Electronic Supplementary Information

Design, synthesis, and evaluation of curcumin analogues as potential inhibitors of bacterial sialidase

Bo Ram Kim^{a,†}, Ji-Young Park^{b,†}, Hyung Jae Jeong^a, Hyung-Jun Kwon^b, Su-Jin Park^b, In-Chul Lee

^b, Young Bae Ryu^{b,*}, Woo Song Lee^{b,*}

Affiliation

^a Bio-processing Technology Development and Support Team, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea

^b Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea

^{*} Corresponding authors at: Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185, Republic of Korea. Tel: +82 63 570 5170; Fax: +82 63 570 5239(W.S. Lee), Tel: +82 63 570 5171 (Y.B. Ryu). E-mail address: wslee@kribb.re.kr (W.S. Lee) and ybryu@kribb.re.kr (Y.B. Ryu).

[†]Both authors contributed equally to the work.

Contents of Supplementary Information

1. Characterization data

• ¹H and ¹³C NMR spectrum of curcumins (pp. S3 - S29)

2. Preparation of enzyme

- Sequence data of prepared enzymes (pp. S30-S31)
- Michaelis-Menten plots and Linewever-Burk plot of S. pneumoniae NanA Km values (pp. S32)
- 3. Bioassay plots
 - Lineweaver-Burk and Dixon plots of the compound 4a, 4e, 5q and 5e (pp. S33 S34)

1. ¹H and ¹³C NMR spectrum of curcumins

Figure S1. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 4b

Figure S2. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 4c

Figure S3. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 4d

Figure S4. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 4e

Figure S5. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 4f

Figure S6. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 5a

Figure S7. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of **5b**

Figure S8. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 5c

Figure S9. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 5d

Figure S10. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 5e

Figure S11. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 5f

Figure S12. ¹H (top) and ¹³C NMR (bottom) spectra in dimethylsulfoxide- d_6 of 5g

Figure S13. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 5h

Figure S14. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 5i

Figure S15. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 5j

Figure S16. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 5k

Figure S17. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 5l

Figure S18. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 5m

Figure S19. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 5n

Figure S20. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 50

Figure S21. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 5p

Figure S22. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 5q

Figure S23. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 5r

Figure S24. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 5s

Figure S25. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 6

ner, mit eine bie heren aller ein mit ein die beste dasse bie werden alle biet 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 20.0 10.0 40.0 30.0 0 -10.0 60.0 70.0 50.0 141.749 / 139.823 / 134.071 / 134.07 124.494 29.159 29.159 28.854 28.701 X : parts per Million : 13C - 659 -111.780 -101.612 -183.603 -168.027 151.888 -55.542

