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Appendix A: Proofs

A.1 Auxiliary Results and Notation

Throughout the proofs we will assume without loss of generality that E(Vt) = 1. Further,

we will denote with C a positive and finite constant that does not depend on ∆n and T , and

can change from line to line. Finally, to improve the readability of the proofs we introduce

the following notation:

V n
t,κ = Vt−1+(bκnc−2)/n, fκ = E (ft,κVt+κ) , κ ∈ (0, 1], t = 1, ..., T, (A.1)

and we will use similar notation for fnt,κ, and if the latter does not depend on t (the null

hypothesis for our test), we will further simplify notation to fnκ . We next denote with Xc

and Xd the continuous and discontinuous parts of X:

Xc
t = X0 +

∫ t

0

asds+

∫ t

0

σ̃sdWs, Xd
t =

∫ t

0

∫
R
xµ(ds, dx). (A.2)

With this notation, we set

dt,n(u) = cos
(√

2un
√
V n
t,κ∆

n
t,κW

)
− cos

(√
2un

√
V n
t,κ′∆

n
t,κ′W

)
− π

2
uL′(u)

(
V n
t,κn|∆n

t,κW ||∆n
t,κ−∆n

W | − V n
t,κ′n|∆n

t,κ′W ||∆n
t,κ′−∆n

W |
)
,

(A.3)

f̆κ =
1

T

π

2

T∑
t=1

n|∆n
t,κX

c||∆n
t,κ−∆n

Xc|, f̃κ =
1

T

π

2

T∑
t=1

fnt,κV
n
t,κn|∆n

t,κW ||∆n
t,κ−∆n

W |. (A.4)

L̃′κ(u) = − 1

T

T∑
t=1

sin
(√

2un
√
V n
t,κ∆

n
t,κW

)√n√V n
t,κ∆

n
t,κW√

2u
. (A.5)
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Lemma 1. Suppose Assumptions 1-3 hold with K = {κ, κ′} and let supt∈R+
E(|at|q) +

supt∈R+
E(σqt ) <∞ for some q ≥ 8. Then, for p ∈ [1, 4] and κ ∈ (0, 1] and with $ > 1

2
− 1

p
,

we have

E|f̂κ − f̆κ|p ≤ C∆−pn [∆q(1/2−$)+2p$
n ∨∆1+p/2+p$

n ∨∆p+1−2p/q
n ], (A.6)

E|f̆κ − f̃κ|p ≤ C∆
p
2

∧ q−p
q

n , (A.7)

E|f̃κ − fκ|2 ≤ CT−1, E|uL̃′κ(u)− uL′κ(u)|2 ≤ C(|u| ∨ 1)T−1, (A.8)

for some positive and finite constant C that does not depend on u.

Proof. For the first bound in (A.6), we make use of the following algebraic inequality

||∆n
t,κX||∆n

t,κ−∆n
X|1{Ant,κ} − |∆

n
t,κX

c||∆n
t,κ−∆n

Xc|| ≤ Cv2
n1{|∆n

t,κX
c|≥vn ∪ |∆n

t,κ−∆n
Xc|≥vn}

+ |∆n
t,κX

c||∆n
t,κ−∆n

Xd|1{|∆n
t,κ−∆n

Xd|≤2vn} + |∆n
t,κX

d||∆n
t,κ−∆n

Xc|1{|∆n
t,κX

d|≤2vn}

+ |∆n
t,κX

c||∆n
t,κ−∆n

Xc|1{|∆n
t,κX

c|≥ vn
2
∪ |∆n

t,κ−∆n
Xc|≥ vn

2
∪ |∆n

t,κX
d|≥ vn

2
∪ |∆n

t,κ−∆n
Xd|≥ vn

2
}

+ |∆n
t,κX

d||∆n
t,κ−∆n

Xd|1{|∆n
t,κX

d|≤2vn ∩ |∆n
t,κ−∆n

Xd|≤2vn}.

(A.9)

By Markov inequality and Burkholder-Davis-Gundy inequality and taking into account the

integrability condition for a and σ̃ as well as making use of F (R) <∞, we have

E|∆n
t,κX

c|q ≤ C∆q/2
n , P

(
|∆n

t,κX
c| ≥ vn

)
≤ C∆q(1/2−$)

n , P(∆n
t,κX

d 6= 0) ≤ C∆n. (A.10)

From here, by application of Hölder’s inequality, we have

E
(
|∆n

t,κX
c|p|∆n

t,κ−∆n
Xd|p1{|∆n

t,κ−∆n
Xd|≤2vn}

)
≤ C∆1+p/2+p$

n , (A.11)

E
(
|∆n

t,κX
d|p|∆n

t,κ−∆n
Xc|p1{|∆n

t,κX
d|≤2vn}

)
≤ C∆1+p/2+p$

n , (A.12)

E
(
|∆n

t,κX
c|p|∆n

t,κ−∆n
Xc|p1{|∆n

t,κX
c|≥ vn

2
∪ |∆n

t,κ−∆n
Xc|≥ vn

2
}

)
≤ C∆

q
2
−(q−2p)$

n , (A.13)
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E
(
|∆n

t,κX
c|p|∆n

t,κ−∆n
Xc|p1{|∆n

t,κX
d|≥ vn

2
∪ |∆n

t,κ−∆n
Xd|≥ vn

2
}

)
≤ C∆

p+ q−2p
q

n . (A.14)

Next, |∆n
t,κX

d||∆n
t,κ−∆n

Xd| is nonzero only if there are jumps in both intervals and further

by Markov’s inequality we have Pτ
(∫ τ+∆n

τ

∫
R µ(ds, dx) ≥ 1

)
≤ CEτ (

∫ τ+∆n

τ
bsds) for any τ .

From here, using successive conditioning, Assumption 2, the above inequality and Hölder’s

inequality, we have

E
(
|∆n

t,κX
d|p|∆n

t,κ−∆n
Xd|p1{|∆n

t,κX
d|≤2vn ∩ |∆n

t,κ−∆n
Xd|≤2vn}

)
≤ C∆2+2p$

n . (A.15)

Combining the above bounds, we get the result in (A.6). For the second bound in (A.7),

we use the algebraic inequality

||∆n
t,κX

c||∆n
t,κ−∆n

Xc| − fnt,κV n
t,κ|∆n

t,κW ||∆n
t,κ−∆n

W ||

≤
∣∣∆n

t,κX
c −
√
fnt,κV

n
t,κ∆

n
t,κW

∣∣|∆n
t,κ−∆n

Xc|

+
∣∣∆n

t,κ−∆n
Xc −

√
fnt,κV

n
t,κ∆

n
t,κ−∆n

W
∣∣∣∣√V n

t,κ∆
n
t,κW

∣∣.
(A.16)

For r ∈ [2, q], by application of Burkholder-Davis-Gundy inequality, inequality in means

and making use of the integrability of at, σt as well as the smoothness in expectation of σt

and ft, we have

E
∣∣∆n

t,κX
c −
√
fnt,κV

n
t,κ∆

n
t,κW

∣∣r ≤ C∆1+r/2
n . (A.17)

From here the result follows by an application of Hölder’s inequality (raising the term

|∆n
t,κ−∆n

Xc|p or
∣∣√V n

t,κ∆
n
t,κW

∣∣p to power q).

