
Supplement to “Composite Coefficient of
Determination and Its Application in Ultrahigh

Dimensional Variable Screening”

Efang Kong, Yingcun Xia and Wei Zhong

August 17, 2018

1 Proofs of results in the paper

Proof of Lemma 1. (1) The ‘if’ part is obvious. For the ‘only if’ part, note that

for any given v,

CV |U(v) = E{IV (v)− FV |U(v|U)}2 = EU

{
E
[
{IV (v)− FV |U(v|U)}2|U

] }
= E [Var{I(V ≤ v)|U}] ≤ Var[I(V ≤ v)] = FV (v)(1− FV (v))

= E [Var{I(V ≤ v)|U}] + Var[FV |U(v|U)].

Therefore, if CCD(U, V ) = 0, then we must have Var[FV |U(v|U)] = 0, for nearly all

v. In other words, random variable FV |U(v|U)(= Pr(V ≤ v|U)) is independent of U,

and this observation holds true for nearly all v. Thus V and U must be independent.

(2) The ‘if’ part again is obvious. For the ‘only if’ part, note that CCD(U, V ) =

1 ⇐⇒ CV |U(v) = CU |V (u) = 0 for nearly all u and v. In other words, that

IV (v) = E(IV (v)|U)(≡ FV |U(v|U)) holds for nearly all v. Since E(IV (v)|U) is σ(U)−

measurable, so is IV (v) and hence a function of U . Since such observation holds true

for all v, it could be concluded that V is a function of U . The same line of arguments

could be applied to CU |V (u) = 0, to deduce that U is also a function of V . This

completes the proof.
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(3) Trivial.

(4) Without loss of generality, suppose M(.) and N(.) are both monotone in-

creasing. Let U ′ and V ′ are independent copies of U and V , respectively. Write

X = M(U), Y = N(V ), X ′ = M(U ′), and Y ′ = N(V ′), so that

CCD(M(U), N(V )) = CCD(X, Y ) = 1− 1

2

[E{CY |X(Y )}
DY

+
E{CX|Y (X)}

DX

]
E{CY |X(Y )} = EY ′

[
EY,X{I(Y ≤ Y ′)− FY |X(Y ′|X)}2

]
= EN ′

[
EV,U{I(V ≤ V ′)− FV |U(V ′|U)}2

]
= E{CV |U(V )}

FY (Y ′)(1− FY (Y ′)) = FV (V ′)(1− FV (V ′)).

That E{CY |X(Y )} = E{CV |U(V )} andDV = DY could be proved in a similar manner.

(5) Let φ(.) and f(t) be the probability distribution and density functions of

N(0, 1), respectively. When (U, V ) are bivariate Gaussian with correlation coefficient

ρ, we have

E{CV |U(V )} =
1

2
− E

[
φ2
( V − ρU√

1− ρ2

)]
where U and V are independent N(0, 1) random variables. Equivalently, we have

E{CV |U(V )} =
1

2
− 1√

2π(1 + ρ2)

∫
φ2
( t√

1− ρ2

)
exp

[
− t2

2(1 + ρ2)

]
dt

=
1

2
−
∫
φ2(st)f(t)dt, s ≡ {(1 + ρ2)/(1− ρ2)}1/2

=
1

2
−
∫
t>0

{φ2(st) + φ2(−st)}f(t)dt

where the first equality follows from the fact that V − ρU is a N(0, 1 + ρ2) random

variable, and the second equality is a result of change of variables. Since s is an

increasing function of |ρ|, that E{CV |U(V )} is monotone decreasing in |ρ|, is equivalent

to that ∫
t>0

{φ2(st) + φ2(−st)}f(t)dt (S.1)
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is an increasing function of s. Seeing that the derivative of (S.1) with respect to s,

2

∫
t>0

{tφ(st)f(st)− tφ(−st)f(−st)}f(t)dt = 2

∫
t>0

tf(st){φ(st)− φ(−st)}f(t)dt,

is always positive since s > 0, the proof is thus complete. �

Proof of Lemma 2 : The proof of the first assertion is trivial, while the second

follows from the Kac’s Theorem of characteristic functions. In factMCCD(u,v)α = 0

implies that, for any a ∈ Rp, b ∈ Rq, a>u and b>v are independent, which coud be

expressed in terms of characteristic functions

E{exp[i(t1a
>u + t2b

>v)]} = E{exp(it1a
>u)}E{exp(it2b

>v)}.

