data repositories.

Boettiger (2015) advocates for the container-based solution Docker as an alternative

packaging structure for reproducible research, and more recently Rocker (Boettiger & Ed-

delbuettel 2017), which provides Docker containers for R and RStudio. Çetinkaya-Rundel

& Rundel (2017) promote this approach as university instructors. We see etl as fitting

nicely into this paradigm, serving to further reduce barriers to reproducibility.

Perhaps the closest competitor to our approach is pitchRx (Sievert 2014), which per-

forms ETL operations for a specific data set—in this case, detailed pitch information from

Major League Baseball. Our approach places similar core functionality in the etl package

and separates the data-source-specific functionality into small, easy-to-write packages that

can be hosted on CRAN. The developer need not maintain any large data repositories—

they need only to maintain the small bits of code that interact with the data provider. If,

for any reason, the source data changes, etl users still retain copies of the raw data as

they downloaded it.

6



We imagine that many of these aforementioned packages could be re-factored to have

etl as a depedendency.

B A toy example

Here, we illustrate the functionality of the etl package on the built-in mtcars data set.

The first step is to instantiate an etl object using the etl() function. We use the

etl create() function to perform the entire ETL cycle on an object named my cars.

During this process, a local SQLite database is created in a temporary directory, that

database is initialized, the mtcars data is “downloaded” (i.e., in this case, from memory),

transformed, and finally uploaded to that same SQLite database.

library(etl)

## Loading required package: dplyr

##

## Attaching package: ’dplyr’

## The following objects are masked from ’package:stats’:

##

## filter, lag

## The following objects are masked from ’package:base’:

##

## intersect, setdiff, setequal, union

my_cars <- etl("mtcars") %>%

etl_create()

## No database was specified so I created one for you at:

## /tmp/Rtmpfx3av7/file5b4c78fe7b0d.sqlite3

## Initializing DB using SQL script init.sqlite

## Extracting raw data...

## Transforming raw data...

## Loading 1 file(s) into the database...
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The object my cars is both an etl mtcars object and a src dbi object—and can thus

do anything that any other src dbi object can do. It also maintains a connection to the

SQLite database, has two folders (e.g., raw and load) where it can store files, and knows

about a table called mtcars that exists in the SQLite database.

class(my_cars)

## [1] "etl_mtcars" "etl" "src_dbi" "src_sql" "src"

summary(my_cars)

## files:

## n size path

## 1 1 0 GB /tmp/Rtmpfx3av7/raw

## 2 1 0 GB /tmp/Rtmpfx3av7/load

## Length Class Mode

## con 1 SQLiteConnection S4

## disco 2 -none- environment

my_cars

## dir: 2 files occupying 0 GB

## src: sqlite 3.22.0 [/tmp/Rtmpfx3av7/file5b4c78fe7b0d.sqlite3]

## tbls: mtcars

Since my cars is a DBI data source, the data stored in the SQLite database can be

accessed in the usual manner. Here, we compute the average fuel economy for these cars.

Note that these computations are performed by SQLite.

my_cars %>%

tbl("mtcars") %>%

group_by(cyl) %>%

summarize(N = n(), mean_mpg = mean(mpg))
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## Warning: Missing values are always removed in SQL.

## Use ‘AVG(x, na.rm = TRUE)‘ to silence this warning

## # Source: lazy query [?? x 3]

## # Database: sqlite 3.22.0 [/tmp/Rtmpfx3av7/file5b4c78fe7b0d.sqlite3]

## cyl N mean_mpg

## <int> <int> <dbl>

## 1 4 11 26.7

## 2 6 7 19.7

## 3 8 14 15.1

The my cars object itself occupies very little of R’s memory.

my_cars %>%

object.size() %>%

print(units = "Kb")

## 3.2 Kb

C Benchmarking

Recall that in Section 2.2 we created a tbl dbi called trips that is connected to a database

table of Citi Bike trip rentals. In this example we illustrate how the ability of dplyr to

offload certain computations to SQL can result in marked performance improvements, even

on the same computer.

library(citibike)

bikes <- etl("citibike", dir = "~/dumps/citibike/",

db = src_mysql_cnf("citibike"))

trips <- bikes %>%

tbl("trips")

class(trips)
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## [1] "tbl_dbi" "tbl_sql" "tbl_lazy" "tbl"

Previously, we used the following pipeline to compute the number of unique combina-

tions of stations, days, and hours in the month of September 2013. In the code below, we

make use of the lazy evaluation design of dplyr to push the computation to MySQL. Note

that the functions in uppercase are MySQL functions—not R functions. The collect()

verb is applied only after the database is queried so that R can count the number of result-

ing rows. Because MySQL is good at doing this type of operation, and only 167, 258 rows

of data are sent from MySQL to R, this computation takes only a few seconds.