For the first of the bounds in (A.8), we make use of the decomposition

f̃κ − fκ =
1

T

π

2

T∑
t=1

fnt,κV
n
t,κ

(
n|∆n

t,κW ||∆n
t,κ−∆n

W | − 2

π

)
+

1

T

T∑
t=1

(fnt,κV
n
t,κ − fκ). (A.18)

Successive application of the Burkholder-Davis-Gundy inequality, given the integrability

condition for σt, gives

E
∣∣∣∣ T∑
t=1

fnt,κV
n
t,κ

(
n|∆n

t,κW ||∆n
t,κ−∆n

W | − 2

π

)∣∣∣∣p ≤ CT p/2. (A.19)
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Applying Lemma VIII.3.102 of [2] and Hölder’s inequality and taking into account the

integrability assumptions for σt as well as for the mixing coefficient of Yt, we have

E
∣∣∣∣ T∑
t=1

(fnt,κV
n
t,κ − fκ)

∣∣∣∣2 ≤ C
T∑
k=0

(T − k)
√
αk ≤ KT. (A.20)

Combining the above two results, we get the first bound in (A.8). The second one is proved

in an analogous way.

Lemma 2. Suppose the setting of Lemma 1 and in addition ft,κ ≡ fκ (constant time-of-

day) for t ∈ N+. Let 0 < ε < infκ∈[0,1] fκ/4 and assume q ≥ 8 and $ ≥ 2/q. Then, we

have

E
∣∣uL̂′κ(u)1{|f̂κ|>ε} − uL̃

′
κ(u)

∣∣ ≤ C(|u| ∨ 1)

[
1√
T

∨√
∆n

∨
∆

(q−4)( 1
2
−$)

n

]
, (A.21)

where the positive and finite constant C does not depend on u.

Proof. The derivation is done on the basis of the following bound:∣∣∣∣ sin(√2un∆n
t,κX/

√
f̂κ

) √
n∆n

t,κX√
f̂κ

1{|∆n
t,κX|≤vn ∩ |f̂κ|>ε}

− sin
(√

2un
√
V n
t,κ∆

n
t,κW

)√
n
√
V n
t,κ∆

n
t,κW

∣∣∣∣
≤ C

∣∣√n∆n
t,κX1{|∆n

t,κX|≤vn} −
√
n
√
fnκV

n
t,κ∆

n
t,κW

∣∣+ C1{|f̂κ|≤ε}
√
n
√
V n
t,κ|∆n

t,κW |

+ C
√
n
√
V n
t,κ|∆n

t,κW |
(√

u
∣∣√n∆n

t,κX
c −
√
n
√
fnκV

n
t,κ∆

n
t,κW

∣∣+ 1{|∆n
t,κX

d|>0}

)
+ C|f̂κ − fnκ |

(√
n
√
V n
t,κ|∆n

t,κW |+
√
unV n

t,κ|∆n
t,κW |2

)
,

(A.22)

for a positive and finite constant C that does not depend on u. Applying Cauchy-Schwarz

inequality

E
[√

n
√
V n
t,κ|∆n

t,κW |
(∣∣√n∆n

t,κX
c −
√
n
√
fnκV

n
t,κ∆

n
t,κW

∣∣+ 1{|∆n
t,κX

d|>0}

)]
≤ C

√
∆n.

(A.23)
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Applying Burkholder-Davis-Gundy inequality and making use of F (R) <∞, we get

E
∣∣√n∆n

t,κX1{|∆n
t,κX|≤vn} −

√
n
√
fnκV

n
t,κ∆

n
t,κW

∣∣ ≤ C(∆(q−1)(1/2−$)
n ∨

√
∆n). (A.24)

By application of Hölder’s inequality as well as the results of Lemma 1 (and using $ ≥ 2
q

and q ≥ 8), we have

E
[
|f̂κ − fnκ |

(√
n
√
V n
t,κ|∆n

t,κW |+ nV n
t,κ|∆n

t,κW |2
)

+ 1{|f̂κ|≤ε}
√
n
√
V n
t,κ|∆n

t,κW |
]
≤ C

(
∆

(q−4)( 1
2
−$)

n

∨√
∆n

∨ 1√
T

)
.

(A.25)

Combining the estimates in (A.23)-(A.25) with the bound in (A.22) we get the result of

the lemma.

A.2 Proof of Theorem 1

We make the decomposition

cos

(√
2un∆n

t,κX/

√
f̂κ

)
− cos

(√
2un

√
fnt,κV

n
t,κ∆

n
t,κW/

√
fκ

)
=

3∑
j=1

χ
(j)
t,n(u, κ), (A.26)

where

χ
(1)
t,n(u, κ) = cos

(√
2un∆n

t,κX/

√
f̂κ

)
− cos

(√
2un

√
fnt,κV

n
t,κ∆

n
t,κW/

√
f̂κ

)
,

χ
(2)
t,n(u, κ) = cos

(√
2un

√
fnt,κV

n
t,κ∆

n
t,κW/

√
f̂κ

)
− cos

(√
2un

√
fnt,κV

n
t,κ∆

n
t,κW/

√
f̃κ

)
,

χ
(3)
t,n(u, κ) = cos

(√
2un

√
fnt,κV

n
t,κ∆

n
t,κW/

√
f̃κ

)
− cos

(√
2un

√
fnt,κV

n
t,κ∆

n
t,κW/

√
fκ

)
.

The proof will then consist of analysis of the separate terms in the decomposition. Using

the inequalities | cos(x)− cos(y)| ≤ 2| sin(x−y
2

)| ≤ |x− y| ∧ 2 we can bound χ
(1)
t,n as follows

|χ(1)
t,n(u, κ)| ≤ 21{∆n

t,κX
d 6=0 ∪ f̂κ<ε} + C

√
un|∆n

t,κX
c −
√
fnt,κV

n
t,κ∆

n
t,κW |, (A.27)
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where ε is some constant satisfying 0 < ε < infκ∈[0,1] fκ/4, and ε and C do not depend on

u. From here, applying Burkholder-Davis-Gundy inequality, the smoothness in expectation

assumption for σt and ft, the integrability assumptions for at, bt and σt and Lemma 1, we

have
1

T

∣∣∣∣∣
∣∣∣∣∣
T∑
t=1

χ
(1)
t,n(u, κ)

∣∣∣∣∣
∣∣∣∣∣ = Op

(√
∆n

∨ 1

T

)
. (A.28)

Turning next to χ
(2)
t,n(u, κ), we have the following bound (note that fκ is bounded both from

below and above)

|χ(2)
t,n(u, κ)| ≤ 21{f̂κ<ε ∪ f̃κ<ε} + C

√
un
√
V n
t,κ|∆n

t,κW ||f̂κ − f̃κ|, (A.29)

for a positive and a finite constant C that does not depend on u. Using Assumptions 1-3

and applying Lemma VIII.3.102 of [2] and Hölder’s inequality, we have

E

∣∣∣∣∣
T∑
t=1

√
n
√
V n
t,κ|∆n

t,κW | −
√

2

π
E|Vt|

∣∣∣∣∣
2

≤ C

T
. (A.30)

Using this bound, Cauchy-Schwartz inequality and Lemma 1, we have

1

T

∣∣∣∣∣
∣∣∣∣∣
T∑
t=1

χ
(2)
t,n(u, κ)

∣∣∣∣∣
∣∣∣∣∣ = Op

(√
∆n

∨
∆

(q−2)( 1
2
−$)

n

∨ ∆
(1−2$)∧$∧ 1

4

n √
T

∨ 1

T

)
, (A.31)

for q being the constant of Lemma 1. For χ
(3)
t,n(u, κ), we have

|χ(3)
t,n(u, κ)| ≤ C(|u| ∨ 1)(

√
n
√
fnt,κV

n
t,κ|∆n

t,κW | ∨ 1)|f̃κ − fκ|, (A.32)

for a positive and a finite constant C that does not depend on u. Then, by application of

Cauchy-Schwarz inequality and Lemma 1, we have 1√
T
||
∑T

t=1 χ
(3)
t,n(u, κ)|| = Op(1).