Since this holds for any t1, t2 ∈ R and a ∈ Rp, b ∈ Rq, Kac’s Theorem suggests that

u and u are independent. �

Next, we make some notations for ease of presentation. For (random) sequences

{sn}∞n=1 and {bn}∞n=1, write sn = O(bn) if sn/bn (n → ∞) is bounded; sn = Op(bn)

means sn/bn (n→∞) is bounded in probability; sn = Owp1(bn) means sn/bn (n→∞)

is bounded with probability one.

Let ξ = (U, V ) denote any given (Xk, Y ), k = 1, · · · , p, with domain X = X1⊗X2.

Observations of ξ = (U, V ) are thus written as ξi := (Ui, Vi), i = 1, · · · , n. Denote

the joint probability density function of U and V by f(U, V ), while their respective

marginal density functions by fU(.) and fV (.). For any (u, v) ∈ X , define

F (u, v) = fU(u)FV |U(v|u) =

∫ v

−∞
f(u, V )dV.

Let f
(2)
U (.) and F

(2)
U (U, V ) denote the second order derivatives (with respect to U) of

fU(.) and F (U, V ), respectively. With n→∞, hn → 0, let δn = (nhn/ log n)−1/2, and

with any (u, v) ∈ X ,

an(u) =

∫
K(t)fU(u+ hnt)dt = fU(u) +

1

2
h2
nf

(2)
U (u) +O(h4

n),

cn(u, v) =

∫ v

−∞

{∫ ∞
−∞

K(t)fU(u+ hnt, V )dt
}
dV = F (u, v) +

1

2
h2
nF

(2)
U (u, v) +O(h4

n).
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Some standard results from empirical processes (e.g., Pollard, 1984) are such that

T1n(v)
∆
=

1

n

n∑
i=1

I(Vi < v)− FV (v) = Owp1((log n/n)1/2),

T2n(u)
∆
=

1

n

n∑
i=1

Khn(Ui − u)− an(u) = Owp1(δn),

T3n(u, v)
∆
=

1

n

n∑
i=1

Khn(Ui − u)I(Vi < v)− cn(u, v) = Owp1(δn),

uniformly in (u, v) ∈ X . In addition, we have

{f̂U(u)}−1 = {fU(u)}−1 − 1

2
h2
n{fU(u)}−2f

(2)
U (u)− {f(u)}−2T2n(u) +Owp1(h4

n + δ2
n)

F̂ (v|u) = FV |U(v|u) +
1

2
h2
na(u, v) + {fU(u)}−1 1

n

n∑
i=1

gn(ξi, u, v) +Owp1(h4
n + δ2

n)(S.2)

uniformly in (u, v) ∈ X , where

a(u, v) = {fU(u)}−1{F (2)
U (u, v)− FV |U(v|u)f

(2)
U (u)}

gn(ξi, u, v) = Khn(Ui − u){I(Vi < v)− FV |U(v|u)} − {cn(u, v)− an(u)FV |U(v|u)}.

Proof of Theorem 1. For root-n consistency, it suffices to show that

1

n

n∑
k=1

ĈV |U(Vk) = E{CV |U(V )}+Op(n
−1/2), D̂V = DV +Op(n

−1/2), (S.3)

1

n

n∑
k=1

ĈU |V (Uk) = E{CU |V (V )}+Op(n
−1/2), D̂U = DU +Op(n

−1/2).

We only prove (S.3) to illustrate. To begin with, note that

D̂V =
1

n

n∑
k=1

FV (Vk){1− FV (Vk)}+Dn +Owp1(log n/n), (S.4)

where

Dn
∆
=

1

n2

n∑
i,k=1

{1− 2FV (Vk)}{I(Vi < Vk)− FV (Vk)},
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a U -statistics of zero mean with a finite variance. Root-n consistency of D̂V thus

holds. We now move on to prove the first identity in (S.3). In view of (S.2), we have

ĈV |U(v) =
1

n

n∑
i=1

{F̂ (v|Ui)− I(Vi < v)}2 = h2
n

1

n

n∑
i=1

a(Ui, v){F (v|Ui)− I(Vi < v)}

+
2

n2

∑
i<j

Φ(ξi, ξj|v) +
1

n

n∑
i=1

{FV |U(v|Ui)− I(Vi < v)}2 +Owp1(h4
n + δ2

n), (S.5)

where

Φ(ξi, ξj|v) = {fU(Ui)}−1{FV |U(v|Ui)− I(Vi < v)}gn(ξj, Ui, v)

+{fU(Uj)}−1{FV |U(v|Uj)− I(Vj < v)}gn(ξi, Uj, v),

which is both symmetric and degenerate, since

Eξi{Φ(ξi, ξj|v)} = E
[
{fU(Ui)}−1{FV |U(v|Ui)− I(Vi < v)}Eξi{gn(ξj, Ui, v)}

]
= 0.