system.time(

trips_sept <- trips %>%

filter(YEAR(start_time) == 2013) %>%

group_by(start_station_id, DAY(start_time), HOUR(start_time)) %>%

summarize(N = n(),

num_stations = COUNT(DISTINCT(start_station_id)),

num_days = COUNT(DISTINCT(DAYOFYEAR(start_time)))) %>%

collect()

)

## user system elapsed

## 0.365 0.010 1.844

nrow(trips_sept)

## [1] 167258

Conversely, we can use the lubridate package for assistance with dates, and the

collect() function to bring the data into R for summarization. Note here that only

the filter() operation is actually performed by MySQL, while the rest of the operations

are performed in R.
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library(lubridate)

system.time(

trips_sept <- trips %>%

filter(YEAR(start_time) == 2013) %>%

collect() %>%

group_by(start_station_id, day(start_time), hour(start_time)) %>%

summarize(N = n(),

num_stations = n_distinct(start_station_id),

num_days = n_distinct(yday(start_time)))

)

## user system elapsed

## 28.394 1.041 29.439

nrow(trips_sept)

## [1] 167258

This latter method is much slower since it has to transfer more than 1 million rows of

data from MySQL to R, instead of only 167, 258. The delay with the second method is

noticeable enough to start a conversation with students about scalability.

D Using Amazon RDS

In this section we provide a brief tutorial explaining how to set up a medium database of

taxi trip information on Amazon RDS (a cloud-based service) and populate it.

First, you must set up an Amazon Web Services account at https://aws.amazon.com/

rds/. Our goal is to launch a new relational database service instance. In this example we

will create a MySQL database that uses the Free Usage Tier (to avoid fees). In Figure 1,

we show how to select the MySQL engine from among the available options.

Since we are simply testing this service, we select the “Dev/Test” usage case, which is

the only one that is available under the Free Usage Tier (see Figure 2).
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Figure 1: Amazon RDS

Figure 2: Amazon RDS
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Next, in Figure 3 we allocate only minimal resources to this database instance. The

db.t2.micro instance has only 1 CPU and 1 gigabyte of memory. This is the only allowable

configuration in the Free Usage Tier.

In Figure 4, we elect to make our database publicly accessible. This is an important

deviation from the default, which is to restrict access to a Virtual Private Cloud. Without

selecting “Yes” here, we would not be able to connect to our database from our R client.

Please consult the documentation on Amazon in order to fully understand your security

settings. Note also that by default, public access is only granted from your IP address.

In the next step, we set up a username, password, and schema. These are specific to

the MySQL instance on our cloud-based database server. After accepting all of the default

options on the remaining screens, our instance will launch. This process creates a virtual

MySQL server that is running on Amazon’s servers. The hostname for that server is shown

in your Instance dashboard under “Endpoint”.

host <- "etl-test.cdc7tgkkqd0n.us-east-1.rds.amazonaws.com"

If we didn’t set up a schema on the MySQL server called nyctaxi already, we can create

one using the Terminal tab available in RStudio. Be sure to use the credentials for the

MySQL instance that you specified.

mysql -h etl-test.cdc7tgkkqd0n.us-east-1.rds.amazonaws.com -u bbaumer -p -e

"CREATE DATABASE IF NOT EXISTS nyctaxi;"

Finally, we load the nyctaxi package and connect to our database instance.

library(nyctaxi)

db_rds <- src_mysql(dbname = "nyctaxi",

host = "etl-test.cdc7tgkkqd0n.us-east-1.rds.amazonaws.com",

user = "bbaumer",

password = "xxxxxxxx")

The etl grammar now allows us to easily populate the database.
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Figure 3: Amazon RDS
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Figure 4: Amazon RDS

rides <- etl("nyctaxi", db = db_rds, dir = "~/dumps/nyctaxi")

rides %>%

etl_update(years = 2014, months = 3)
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Baumer, B., Çetinkaya Rundel, M., Bray, A., Loi, L. & Horton, N. J. (2014), ‘R Mark-

down: Integrating a reproducible analysis tool into introductory statistics’, Technology

Innovations in Statistics Education 8(1).

URL: http://escholarship.org/uc/item/90b2f5xh

Baumer, B. S. (2017), airlines: Historical On-time Flight Data. R package version

0.2.2.9011.

URL: http://github.com/beanumber/airlines

Boettiger, C. (2015), ‘An introduction to docker for reproducible research’, ACM SIGOPS

Operating Systems Review 49(1), 71–79.

Boettiger, C., Chamberlain, S., Hart, E. & Ram, K. (2015), ‘Building software, building

community: lessons from the rOpenSci project’, Journal of Open Research Software 3(1).

URL: https://openresearchsoftware.metajnl.com/articles/10.5334/jors.bu/

Boettiger, C. & Eddelbuettel, D. (2017), ‘An introduction to rocker: Docker containers for

r’, arXiv preprint arXiv:1710.03675 .

URL: https://arxiv.org/pdf/1710.03675
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