Finally, using Assumptions 1-3 and applying Lemma VIII.3.102 of [2] and Hölder’s

inequality, we have

E

∣∣∣∣∣
∣∣∣∣∣
T∑
t=1

[
cos

(√
2un

√
fnt,κV

n
t,κ∆

n
t,κW/

√
fκ

)
− E

(
e−uft+κVt+κ/E(ft+κVt+κ)

)]∣∣∣∣∣
∣∣∣∣∣
2

≤ CT, (A.33)
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for a positive and a finite constant C that does not depend on u.

Combining the above bounds, we get the consistency result of the theorem. For further

use, we note also that

||χ(1)
t,n(u, κ)||+ ||χ(2)

t,n(u, κ)|| = op(1/
√
T ), (A.34)

provided T∆n → 0 and $ ≤ q−3
2q−4

. Under this same condition we also have L̂nκ − Lκ =

Op(1/
√
T ).

A.3 Proof of Theorem 2

The proof consists of two lemmas.

Lemma 3. Under the conditions of Theorem 2, we have

√
T

∣∣∣∣∣
∣∣∣∣∣L̂nκ(u)− L̂nκ′(u)− 1

T

T∑
t=1

dt,n(u)

∣∣∣∣∣
∣∣∣∣∣ P−→ 0. (A.35)

Proof of Lemma 3. We denote 0 < ε < infκ∈[0,1] fκ/4 and make the following decompo-

sition

cos

(√
2un∆n

t,κX/

√
f̂κ

)
− cos

(√
2un

√
V n
t,κ∆

n
t,κW

)
=

5∑
j=1

χ
(j)
t,n(u, κ), (A.36)

where, using the fact that ft,κ = fκ, we denote

χ
(1)
t,n(u, κ) = cos

(√
2un∆n

t,κX/

√
f̂κ

)
− cos

(√
2un

√
fnκV

n
t,κ∆

n
t,κW/

√
f̂κ

)
,

χ
(2)
t,n(u, κ) = cos

(√
2un

√
fnκV

n
t,κ∆

n
t,κW/

√
f̂κ

)
− cos

(√
2un

√
fnκV

n
t,κ∆

n
t,κW/

√
f̃κ

)
,

χ
(3)
t,n(u, κ) =

1

2
sin
(√

2un
√
V n
t,κ∆

n
t,κW

)√
2un

√
V n
t,κ∆

n
t,κW

(
f̃κ − fnκ
fnκ

)
,
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χ
(4)
t,n(u, κ) = −1

2
sin
(√

2un
√
V n
t,κ∆

n
t,κW

)√
2un

√
V n
t,κ∆

n
t,κW

(
f̃κ − fnκ
fnκ

)
1{|f̃κ|≤ε},

χ
(5)
t,n(u, κ) =

1

2
g
(√

2un
√
fnκV

n
t,κ∆

n
t,κW ; ḟκ

)(
f̃κ − fnκ

)2

1{|f̃κ|>ε},

with ḟκ being an intermediary value between f̃κ and fnκ , and further

g(a;x) = − cos

(
a√
x

)
a2

4x3
− sin

(
a√
x

)
3a

4x5/2
. (A.37)

We can write

χ(3)
n (u, κ) ≡ 1

T

T∑
t=1

χ
(3)
t,n(u, κ) + uL′(u)

1

T

T∑
t=1

(π
2
V n
t,κn|∆n

t,κW ||∆n
t,κ−∆n

W | − 1
)

=
(
− uL̃′κ(u) + uL′(u)

) 1

T

T∑
t=1

(π
2
V n
t,κn|∆n

t,κW ||∆n
t,κ−∆n

W | − 1
)
.

(A.38)

With this notation, we finally have

L̂nκ(u)− L̂nκ′(u)− 1

T

T∑
t=1

dt,n(u) =
1

T

∑
j=1,2,4,5

T∑
t=1

(
χ

(j)
t,n(u, κ)− χ(j)

t,n(u, κ′)
)

+ χ(3)
n (u, κ)− χ(3)

n (u, κ′).

(A.39)

The proof consists of showing the asymptotic negligibility of the terms 1√
T
||
∑T

t=1 χ
(j)
t,n(u, κ)||

for j = 1, 2, 4, 5 as well as the negligibility of
√
Tχ(3)

n (u, κ) for arbitrary κ ∈ (0, 1]. For

j = 1, 2, this was already established in the proof of Theorem 1 under the condition for $

of the theorem. For χ
(4)
t,n(u, κ), since ε < infκ∈[0,1] fκ, we have

|χ(4)
t,n(u, κ)| ≤ C

√
un
√
V n
t,κ|∆n

t,κW ||f̃κ − fnκ |2, (A.40)

for some positive and finite C that does not depend on u. Similarly, χ
(5)
t,n can be bounded

as follows

|χ(5)
t,n(u, κ)| ≤ C

(
unV n

t,κ|∆n
t,κW |2 +

√
unV n

t,κ|∆n
t,κW |

)
|f̃κ − fnκ |2, (A.41)
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with C as above. Therefore,

1√
T

∣∣∣∣ T∑
t=1

χ
(4)
t,n(u, κ)

∣∣∣∣+
1√
T

∣∣∣∣ T∑
t=1

χ
(5)
t,n(u, κ)

∣∣∣∣
≤ C|f̃κ − fnκ |2

1√
T

T∑
t=1

(
nV n

t,κ|∆n
t,κW |2 +

√
nV n

t,κ|∆n
t,κW |

)
,

(A.42)

for some positive and finite C that does not depend on u. From here, since

1

T

T∑
t=1

(
nV n

t,κ|∆n
t,κW |2 +

√
nV n

t,κ|∆n
t,κW |

)
= Op(1),

and utilizing the result of Lemma 1, we have 1√
T
||
∑T

t=1 χ
(4)
t,n(u, κ)||+ 1√

T
||
∑T

t=1 χ
(5)
t,n(u, κ)|| =

op(1).

We are left with χ(3)
n (u, κ). Using Lemma 1 and Cauchy-Schwarz inequality, we have

E||χ(3)
n (u, κ)|| ≤ C

T
, (A.43)

for some positive and finite C that does not depend on u. The asymptotic negligibility of
√
T ||χ(3)

n (u, κ)|| then readily follows.

To state the next lemma, we will need some additional notation which we now introduce.

We decompose

dt,n(u) = ξ
(1)
t,n(u) + ξ

(2)
t,n(u), (A.44)

where

ξ
(1)
t,n(u) = cos

(√
2un

√
V n
t,κ∆

n
t,κW

)
− e−uV nt,κ − cos

(√
2un

√
V n
t,κ′∆

n
t,κ′W

)
+ e

−uV n
t,κ′

+ uL′(u)V n
t,κ′

(
n
π

2
|∆n

t,κ′W ||∆n
t,κ−∆n

W | − 1
)
− uL′(u)V n

t,κ

(
n
π

2
|∆n

t,κW ||∆n
t,κ−∆n

W | − 1
)
,

ξ
(2)
t,n(u) = e−uV

n
t,κ − e−uV

n
t,κ′ + uL′(u)

(
V n
t,κ − V n

t,κ′

)
.