Define Fn
∆
= {Φ(ξi, ξj|v) : v ∈ [0, 1]}, a class of real-valued symmetric functions on

X⊗2. The fact that Φ(., .|v) is formed through multiplication and addition between

functions (indexed by v) such as I(. ≤ v), FV |U(v|.), and cn(., v) (the latter two are

both monotone in v), which together with results such as Lemma 2.6.18 (van der

Varrt and Wellner, 1996, pp. 147) and Problem 3 of van der Vaart and Wellner

(1996) (pp. 165) renders F as a polynomial (Vapnik-Chervonenkis) class. Theorem

9 of Nolan and Pollard (1987) are thus all met with W (n, x) = (1 + nxι)−1, where

ι > 0 such that nh
ι/2
n <∞. This leads to

sup
v

1

n2

∣∣∣∑
i<j

Φ(ξi, ξj|v)
∣∣∣ = owp1((nhn)−1) (S.6)

As for the first term on the RHS of (S.5), we only need to note that

E
[∑

i,k

a(Ui, Vk){FV |U(Vk|Ui)− I(Vi < Vk)}
]2

= O(n3)

h2
n

1

n

∑
i,k

a(Ui, Vk){FV |U(Vk|Ui)− I(Vi < Vk)} = Op(h
2
nn
−1/2). (S.7)
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We could then conclude from (S.5), (S.6) and (S.7) that

1

n

n∑
k=1

ĈV |U(Vk) =
1

n2

∑
i,k

{FV |U(Vk|Ui)− I(Vi < Vk)}2 + op(n
−1/2); (S.8)

the corresponding U−statistics with a bounded ‘kernel’

h(ξi, ξk)
∆
= {FV |U(Vk|Ui)− I(Vi < Vk)}2 + {FV |U(Vi|Uk)− I(Vk < Vi)}2 − E{CU |V (V )}

= 1 + E{CU |V (V )} − 2I(Vi < Vk)− 2FV |U(Vi|Uk)I(Vk < Vi) (S.9)

+F 2
V |U(Vk|Ui) + F 2

V |U(Vi|Uk)

is in general not degenerate, i.e. Var{E[h(ξi, ξk)|ξi]} 6= 0. Therefore, according to

Theorem A in Serfling (1980) (pp. 192), n−3/2
∑

i<k h(ξi, ξk) is asymptotically normal

with zero mean and a positive variance. This together with (S.8) implies that

1

n

n∑
k=1

ĈV |U(Vk) = E{CU |V (V )}+Op(n
−1/2)

and is also asymptotically normal. Since we already have D̂V → DV (≡ 1/6) in

probability, the root-n consistency and asymptotic normality of 1
n

∑n
k=1 ĈV |U(Vk)/D̂V

is obvious.

We now study the asymptotics related to when U and V are independent. First of

all, consider an asymptotic expansion of F̂ (v|u) similar to (S.2) but of higher order;

since F (u, v) = fU(u)FV |U(v|u) = fU(u)FV (v|u) and cn(u, v) = an(u)FV |U(v|u), the

bias term of order O(h2
n) vanishes and the stochastic terms also admit simpler form

and as a result

F̂ (v|u) = FV (v) + {fU(u)}−1 1

n

n∑
i=1

Khn(Ui − u){I(Vi < v)− FV (v)}

−1

2
h2
n{fU(u)}−2 1

n

n∑
i=1

Khn(Ui − u){I(Vi < v)− FV (v)}

−1

2
h2
n{fU(u)}−2 1

n

∑
i 6=j

Khn(Ui − u){I(Vi < v)− FV (v)}{Khn(Uj − u)− an(u)}

+Owp1(h4
nδn + h2

nδ
2
n + δ3

n),
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so that

ĈV |U(v) =
1

n

n∑
i=1

{F̂V |U(v|Ui)− I(Vi < v)}2 =
1

n

n∑
i=1

{FV (v)− I(Vi < v)}2

+
2

n2

∑
i,j

Φ1(ξi, ξj|v) +
h2
n

n2

∑
i,j

{fU(Ui)}−1Φ1(ξi, ξj|v) (S.10)