Figure S26. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 7

Figure S27. ¹H (top) and ¹³C NMR (bottom) spectra in acetone- d_6 of 8

2. Preparation of enzyme

1 gaaggagcggctttaacagagaaaacggacatattcgaaagcgggcgtaacggtaaacca EGAALTEKTDIFESGRNGKP 61 aataaagatggaatcaagagttatcgtattccagcacttctcaagacagataaaggaact N K D G I K S Y R I P A L L K T D K G T 121 ttgatcgcaggtgcagatgaacgccgtctccattcgagtgactggggtgatatcggtatg LIAGADERRLHSSDWGDIGM 181 gtcatcagacgtagtgaagataatggtaaaacttggggtgaccgagtaaccattaccaac V I R R S E D N G K T W G D R V T I T N 241 ttacgtgacaatccaaaagcttctgacccatcgatcggttcaccagtgaatatcgatatg L R D N P K A S D P S I G S P V N I D M V L V Q D P E T K R I F S I Y D M F P E 361 gggaagggaatctttggaatgtcttcacaaaaagaagaagcctacaaaaaaatcgatgga G K G I F G M S S Q K E E A Y K K I D G 421 aaaacctatcaaatcctctatcgtgaaggagaaaagggagcttataccattcgagaaaat K T Y Q I L Y R E G E K G A Y T I R E N 481 ggtactgtctatacaccagatggtaaggcgacagactatcgcgttgttgtagatcctgtt G T V Y T P D G K A T D Y R V V D P V 541 aaaccagcctatagcgacaagggggatctatacaagggtaaccaattactaggcaatatc K P A Y S D K G D L Y K G N Q L L G N I Y F T T N K T S P F R I A K D S Y L W M 661 tcctacagtgatgacgacgggaagacatggtcagcgcctcaagatattactccgatggtc S Y S D D G K T W S A P Q D I T P M V 721 aaagccgattggatgaaattcttgggtgtaggtcctggaacaggaattgtacttcggaat K A D W M K F L G V G P G T G I V L R N 781 gggcctcacaagggacggattttgataccggtttatacgactaataatgtatctcactta G P H K G R I L I P V Y T T N N V S H L 841 aatggctcgcaatcttctcgtatcatctattcagatgatcatggaaaaacttggcatgct N G S Q S S R I I Y S D D H G K T W H A 901 ggagaagcggtcaacgataaccgtcaggtagacggtcaaaagatccactcttctacgatg G E A V N D N R Q V D G Q K I H S S T M 961 aacaatagacgtgcgcaaaatacagaatcaacggtggtacaactaaacaatggagatgtt N N R R A Q N T E S T V V Q L N N G D V 1021 aaactctttatgcgtggtttgactggagatcttcaggttgctacaagtaaagacggagga K L F M R G L T G D L Q V A T S K D G G 1081 gtgacttgggagaaggatatcaaacgttatccacaggttaaagatgtctatgttcaaatg V T W E K D I K R Y P Q V K D V Y V Q M

```
1141 tctgctatccatacgatgcacgaaggaaaagaatacatcatcctcagtaatgcaggtgga
S A I H T M H E G K E Y I I L S N A G G
1201 ccgaaacgtgaaaatgggatggtccacttggcacgtgtcgaagaaaatggtgagttgact
P K R E N G M V H L A R V E E N G E L T
1261 tggctcaaacacaatccaattcaaaaaggagagtttgcctataattcgctccaagaatta
W L K H N P I Q K G E F A Y N S L Q E L
1321 ggaaatggggagtatggcatcttgtatgaacatactgaaaaaggacaaaatgcctatacc
G N G E Y G I L Y E H T E K G Q N A Y T
1381 ctatcatttagaaaatttaattgggactttttgagcaaagatctgatttctcctaccgaa
L S F R K F N W D F L S K D L I S P T E
1441 gcgaaagtgaagcgaactagaggagaggggaaggggcaaaggagttattggcttggagtcgactca
A K V K R T R E M G K G V I G L E F D S
1501 gaagtattggtc
E V L V
```

Figure S28. Nucleotide sequence and protein sequence of synthesized *S. pneumoniae* neuraminidase A (NanA)

Figure S29. Expression and purification of *S. pneumoniae* NanA.

Figure S30. Michaelis-Menten plots (A) and Linewever-Burk plot (B) of *S. pneumoniae* NanA K_m values. The reaction was performed at various substrate concentrations to obtain enzyme K_m values. SigmaPlot was used to fit the kinetic data using Michaelis-Menten and Lineweaver-Burk double reciprocal plots.

[B] **4e**

Figure S31. Graphical determination of the inhibition type for compounds 4a, 4e, 5q and 5e. Lineweaver-Burk (A-D) and Dixon (E-H) plots for the inhibitory activity of compounds 4a, 4e, 5q and 5e, respectively, against *S. pneumoniae* NanA hydrolysis activity in the presence of different substrate concentrations.

[F] **4e**

Figure S31. Graphical determination of the inhibition type for compounds 4a, 4e, 5q and 5e. Lineweaver-Burk (A-D) and Dixon (E-H) plots for the inhibitory activity of compounds 4a, 4e, 5q and 5e, respectively, against *S. pneumoniae* NanA hydrolysis activity in the presence of different substrate concentrations (continued).