10



Fix a positive integer l and denote for t = 1, ..., T :

ξ̃
(2)
t,n,l(u) =

l−1∑
k=0

(
Et(ξ(2)

t+k,n(u))− Et−1(ξ
(2)
t+k,n(u))

)
. (A.45)

With this notation we set

d̃t,n,l(u) = ξ
(1)
t,n(u) + ξ̃

(2)
t,n,l(u), (A.46)

and denote the difference

Rn
T,l(u) =

1

T

T∑
t=1

(
dt,n(u)− d̃t,n,l(u)

)
. (A.47)

Using the decomposition

T∑
t=1

l∑
k=0

(
Etξ(2)

t+k,n(u)− Et−1ξ
(2)
t+k,n(u)

)
=

l∑
k=0

(
T∑
t=1

Etξ(2)
t+k,n(u)−

T−1∑
t=0

Etξ(2)
t+k+1,n(u)

)
,

(A.48)

we have

Rn
T,l(u) =

1

T

T−1∑
t=0

Etξ(2)
t+l,n(u)− 1

T

l−1∑
k=1

(
ET ξ(2)

T+k,n(u)− E0ξ
(2)
k,n(u)

)
. (A.49)

Using the mixing condition for Yt, the integrability assumption for Vt, and Lemma VIII.3.102

of [2], we have
√
E|Et(ξ(2)

t+k,n(u))|2 ≤ Kα
3/8
k (E|ξ(2)

t+k,n(u)|8)1/8. Therefore, since αk = o(k−8/3)

as k →∞, by Fatou’s lemma, the limit d̃t,n,∞ = ξ
(1)
t,n + ξ̃

(2)
t,n,∞ is finite almost surely, where

ξ̃
(2)
t,n,∞ := lim

l→∞
ξ̃

(2)
t,n,l =

∞∑
k=0

(
Et(ξ(2)

t+k,n)− Et−1(ξ
(2)
t+k,n)

)
, (A.50)

and the same holds for

Rn
T,∞ := lim

l→∞
Rn
T,l =

1

T

∞∑
k=1

(
E0(ξ

(2)
k,n)− ET (ξ

(2)
T+k,n)

)
. (A.51)
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Finally, we set

ξ
(2)
t (u) = e−uVt+κ − e−uVt+κ′ + uL′(u) (Vt+κ − Vt+κ′) ,

and define ξ̃
(2)
t,l (u) and ξ̃

(2)
t,∞(u) from it exactly as we defined ξ̃

(2)
t,n,l(u) and ξ̃

(2)
t,n,∞(u) from

ξ
(2)
t,n(u).

Lemma 4. Under Assumptions 1-3 with K = {1}, as n→∞ and T →∞ with T∆n → 0,

we have
1√
T

T∑
t=1

d̃t,n,∞
L−→ N(0, K) and

√
T ||RT,∞||

P−→ 0. (A.52)

Proof of Lemma 4. By dominated convergence, we have Et−1

(
d̃t,n,∞(u)

)
= 0 and

E
(
||d̃t,n,∞||2

)
<∞, and therefore the array {d̃t,n,∞}t∈N+ is a martingale difference sequence

and we can apply Theorem C of [3] to establish the CLT result. In particular, it suffices to

show that the following is true:

1

T

T∑
t=1

Et−1

(
||d̃t,n,∞||2

)
P−→ Trace(K), (A.53)

1

T 1+ι/2

T∑
t=1

Et−1

(
||d̃t,n,∞||2+ι

)
P−→ 0, for some ι ∈ (0, 1), (A.54)

1

T

T∑
t=1

Et−1

(
〈d̃t,n,∞, ei〉〈d̃t,n,∞, ej〉

)
P−→ 〈Kei, ej〉, ∀i, j ∈ N+, (A.55)

where {ei}i∈N+ is an orthonormal basis in L2(w). We have

Et−1||ξ(1)
t,n ||2 = Et−1||ηu(V n

t,κ, V
n
t,κ′)||2, (A.56)

where for two positive constants C1 and C2, we denote ηu(C1, C2) =
√

E (ηu(C1, C2)2) with

ηu(C1, C2) = cos
(√

2uC1Z1

)
− e−uC1 − cos

(√
2uC2Z2

)
+ e−uC2

− uL′(u)
(
C1

(π
2
|Z1||Z̃1| − 1

)
− C2

(π
2
|Z2||Z̃2| − 1

))
,

(A.57)
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for some independent standard normal random variables Z1, Z̃1, Z2 and Z̃2. From here, we

have

Et−1||d̃t,n,∞||2 = Et−1

(
||ηu(V n

t,κ, V
n
t,κ′)||2 + ||ξ̃(2)

t,n,∞||2
)

+ 2Et−1

(
〈ξ(1)
t,n , ξ̃

(2)
t,n,∞〉

)
. (A.58)

Using successive conditioning, we can write

Et−1

(
ξ

(1)
t,n(u)ξ̃

(2)
t,n,∞(u)

)
= Et−1

(
ξ

(1)
t,n(u)

∑
ι=κ,κ′

∞∑
k=0

[
E
t−1+

bιnc
n

(ξ
(2)
t+k,n(u))

− E
t−1+

bιnc−2
n

(ξ
(2)
t+k,n(u))

])
.

(A.59)

For ι = κ, κ′ and k ≥ 0, we have for some positive and finite C:

E
∣∣∣ξ(1)
t,n(u)

(
E
t−1+

bιnc
n

ξ
(2)
t+k,n(u)− E

t−1+
bιnc−2
n

ξ
(2)
t+k,n(u)

)∣∣∣
≤
√
E(ξ

(1)
t,n(u))2

√
E
(
E
t−1+

bιnc
n

ξ
(2)
t+k,n(u)

)2

− E
(
E
t−1+

bιnc−2
n

ξ
(2)
t+k,n(u)

)2

=

√
E(ξ

(1)
t,n(u))2

√
E
(
E
t−1+

bιnc
n

ξ
(2)
t+k,n(u)

)2

− E
(
E
t−1+

bιnc
n

ξ
(2)
t+k+2∆n,n

(u)
)2

≤ C(|u| ∨ 1)

√
E
[
E bιnc

n

(ξ
(2)
1+k,n(u)− ξ(2)

1+k+2∆n,n
(u))E bιnc

n

(ξ
(2)
1+k,n(u) + ξ

(2)
1+k+2∆n,n

(u))
]

≤ C(|u| ∨ 1)
(
E(ξ

(2)
1+k,n(u)− ξ(2)

1+k+2∆n,n
(u))2

)1/4

×
(
E
((

E bιnc
n

ξ
(2)
1+k,n(u)

)2

+
(
E bιnc

n

ξ
(2)
1+k+2∆n,n

(u)
)2
))1/4

≤ C(|u|3/2 ∨ 1)∆1/4
n α

3
16
k

(
E|ξ(2)

1,n(u)|8
)1/16

≤ C(|u|2 ∨ 1)∆1/4
n α

3
16
k ,

(A.60)

where for the first inequality we have made use of Cauchy-Schwarz inequality, for the second

equality we use the stationarity of Vt (and hence of its conditional expectation), for the third

inequality we again made use of the stationarity of Vt as well as the integrability assumption

13



for Vt, for the forth inequality we used Cauchy-Schwarz and Jensen’s inequality, and for

the remaining inequalities, we made use of the integrability and smoothness in expectation

conditions for Vt, as well as Lemma VIII.3.102 of [2].