+
1

n3

∑
i,j,k

Φ2(ξi, ξj, ξk|v) +
2

n3

∑
i,j,k

Φ3(ξi, ξj, ξk|v) +Owp1(h4
nδn + h2

nδ
2
n + δ3

n),

where

Φ1(ξi, ξj|v) = {fU(Ui)}−1Khn(Ui − Uj){FV (v)− I(Vi < v)}{FV (v)− I(Vj < v)},

Φ2(ξi, ξj, ξk|v) = {fU(Ui)}−2Khn(Uj − Ui)Khn(Uk − Ui)

{FV (v)− I(Vj < v)}{FV (v)− I(Vk < v)},

Φ3(ξi, ξj, ξk|v) = {fU(Ui)}−2Khn(Uj − Ui){Khn(Uk − Ui)− an(Ui)}

{FV (v)− I(Vj < v)}{FV (v)− I(Vi < v)}.

For the first term on the RHS of (S.10), consider

h(Vi, Vk)
∆
= {I(Vi < Vk)− FV (Vk)}2 + {I(Vk < Vi)− FV (Vi)}2 − 1

3
(S.11)

=
2

3
+ F 2

V (Vi) + F 2
V (Vk)− 2I(Vi < Vk)FV (Vk)− 2I(Vk < Vi)FV (Vi),

E{h(ξi, ξk)|ξi} =
2

3
+ F 2

V (Vi) +
1

3
− 2F 2

V (Vi)− {1− F 2
V (Vi)} = 0.

This, according to Theorem 5.5.2 of Serfling (1980) (pp. 194), implies that

1

n

∑
i≥k

h(Vi, Vk)
d→ a weighted sum of independent and

centered χ2
1 random variables

(S.12)

To quantify the three terms in (S.10) involving either Φ1(., .|.) or Φ3(., ., .|.), we make

use of the following facts

E{Φ1(ξi, ξj|Vk)|ξi} = E{Φ1(ξi, ξj|Vk)|ξj} = E{Φ1(ξi, ξj|Vk)|ξk} = 0

E{Φ3(ξi, ξj, ξk|Vl)|ξi, ξj} = E{Φ3(ξi, ξj, ξk|Vl)|ξi, ξk} = 0;

E{Φ3(ξi, ξj, ξk|Vl)|ξi, ξl} = E{Φ3(ξi, ξj, ξk|Vl)|ξj, ξk} = 0;

E{Φ3(ξi, ξj, ξk|Vl)|ξj, ξl} = E{Φ3(ξi, ξj, ξk|Vl)|ξk, ξl} = 0;
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whence according to Serfling (1980) (Sec 5.3.4) we have

1

n3

∑
i,j,k

Φ1(ξi, ξj|Vk) = Op(n
−1h−1/2

n ), (S.13)

1

n4

∑
i,j,k,l

Φ3(ξi, ξj, ξk|Vl) = Op(n
−2/3h−1

n ). (S.14)

It remains to deal with the term which involves Φ2(., ., .|.). First note that

E[{fU(Ui)}−2K2
h(Uj − Ui){FV (Vk)− I(Vj < Vk)}2] =

1

6
h−1
n R(K)(1 + o(1)). (S.15)

Secondly, for any distinct quadruplet 1 ≤ i, j, k, l ≤ n, let {(i, j, k, l)} denote the set

of all possible permutations of (i, j, k, l); and consequently define

Φ̃2(ξi, ξj, ξk|Vl) =
∑

(̃i,j̃,k̃,l̃)∈{(i,j,k,l)}

Φ2(ξĩ, ξj̃, ξk̃|Vl̃).

Write Uij = Ui − Uj, Uik = Ui − Uk, Ṽ = FV (V ), a uniform [0,1] random vari-

able; since E{Φ2(ξi, ξj, ξk|Vl)|ξi} = E{Φ2(ξi, ξj, ξk|Vl)|ξj} = E{Φ2(ξi, ξj, ξk|Vl)|ξk} =

E{Φ2(ξi, ξj, ξk|Vl)|ξl} = 0, we have

h̃n(ξj, ξk)
∆
= E{Φ̃2(ξi, ξj, ξk|Vl)|ξi, ξj} = {fU(Uk)}−1Hn(Uj, Uk)C1(Ṽj, Ṽk),

where C1(Ṽj, Ṽk)
∆
= EL[{Ṽl − I(Ṽj < Ṽl)}{Ṽl − I(Ṽk < Ṽl)}] and

Hn(Uj, Uk) =

∫
fU(Uk)[fU(Uk + hnt)]

−1Khn(Ujk + hnt)K(t)dt

=

∫
Khn(Ujk + hnt)K(t)dt(1 +O(hn)) (S.16)

For any real valued square-integrable function g(.) ∈ L2(X , FU(.) ⊗ FV (.)), consider

the Hilbert-Schmidt operator defined as

Eξk [h̃n(ξ, ξk)g(ξk)|ξ] ≡
∫
X
Hn(U,Uk)g(Uk, Vk)C1(Ṽ , Ṽk)dUkdṼk,

where the inequality follows because Uk and Vk are independent. As the form of

function C1(., .) is independent of the original distribution FV (.), the solutions λ
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(eigenvalues) to the following characteristic equation in terms of real valued square-

integrable function g(.) ∈ L2(X , FU(.) ∗ FV (.)):

Eξk [h̃n(ξ, ξk)g(ξk)|ξ] = λg(ξ)

are identical to those associated with the following equation in terms of real valued

square-integrable function g(.) ∈ L2(X1 ⊗ [0, 1], FU(.)⊗ Uniform)∫
X1⊗[0,1]

Hn(U,Uk)g(Uk, Vk)C1(V, Vk)dUkdVk = λg(U, V ). (S.17)

Write the limit of hnHn(U,Uk) as H(U,Uk) which equals R(K) if U = Uk and ze-

ro, otherwise. Since the Hilbert-Schmidt norm of the operator of (S.17) is of order

O(h−1
n ), we apply results from the perturbation theory for linear operators Kato

(1966) (Chapter 5, Sec 4), to conclude that (similar to Theorem 5.5.2 of Serfling

(1980), pp. 194),

hn
n3

∑
i,j 6=k,l

Φ2(ξi, ξj, ξk|Vl)
d→
∞∑
j=1

λj(χ
2
1j − 1), (S.18)

where χ2
1j, j = 1, · · · , are independent χ2

1 random variables, while λj, j = 1, · · · ,

are real numbers (not necessarily distinct) corresponding to distinct solutions to the

following equation∫
X1⊗[0,1]

H(U,Uk)C1(V, Vk)g(Uk, Vk)C1(V, Vk)dUkdVk = λg(U, V ); (S.19)

as neither H(U,Uk) nor C1(V, Vk) depends on FU(.) or FV (.), the same can be said

about the limiting distribution in (S.18).

The same conclusion applies to the limiting distribution of the overall statistic

ĈCD(U, V ), for exactly the same technicalities could be used to the following some-

what ‘expanded’ version of the U-statistic Φ̃2(ξi, ξj, ξk|Vl) discussed above, constructed

through the ‘symmetrization’ of the following:

{fU(Ui)}−2Khn(Uj − Ui)Khn(Uk − Ui){FV (Vl)− I(Vj < Vl)}{FV (Vl)− I(Vk < Vl)}

+{fV (Vi)}−2Khn(Vj − Vi)Khn(Vk − Vi){FU(Ul)− I(Uj < Ul)}{FU(Ul)− I(Uk < Ul)}.
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Conclusions in the form of (S.18) still apply; this together with the fact that D̂V → 1/6

and D̂U → 1/6 in probability, completes the proof. �

Proof of Equation (2.9).

Bn =
1

n2

n∑
k=1

n∑
i=1

{F̂V |U(Vk|Ui)− F̂V (Vk)}2

In view of (S.2), we have

Bn =
1

n2

∑
i,k

{F (Vk|Ui)− FV (Vk)}2 + h2
n

1

n2

∑
i,k

a(Ui, Vk){F (Vk|Ui)− FV (Vk)}(S.20)

+
2

n3

∑
i,j,k

{f(Ui)}−1{F (Vk|Ui)− FV (Vk)}gn(ξj, Ui, Vk)

+
2

n3

∑
i,k

{F (Vk|Ui)− FV (Vk)}T1n(Vk) +Owp1(h4
n + δ2

n).