From here, since by Assumption 3, αk = o(k−16/3) for k →∞, we have

E|ξ(1)
t,n(u)ξ̃

(2)
t,n,∞(u)| ≤ C(|u|2 ∨ 1)∆1/4

n , (A.61)

for some positive and finite C that does not depend on u, and therefore

1

T

T∑
t=1

∫
R

(
Et−1

(
ξ

(1)
t,n(u)ξ̃

(2)
t,n,∞(u)

))
w(u)du = op(1). (A.62)

Using the mixing condition for Yt, Lemma VIII.3.102 of [2], Lebesgue’s dominated conver-

gence theorem as well as Assumptions 1-2, we have

E
∣∣∣||ηu(V n

t,κ, V
n
t,κ′)||2 − ||ηu(Vt+κ, Vt+κ′)||2 + ||ξ̃(2)

t,n,∞||2 − ||ξ̃
(2)
t,∞||2

∣∣∣ ≤ C

n
, (A.63)

for some positive and finite C that does not depend on u. Furthermore, given the square

integrability of Vt, the assumption that Ỹt is a Markov process (and hence the condi-

tional expectation of a transformation of it is a function of the process at the time of the

conditioning), and by an application of an ergodic theorem, we have

1

T

T∑
t=1

Et−1

(
||ηu(Vt+κ, Vt+κ′)||2 + ||ξ̃(2)

t,∞||2
)

P−→ E
(
||ηu(Vt+κ, Vt+κ′)||2 + ||ξ̃(2)

t,∞||2
)
, (A.64)

provided E(||ξ̃(2)
t,∞||2) <∞. The latter is guaranteed by the mixing condition for Yt, use of

Lemma VIII.3.102 of [2] and Lebesgue’s dominated convergence theorem upon making use

of the inequality

|ξ̃(2)
t,l (u)|2 ≤

l−1∑
k,p=0

|Et(ξ(2)
t+k(u))− Et−1(ξ

(2)
t+k(u))||Et(ξ(2)

t+p(u))− Et−1(ξ
(2)
t+p(u))|, (A.65)

14



which in turn implies for some positive and finite C that does not depend on u

E|ξ̃(2)
t,l (u)|2 ≤ C

l−1∑
k,p=0

(α
3/8
k α3/8

p ) ≤ C. (A.66)

To establish (A.53), using stationarity, we therefore need to show that

E
(
||ηu(Vκ, Vκ′)||2 + ||ξ̃(2)

1,∞||2
)

= Trace(K). (A.67)

For this, using dominated convergence, it suffices to show

E
(
||ηu(Vκ, Vκ′)||2

)
+ lim

l→∞
E
(
||ξ̃(2)

1,l ||
2
)

= Trace(K). (A.68)

We have

E
(
|ξ̃(2)

1,l (u)|2
)

=
l−1∑
k,p=0

E
[
E1(ξ

(2)
1+k(u))

(
E1(ξ

(2)
1+p(u))− E0(ξ

(2)
1+p(u))

)]

=
l−1∑
k,p=0

E
[
ξ

(2)
1+k(u)

(
E1(ξ

(2)
1+p(u))− E0(ξ

(2)
1+p(u))

)]

=
l−1∑
k,p=0

E[ξ
(2)
k (u)E0(ξ(2)

p (u))]−
l∑

k,p=1

E[ξ
(2)
k (u)E0(ξ(2)

p (u))]

= E[ξ
(2)
0 (u)]2 + 2

l−1∑
k=1

E
[
ξ

(2)
0 (u)ξ

(2)
k (u)

]
−

l−1∑
k=1

E[ξ
(2)
k (u)E0(ξ

(2)
l (u))]−

l∑
p=1

E[ξ
(2)
l (u)E0(ξ(2)

p (u))],

(A.69)

where for the first equality we made use of successive conditioning and for the second

inequality we made use of the stationarity of the sequence {ξ(2)
t (u)ξ

(2)
t+s(u)}t≥0 and arbitrary

fixed s ≥ 0. We now bound the last two terms in the above inequality. Using Lemma

VIII.3.102 of [2] and our integrability assumption for Vt, we have√
E|E0(ξ

(2)
p (u))|2 ≤ Cα3/8

p

(
E(ξ

(2)
0 (u))8

)1/8

, p ≥ 0, (A.70)
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for some positive and finite C that does not depend on u. Therefore, with C as above, we

have
l−1∑
k=1

|E[ξ
(2)
k (u)E0(ξ

(2)
l (u))]| ≤

l−1∑
k=1

√
E|E0(ξ

(2)
k (u))|2E|E0(ξ

(2)
l (u))|2

≤ C
(
E(ξ

(2)
0 (u))8

)1/8

α
3/8
l

l−1∑
k=1

α
3/8
k ,

(A.71)

l∑
p=1

|E[ξ
(2)
l (u)E0(ξ(2)

p (u))]| ≤
l∑

p=1

√
E|E0(ξ

(2)
l (u))|2E|E0(ξ

(2)
p (u))|2

≤ C
(
E(ξ

(2)
0 (u))8

)1/8

α
3/8
l

l∑
p=1

α3/8
p .

(A.72)

From here, taking into account the rate of decay of αk, we have

lim
l→∞

E
(
||ξ̃(2)

1,l ||
2
)

= Trace(K̃) ≡
∫ ∞

0

k̃(u, u)w(u)du, (A.73)

where the operator K̃ has kernel k̃(z, u) =
∑∞

j=−∞ E[d̃1(z)d̃j(u)] and we denote

d̃t(u) =
(
e−uVt−1+κ − e−uVt−1+κ′

)
− uL′(u)(Vt−1+κ − Vt−1+κ′).

From here the result in (A.68) and hence (A.53) readily follows. The convergence in (A.55)

is shown analogously.

We are left with establishing (A.54). First, using the integrability condition for Vt as

well as the mixing assumption for Yt and applying Lemma VIII.3.102 of [2], we have

E|E0(ξ
(2)
k,n(u))|2+ι ≤ Cα

1− 2+ι
8

k

(
E|ξ(2)

k,n(u)|8
) 2+ι

8
, (A.74)

for some constant C that does not depend on u and any ι ∈ (0, 6). From here, by inequality

in means, the exponential decay of the weight function w in the tails, since αk = o(k−8/3),

and by the monotone convergence theorem, we have for C as above

E||d̃t,n,∞||2+ι ≤ C, for some ι ∈ (0, 1), (A.75)
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and from here the result in (A.54) follows trivially.

We continue with the bound for Rn
T,∞(u). Using monotone convergence, the bound in

(A.70) above as well as the rate of decay condition for the mixing coefficient αk, we have

E||Rn
T,∞|| ≤

C

T
, (A.76)

for some positive and finite C, and therefore
√
T ||Rn

T,∞|| = op(1).

Combining Lemmas 3 and 4, the result of the theorem follows.