Regarding the terms on the RHS of (S.20), first note that the second term is of

order Op(h
2
n), since E[a(Ui, Vk){F (Vk|Ui) − FV (Vk)}] 6= 0. The third term, as a

result of the Law of Iterated logarithm for (zero-mean) U-statistics, is of order

Owp1((nhn/ log log n)−1/2). Note that we do not have stronger results like (S.6) for

this term, since that only holds for degenerate U-statistics (processes). �

To prepare the ground for the proof of Theorem 2, we need to introduce the

following class of functions and make use of results concerning bounds on its entropy

(covering) numbers. For s > 0, the class of all functions on a bounded set D in

Rd that possess uniformly bounded partial derivatives up to order [s] (the greatest

integer smaller than s) and whose highest partial derivatives are Lipschitz of order

s− [s]. Specifically, define for any vector k = (k1, · · · , kd) of d integers, the differential

operator

Dk =
∂|k|

∂k1x1 · · · ∂kdxd
, |k| =

∑
ki.
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For a function g : D 7→ R, let

‖g‖s = max
|k|≤[s]

sup
ξ
|Dkg(ξ)|+ max

|k|=[s]
sup
ξ,ξ′

|Dkg(ξ)−Dkg(ξ′)|
‖ξ − ξ′‖s−[s]

with the suprema taken over all ξ, ξ′ in the interior of D with ξ 6= ξ′. For s, M > 0,

let Cs
M(D) be the set of all continuous functions g : D 7→ R with ‖g‖s ≤M .

Proof of Theorem 2. It suffices to show that there exist c1 and k1 > 0, such

that for k = 1, · · · , p, and U = Xk, V = Y,

Pr(|ĈCD(U, V )− CCD(U, V )| > cn−τ ) ≤ c1 exp(−k1n
1−2τ ), (S.21)

To this aim, we make use of the following identity

g(ξi|v, F̂ )
∆
= |F̂ (v|Ui)− I(Vi < v)|2 = I(Vi < v)

{1− F̂ (v|Ui)}2 + [1− I(Vi < v)]{F̂ (v|Ui)}2.

Under (A2), we conclude that there exists some M > 0, such that with probability

one, {F̂ (v|.) : v ∈ X2} ⊂ C1
M(X1). So are {1 − F̂ (v|.)}2 and {F̂ (v|.)}2. On the

other hand, {I(V ≤ v) : v ∈ X2} is a polynomial class. Thus, according to Theorem

2.7.1 and Lemma 2.6.18 of van der Vaart and Wellner (1996) (pp. 147; pp. 155), the

entropy numbers of F2
∆
= {|F̃ (v|Ui)− I(Vi < v)|2 : v ∈ X2, F̃ (.|v) ∈ C1

M(X1)} satisfy

condition (2.14.8) of van der Vaart and Wellner (1996) (pp. 246). Consequently

we could apply their Theorem 2.14.10 with the constants therein δ = 0, W = 1, to

conclude that there exist constants c2, k2 > 0, such that such that for every t > 0,

Pr
(

sup
v ∈ [0, 1]
g(.|., .) ∈ F2

∣∣∣ 1
n

n∑
i=1

g(ξi|v, F̃ )− E{g(ξi|v, F̃ )}
∣∣∣ > t

)
≤ c2 exp

(
k2n

5/6t5/3 − 2nt2
)
.

(S.22)

Next, note that for any given v ∈ X2, F̃ (.|v) ∈ C1
M(X1),

E{g(ξi|v, F̃ )} = EUi
[F (v|Ui){1− F (v|Ui)}] + EUi

[{F̃ (v|Ui)− F (v|Ui)}2]. (S.23)

This should be used in conjunction with the identity that under (A3)

F̂ (v|U)− F (v|U) = Owp1(h2
n + (nhn/ log n)−1/2) = owp1(n−τ ) (S.24)
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uniformly in v and U . On the other hand, for any t > 0,

Pr
(∣∣∣ 1
n

n∑
k=1

EU [F (Vk|U){1− F (Vk|U)}]− E{CU |V (U)}
∣∣∣ ≥ t

)
≤ exp

(
− 16nt2

1 + 8t/3

)
.