A.4 Proof of Corollary 1

Let Y = N(0, K), with the operator K given in equation (13). By the spectral theorem

for compact self-adjoint operators (see [4]) it follows that there exists a complete set of

eigenfunctions (εi) in L2(w) and associated (real) eigenvalues λ1 ≥ λ2 ≥ ... ≥ 0 such that

Kεi = λiεi. (A.77)

Moreover, the eigenfunctions form an orthonormal basis for L2(w). By Parseval’s identity,

it then follows that

||Y ||2 =
∞∑
i=1

λi

(
〈Y, εi〉√
λi

)2

, (A.78)

Theorem 2 implies that 〈Y, εi〉 is normally distributed with mean zero and variance 〈Kεi, εi〉.

The result then follows upon showing that Cov(〈Y, εi〉, 〈Y, εj〉) = λiδi,j, where δi,j is Kro-
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necker’s delta. Thus, for any i, j ∈ N+, we have

Cov(〈Y, εi〉, 〈Y, εj〉) = E
[∫

R+

Y (u)εi(u)w(u)du

∫
R+

Y (u)εj(u)w(u)du

]
= E

[∫
R+

∫
R+

Y (u)Y (t)εi(u)w(u)εj(t)w(t)dudt

]
=

∫
R+

∫
R+

E [Y (u)Y (t)] εi(u)w(u)εj(t)w(t)dudt

=

∫
R+

∫
R+

k(u, t)εi(u)w(u)εj(t)w(t)dudt

=

∫
R+

∫
R+

k(u, t)εi(u)w(u)εj(t)w(t)dudt

=

∫
R+

∫
R+

λiεi(t)εj(t)w(t)dt = λjδi,j,

where the last equality follows by the definition of the eigenvalues of K.

A.5 Proof of Theorem 3

We will first proof the following Lemma about the error in the kernel KT .

Lemma 5. Suppose Assumptions 1-4 hold with K = {κ, κ′}, and with ft,κ ≡ fκ (constant

time-of-day) for t ∈ N+. Then, for $ ∈
[

2
q
, q−5

2q−8

]
, for q the constant of Lemma 1, and as

n→∞ and T →∞, we have

||KT −K||HS = Op

(
B−6
T

∨ BT

T

∨
B2
T∆n

)
. (A.79)

Proof of Lemma 5. We have

||KT −K||2HS =

∫
R+

∫
R+

|kT (u, s)− k(u, s)|2w(u)w(s)duds. (A.80)

Our goal will be to decompose suitably kT (u, s)− k(u, s) and bound the second moments

in this decomposition. We first we introduce some auxiliary notation. We set

γ0(u, s) = E(d0(u)d0(s)), γk(u, s) = E[d1(u)dk+1(s) + dk+1(u)d1(s)], k ≥ 1,
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γ̂n0 (u, s) =
1

T

T∑
t=1

d̂t,n(u)d̂t,n(s), γ̂nk (u, s) =
1

T − k

T∑
t=1

[d̂t,n(u)(d̂t−k,n(s) + d̂t+k,n(s))], k ≥ 1,

and the corresponding quantities in which d̂t,n(u) are replaced with dt,n(u) are denoted with

γnk (u, s). With this notation, we can decompose

kT (u, s)− k(u, s) =

BT∑
j=1

γj(u, s)

(
T − j
T

h

(
j

BT

)
− 1

)
−

∞∑
j=BT+1

γj(u, s)

+

BT∑
j=1

T − j
T

h

(
j

BT

)(
γ̂nj (u, s)− γj(u, s)

)
.

(A.81)

By conditioning on the sigma algebra of the original probability space, we have

E[d1(z)dj(u)] = E[d̃1(z)d̃j(u)], for j > 1, (A.82)

where d̃t(u) is defined in the proof of Theorem 2 and using again the notation of that proof,

we can write

E[d0(z)d0(u)] = E(ηz,u(Vκ, Vκ′)). (A.83)

From here, using Lemma VIII.3.102 of [2], Hölder’s inequality and the fact that E|Vt|8 <∞,

we have

|E(d1(z)dj+1(u))| ≤ Cα
3/4
j

(
E|d1(z)|8E|d1(u)|8

)1/8
, j ≥ 0, (A.84)

for positive and finite C that does not depend on u, z and j. Similarly, for k ∈ [0, j] by

considering separately the cases j − k < k and j − k ≥ k, we have

|E (dt,n(u)dt−j,n(s)dt−k(u)dt−j−k,n(s))| ≤ C
√
α(j−k)∨j

(
E|d0,n(u)|8E|d0,n(s)|8

)1/4
, (A.85)

for positive and finite C that does not depend on u, s, j and k. Finally, for k ≥ j + 1 and

j ≥ 0

|E ((dt,n(u)dt−j,n(s)− γj(u, s))dt−k(u)dt−j−k,n(s))|

≤ C
√
α(k−j)∨j

(
E|d0,n(u)|8E|d0,n(s)|8

)1/4
,

(A.86)
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where C is a positive and finite constant that does not depend on u, s, j and k. Using the

first of the above bounds as well as the continuous differentiability of h in a neighborhood

of zero, we get ∣∣∣∣ ∑
|j|>BT

E[d1(u)dj+1(s)]

∣∣∣∣2 ≤ CB−6
T

(
E|d1(u)|8E|d1(s)|8

)1/4
, (A.87)

∣∣∣∣∣
BT∑
j=1

γj(u, s)

(
T − j
T

h

(
j

BT

)
− 1

)∣∣∣∣∣
2

≤ CB−6
T

(
E|d1(u)|8E|d1(s)|8

)1/4
. (A.88)

For j = 0, 1, ..., T − 1, we have

E|γnj (u, s)− γj(u, s)|2 ≤
C

T − j

(
j∑

k=0

√
α(j−k)∨k +

T−j−1∑
k=j+1

√
α(k−j)∨j + jα

3/2
j

)

×
(
E|d0,n(u)|8E|d0,n(s)|8

)1/4
,

(A.89)

where in the above three bounds C is a constant that does not depend on j, T , u and s.

Taking into account Assumption 3, with C as above, we have

E|γnj (u, s)− γj(u, s)|2 ≤ C
j

T

√
αbj/2c

(
E|d0,n(u)|8E|d0,n(s)|8

)1/4
. (A.90)

Hence, using the boundedness of h and Assumption 3,∣∣∣∣∣
BT∑
j=0

T − j
T

h

(
j

BT

)(
γnj (u, s)− γj(u, s)

)∣∣∣∣∣
2

≤ C
BT

T

(
E|d0,n(u)|8E|d0,n(s)|8

)1/4
, (A.91)

for some positive and finite C that does not depend on u and s.

We proceed with the difference γ̂nj (u, s) − γnj (u, s). If we denote 0 < ε < infκ∈[0,1] fκ/4

and ε > 2 supκ∈[0,1] fκ, then it suffices to analyze this difference on Ωn =
{
ω : f̂κ, f̂κ′ ∈ [ε, ε]

}
,

since P(Ωn) → 1 from the results of Lemma 1. We will do so henceforth without further
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mention. Making use of supu∈R+
|uL′(u)| ≤ e−1, we have for some positive and finite C

that does not depend on u:∣∣∣(|uL̂′κ(u)| ∧ e−0.5)n|∆n
t,κX||∆n

t,κ−∆n
X|1{Ant,κ}/f̂κ + uL′(u)nV n

t,κ|∆n
t,κW ||∆n

t,κ−∆n
W |
∣∣∣

≤ CnV n
t,κ|∆n

t,κW ||∆n
t,κ−∆n

W ||f̂κ − fnκ |

+ Cn||∆n
t,κX||∆n

t,κ−∆n
X|1{Ant,κ} − f

n
κV

n
t,κ|∆n

t,κW ||∆n
t,κ−∆n

W ||

+ CnV n
t,κ|∆n

t,κW ||∆n
t,κ−∆n

W |||uL̂′κ(u)| ∧ e−0.5 + uL′(u)|.

(A.92)

Therefore, with C as above, we have

|d̂t,n(u)−dt,n(u)| ≤ C(|u|∨1)(ζ
(1)
t,κ ζκ(u)+ζ

(1)
t,κ′ζκ′(u)+ζ

(2)
t ), |dt,n(u)| ≤ C(ζ

(1)
t,κ +ζ

(1)
t,κ′), (A.93)

where we denote

ζ
(1)
t,κ = nV n

t,κ|∆n
t,κW ||∆n

t,κ−∆n
W |+

√
n
√
V n
t,κ|∆n

t,κW |,

ζ
(2)
t = n||∆n

t,κX||∆n
t,κ−∆n

X|1{Ant,κ} − f
n
κV

n
t,κ|∆n

t,κW ||∆n
t,κ−∆n

W ||,

ζκ(u) = |f̂κ − fnκ |+ ||uL̂′κ(u)| ∧ e−0.5 + uL′(u)|,

and we note that by application of Lemmas 1 and 2 and for q ≥ 8 (q is the constant of

Lemma 1), we have

||ζκ(u)|| = Op

(
1√
T

∨√
∆n

∨
∆

(q−4)( 1
2
−$)

n

)
. (A.94)
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We can bound

BT∑
j=0

|γ̂nj (u, s)− γnj (u, s)| ≤ 1

T −BT

T∑
t=1

|d̂t,n(u)− dt,n(u)|
BT∑

j=−BT

|dt−j,n(s)|

+
1

T −BT

T∑
t=1

|dt,n(u)|
BT∑

j=−BT

|d̂t−j,n(s)− dt−j,n(s)|

+
1

T −BT

T∑
t=1

|d̂t,n(u)− dt,n(u)|
BT∑

j=−BT

|d̂t−j,n(s)− dt−j,n(s)|.

(A.95)

Using inequality in means as well as the fact that E|Vt|4 <∞, we have

E

(
1

T −BT

T∑
t=1

ζ
(1)
t,αζ

(1)
t−j,β

)2

≤ C, j = −BT , ..., 0, ..., BT , (A.96)

where α, β = κ, κ′. To proceed further, we bound the k-th moments of ζ
(2)
t . Using successive

conditioning, Hölder’s inequality as well as the fact that E|bt|4 <∞, we have

nkE[|∆n
t,κX||∆t,κ−∆nX|1{Ant,κ}1{∆n

t,κX
d 6=0, ∆n

t,κ−∆n
Xd 6=0}]

k

≤ ∆k(2$−1)
n P

(
∆n
t,κX

d 6= 0 and ∆n
t,κ−∆n

Xd 6= 0
)
≤ C∆

1+ 3
4

+k(2$−1)
n .

(A.97)

Applying successive conditioning, the smoothness in expectation condition for σt, Hölder’s

inequality as well as the integrability conditions for at, bt and σt, we have

nkE[|∆n
t,κX||∆t,κ−∆nX|1{Ant,κ}1{∆n

t,κX
d=0, ∆n

t,κ−∆n
Xd 6=0}]

k ≤ C∆
1+ k

2
(2$−1)

n , k ∈ [1, 2], (A.98)

nkE[|∆n
t,κX||∆t,κ−∆nX|1{Ant,κ}1{∆n

t,κX
d 6=0, ∆n

t,κ−∆n
Xd=0}]

k ≤ C∆
1+ k

2
(2$−1)

n , k ∈ [1, 2]. (A.99)

Using these bounds, Hölder’s inequality, the smoothness in expectation condition for σt as

well as the integrability conditions for at and σt, we have

E|ζ(2)
t |k ≤ C

[
∆

7
4

+k(2$−1)
n ∨∆

1+ k
2

(2$−1)
n ∨∆

(q−2k)( 1
2
−$)

n ∨∆
k
2

∧ q−k
q

n

]
, k ∈ [1, 2], (A.100)
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where q is the constant of Lemma 1. Using E|Vt|8 < ∞ and applying Hölder’s inequality,

we have

E|ζ(2)
t ζ(1)

s,ι | ≤ C
√

∆n, E|ζ(2)
t ζ(2)

s | ≤ C
√

∆n, ι = κ, κ′, ∀s, t ≥ 0, (A.101)

provided (q − 4)
(

1
2
−$

)
≥ 1

2
. Therefore,

E

(
1

T −BT

T∑
t=1

[
ζ

(2)
t

BT∑
j=−BT

ζ
(1)
t−j,ι + ζ

(1)
t,ι

BT∑
j=−BT

ζ
(2)
t−j

])
≤ CBT

√
∆n, (A.102)

E

(
1

T −BT

T∑
t=1

[
ζ

(2)
t

BT∑
j=−BT

ζ
(2)
t−j

])
≤ CBT

√
∆n. (A.103)

where ι = κ, κ′. Combining these results, we get altogether∣∣∣∣∣
∣∣∣∣∣
BT∑
j=0

T − j
T

h

(
j

BT

)(
γ̂nj (u, s)− γnj (u, s)

)∣∣∣∣∣
∣∣∣∣∣
2

= Op(B
2
T∆n). (A.104)

Combining the bounds in (A.87)-(A.88), (A.91) and (A.104), we have altogether the result

of the lemma.

We can decompose,

Z(κ, κ′)− ẐT (κ, κ′) =
∞∑

i=pT+1

λiχ
2
i +

pT∑
i=1

(
λi − λ̂i,T

)
χ2
i . (A.105)

By assumption we have that pT → ∞ as T → ∞. Hence, Parseval’s identity implies that∑∞
i=pT+1 λiχ

2
i = op(1). Furthermore, by Theorem 4.4 in [1] it follows that

sup
j≥1
|λ̂j,T − λj| ≤ ||KT −K||HS. (A.106)

Therefore, we have

|Z(κ, κ′)− ẐT (κ, κ′)| ≤
pT∑
i=1

∣∣∣λi − λ̂i,T ∣∣∣χ2
i + op(1)

≤ sup
j≥1
|λ̂j,T − λj|

pT∑
i=1

χ2
i + op(1) = op(1),

(A.107)
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where for the last bound, we made use of the result of Lemma 5 and the rate condition for

pT in the theorem.

A.6 Proof of Corollary 2

The result under the null hypothesis follows from Corollary 1 and Theorem 3 and applica-

tion of portmanteau theorem.

Under the alternative hypothesis, one can easily show using the integrability conditions

of the theorem and using some of the bounds in the proof of Lemma 5 that we have

|ẐT (κ, κ′)| = Op(BT ). Furthermore, from the proof of Theorem 1, under the conditions of

the theorem, we have T ||L̂κ− L̂′κ||2 = Op(T ). These two results yield the asymptotic power

of one by taking into account that BT/T → 0.