(S.25)

Together, assumption (A3), (S.22), (S.23), (S.24) and (S.25) imply that there exist

constants c2, k2 > 0 (depending on c) , so that for every τ ∈ [0, 1/2),

Pr
(∣∣∣ 1
n

n∑
k=1

ĈV |U(Vk)− E{CU |V (U)}
∣∣∣ ≥ cn−τ

)
≤ c2 exp(−k2n

1−2τ ). (S.26)

As for the denominator D̂V , we make use of (S.4), and the following Bernstein type

of inequalities for independent sums as well as U-statistics: that for any t > 0,

Pr
(∣∣∣ 1
n

n∑
k=1

PV (Vk){1− PV (Vk)} −DV ]
∣∣∣ ≥ t

)
≤ exp

[
− nt2

1/16 + t/6

]
; (S.27)

Pr(|Dn| ≥ t) ≤ exp
[
− nt2

1/16 + t/6

]
. (S.28)

The Bernstein type of inequality in the form of

Pr
(∣∣∣∑n

k=1 ĈV |U(Vk)

D̂V

−
E{CU |V (U)}

DV

∣∣∣ ≥ cn−τ
)
≤ c2 exp(−k2n

1−2τ )

for some c2, k2 > 0 just follows from (S.26), (S.27) and (S.28). �

Proof of Theorem 3. The proof of Theorem 3 shares the similar spirit of

Theorem 2 in Fan, Feng and Song (2011) and Theorem 3 in Zhou and Zhu (2018).

For any constant c > 0, the cardinality of the set {k : |ωk > cn−τ |, 1 ≤ k ≤ p} is

bounded by O (nτ
∑p

k |ωk|). In view of Theorem 2, i.e.

Pr

(
max
1≤k≤p

|ω̂k − ωk| > cn−τ
)
≤ O

(
p exp(−an1−2τ )

)
,

we know the event max
1≤k≤p

|ω̂k−ωk| ≤ cn−τ occurs with probability 1−O
(
p exp(−an1−2τ )

)
.

Consequently

D̂ def
= {k : ω̂k > cn−τ} = {k : ω̂k > 2cn−τ , |ω̂k − ωk| > cn−τ}

∪{k : ω̂k > 2cn−τ , |ω̂k − ωk| < cn−τ}

12



would be identical to D̂1 = {k : ω̂k > 2cn−τ , |ω̂k − ωk| < cn−τ} with probability

1−O
(
p exp(−an1−2τ )

)
. Since D̂1 ⊆ {k : ωk > cn−τ} and the cardinality of the latter

is of order O (nτ
∑p

k |ωk|), the proof is thus complete. �

Proof of Theorem 4. To illustrate, we study the convergence rate concerning

definition (4.1) with α > 0(6= 2); with (4.2), the notations will be more complicated,

but the proof follows the same line of reasoning.

Let τn = h2
n + δn. We start with the Taylor expansion of |F̂ (v|Ui) − I(Vi < v)|α

at |F (v|Ui) − I(Vi < v)|α, and since F̂ (v|Ui) − F (v|Ui) = O(τn), our discussion is

necessarily restricted to (u, v) ∈ X , such that

F (v|u)/τn →∞, and 1− F (v|u)/τn →∞.

Noting (S.2), we have

|F̂ (v|Ui)− I(Vi < v)|α = I(Vi < v){1− F̂ (v|Ui)}α + {1− I(Vi < v)}{F̂ (v|Ui)}α

= g1(ξi|v, α) +
α

2
h2
na(Ui, v)g2(ξi|v, α) + α

1

n

n∑
i=j

gn(ξj, Ui, v)g2(ξi|v, α) +O(τ 2
n),

where a(u, v) and gn(ξi, u, v) are as defined in (S.2),

g1(ξi|v, α)
∆
= I(Vi < v){1− F (v|Ui)}α + [1− I(Vi < v)]{F (v|Ui)}α,

g2(ξi|v, α)
∆
= {1− I(Vi < v)}{F (v|Ui)}α−1 − I(Vi < v){1− F (v|Ui)}α−1

a(u, v) = {f(u)}−1{F (2)
U (u, v)− FV |U(v|u)f (2)(u)},

gn(ξi, u, v) = Khn(Ui − u){I(Vi < v)− FV |U(v|u)} − {cn(u, v)− an(u)FV |U(v|u)}.

Therefore, with Φ(ξi, ξj|v, α) = gn(ξj, Ui, v)g2(ξi|v, α)+gn(ξi, Uj, v)g2(ξj|v, α), we have

ĈV |U(v;α) =
1

n

n∑
i=1

|F̂ (v|Ui)− I(Vi < v)|α =
α

2n
h2
n

n∑
i=1

a(Ui, v)g2(ξi|v, α)

+
α

n2

∑
i≤j

Φ(ξi, ξj|v, , α) +
1

n

n∑
i=1

g1(ξi|v, α) +Owp1(h4
n + δ2

n). (S.29)
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For the term of order h2
n, standard results on U-statistics indicate that

1

n2

n∑
i,k=1

a(Ui, Vk)g2(ξi|Vk, α)− E[a(Ui, Vk)g2(ξi|Vk, α)] = Op(n
−1/2), (S.30)

where the expectation term,

E[a(Ui, Vk)g2(ξi|Vk, α)] = E[a(Ui, Vk){(1− F (Vk|Ui)){F (Vk|Ui)}α−1 (S.31)

−F (Vk|Ui){1− F (Vk|Ui)}α−1}],

however, is not zero unless α = 2. This implies that ĈV |U(v;α) when taken summation

over v = Vk, k = 1, · · · , n, it would have a bias of order O(h2
n), with the coefficient

non-diminishing. The rest of the terms in (S.29) could be dealt with in a similar

manner as we have seen in the proof of Theorem 1. The situation stays the same

Next, through arguments similar to those used in the proof of (S.6), we claim that

F1 = {Φ(ξi, ξj|v, , α) : v ∈ X2} forms a polynomial class, and based on Theorem 9 of

Nolan and Pollard (1987) we have

sup
v

∣∣∣ 1

n2

∑
i≤j

Φ(ξi, ξj|v, , α)− 1

n
Eξi [gn(ξj, Ui, v)g2(ξi|v, α)]

∣∣∣ = owp1(n−1),

1

n2

∑
j,k

Eξi [gn(ξj, Ui, Vk)g2(ξi|Vk, α)] = E[gn(ξj, Ui, Vk)g2(ξi|Vk, α)] +Op(n
−1/2),

E[gn(ξj, Ui, Vk)g2(ξi|Vk, α)] = 0.

Together these lead to the conclusion that

1

n3

∑
i,j,k

Φ(ξi, ξj|Vk, , α) = Op(n
−1/2). (S.32)

As for the remaining term in (S.29), standard results on U-statistics

1

n2

n∑
i,k

g1(ξi|Vk, α) = E{CU |V (V )}+Op(n
−1/2). (S.33)

Together (S.29), (S.30), (S.32), (S.32) and (S.33) yield

n−1
∑
k

ĈV |U(Vk;α) = E{CV |U(;α)}+O(h2
n) +Op(n

−1/2);

which, with nh4
n → 0, results in the root-n consistency of the term on the LHS. �
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2 An Iterative CCD-Based Variable Screening

Nearly all marginal variable screening methods share a common inherent weakness,

namely their failure to identify the important covariates which are marginally inde-

pendent of the response variable due to strong correlations among the covariates.

Some iterative procedure of variable screening could then be adopted to reduce the

risk of missing the truly important covariates. As the CCD-based variable screening

method is model-free, following Zhu, et al. (2011) and Zhong and Zhu (2015), we

propose the following iterative procedure to improve screening performances. The

essence of this procedure is the projection of the unselected covariates to the orthog-

onal space of the already selected variables.

Denote the original data by (Y,X), where Y = (Y1, · · · , Yn) and X is the n × d

design matrix with columns given by X(k), k = 1, · · · , d. Write S0 = {1, 2, · · · , p}.

Let d be a preferred model size and S1 denote the index set of the p1(< d) covariates

selected using CCD-SIS based on (Y,X).

Step 1. Denote by X1, the n× p1 sub-matrix of X consisting of columns indexed by

S1. Compute Xnew =
{
In −X1

(
X>1 X1

)−1
X>1

}
Xc

1, where Xc
1 is a n× (d− p1)

sub-matrix of X consisting of columns indexed by S0\S1. Note that the columns

of Xnew should keep their labels (indices) as with the original X.

Step 2. Apply CCD-SIS on the new data (Y,Xnew) and denote the index set of the

newly selected p2 covariates as S2.

Step 3. Update S1 = S1 ∪ S2 and repeat Steps 1 - 3 until the size of the selected

model equals to d.

Note that for the design matrix X1, the splines base of each selected variable can also

be used to remove the nonlinear correlation between variables.
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