A.7 Proof of Theorem 4

We start with introducing some auxiliary notation and establishing some preliminary re-

sults. We introduce the set

Υn =
{
ω : ||θ̂ − θ0|| ≤ Cαn/n

}
, (A.108)

for some finite constant C > 0 and some deterministic sequence αn → ∞ when n → ∞

such that αn/ log n→ 0. Then, since θ̂ − θ0 = Op(1/n), we have P (Υn)→ 1.

We next denote

ε̂nt,κ = g
(
Z (t−1)n+bκnc

n

, θ0

)
− g

(
Z (t−1)n+bκnc−1

n

, θ0

)
− g

(
Z (t−1)n+bκnc

n

, θ̂
)

+ g
(
Z (t−1)n+bκnc−1

n

, θ̂
)
,

(A.109)

and with this notation we can write

∆n
t,κX̂ = ∆n

t,κX + ε̂nt,κ. (A.110)
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We finally set

f̂ rcκ =
n

T

π

2

T∑
t=1

|∆n
t,κX||∆t,κ−∆X|1{Ar,nt,κ}. (A.111)

Using the definition of the set Υn as well as the Lipschitz condition for the function g, we

have

|f̂ rκ − f̂ rcκ |1{Υn} ≤ C||θ̂ − θ0||
n

T

T∑
t=1

|∆n
t,κX||∆n

t,κ−∆X|+ C

(
αn√
n

)2

. (A.112)

Next, due to αn/∆
$−1
n → 0, we have |ε̂nt,κ| ≤ vn for n sufficiently large. Therefore, for n

sufficiently large, the following bounds holds

|f̂ rcκ − f̆κ|1{Υn} ≤ |f̂ (1)
κ − f̆κ|+ |f̂ (2)

κ − f̆κ|, (A.113)

where f̂
(1)
κ and f̂

(2)
κ are defined as f̂κ but with vn in the set Ant,κ replaced by vn/2 and 2vn,

respectively.

Part (a). Similar to the proof of Theorem 1, we decompose

cos

(√
2un∆n

t,κX̂/

√
f̂ rκ

)
− cos

(√
2un

√
fnt,κV

n
t,κ∆

n
t,κW/

√
fκ

)
=

3∑
j=1

χ̂
(j)
t,n(u, κ), (A.114)

where we denote

χ̂
(1)
t,n(u, κ) = cos

(√
2un∆n

t,κX̂/

√
f̂ rκ

)
− cos

(√
2un

√
fnt,κV

n
t,κ∆

n
t,κW/

√
f̂ rκ

)
,

χ̂
(2)
t,n(u, κ) = cos

(√
2un

√
fnt,κV

n
t,κ∆

n
t,κW/

√
f̂ rκ

)
− cos

(√
2un

√
fnt,κV

n
t,κ∆

n
t,κW/

√
f̃κ

)
,

χ̂
(3)
t,n(u, κ) = cos

(√
2un

√
fnt,κV

n
t,κ∆

n
t,κW/

√
f̃κ

)
− cos

(√
2un

√
fnt,κV

n
t,κ∆

n
t,κW/

√
fκ

)
.
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We start with χ̂
(1)
t,n(u, κ). Using the algebraic inequality | cos(x)− cos(y)| ≤ |x− y| ∧ 2 for

x, y ∈ R, we have

|χ̂(1)
t,n(u, κ)| ≤ 21{∆n

t,κX
d 6=0 ∪ f̂rκ<ε ∪ Υcn}

+ C
√
un|∆n

t,κX
c −
√
fnt,κV

n
t,κ∆

n
t,κW |

+ C
√
un|ε̂nt,κ|,

(A.115)

where 0 < ε < infκ∈[0,1] fκ/4, and ε and C do not depend on u and n. Form here, by

performing similar steps as for the analysis of the term χ
(1)
t,n(u, κ) in the proof of Theorem

1 as well as by making use of Lemma 1 and the bounds in (A.112) and (A.113) and the

fact that αn/ log n→ 0, we have

1

T

∣∣∣∣∣
∣∣∣∣∣
T∑
t=1

χ̂
(1)
t,n(u, κ)

∣∣∣∣∣
∣∣∣∣∣ = Op

(√
∆n

∨ 1

T

)
. (A.116)

We continue next with χ̂
(2)
t,n(u, κ). For n sufficiently large, using the algebraic inequality

| cos(x) − cos(y)| ≤ |x − y| ∧ 2 for x, y ∈ R and Taylor expansion as well as (A.113), we

have

|χ̂(2)
t,n(u, κ)| ≤ 21{f̂rκ<ε ∪ f̃κ<ε ∪ Υcn}

+ C1{Υn}
√
un
√
V n
t,κ|∆n

t,κW |
[
|f̂ rκ − f̂ rcκ |+ |f̂ (1)

κ − f̆κ|+ |f̂ (2)
κ − f̆κ|+ |f̆κ − f̃κ|

]
.

(A.117)

Using the integrability conditions of Assumption 1, inequality in means as well as Cauchy-

Schwartz inequality, we have

E

∣∣∣∣∣nT
T∑
t=1

|∆n
t,κX||∆n

t,κ−∆X|

∣∣∣∣∣
p

≤ C∆1−p
n , p ∈ [1, 2]. (A.118)

From here, using the same steps as in the analysis of the term χ
(2)
t,n(u, κ) in the proof of

Theorem 1 as well as the bound for f̂ rκ−f̂ rcκ in (A.112) and upon applying Hölder inequality

and taking into account the integrability conditions in Assumption 1 and that αn/ log n→
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0, we have altogether

1

T

∣∣∣∣∣
∣∣∣∣∣
T∑
t=1

χ̂
(2)
t,n(u, κ)

∣∣∣∣∣
∣∣∣∣∣ = Op

(√
∆n

∨
∆

(q−2)( 1
2
−$)

n

∨ ∆
(1−2$)∧$∧ 1

4

n √
T

∨ 1

T

)
, (A.119)

for q being the constant in Lemma 1. Next, the term χ̂
(3)
t,n(u, κ) equals the term χ

(3)
t,n(u, κ)

in the proof of Theorem 1, and hence using this proof we have

1

T

∣∣∣∣∣
∣∣∣∣∣
T∑
t=1

χ̂
(3)
t,n(u, κ)

∣∣∣∣∣
∣∣∣∣∣ = Op

(
1√
T

)
. (A.120)

From here, the proof of the result in part(a) of the theorem follows from the proof of

Theorem 1.

Part (b). From the above bounds for χ̂
(1)
t,n(u, κ) and χ̂

(2)
t,n(u, κ), we have

1

T

∣∣∣∣∣
∣∣∣∣∣
T∑
t=1

χ̂
(1)
t,n(u, κ)

∣∣∣∣∣
∣∣∣∣∣+

1

T

∣∣∣∣∣
∣∣∣∣∣
T∑
t=1

χ̂
(2)
t,n(u, κ)

∣∣∣∣∣
∣∣∣∣∣ = op(1/

√
T ), (A.121)

provided T∆n → 0 and $ < q−3
2q−4

. Under this same condition, we also have L̂r,n − Lκ =

Op(1/
√
T ). From here the proof of the result in part (b) of the theorem follows from

the proof of Theorem 2 upon using the same decomposition of cos

(√
2un∆n

t,κX̂/

√
f̂ rκ

)
−

cos
(√

2un
√
V n
t,κ∆

n
t,κW

)
as in that proof, with χ

(1)
t,n(u, κ) and χ

(2)
t,n(u, κ) replaced with χ̂

(1)
t,n(u, κ)

and χ̂
(2)
t,n(u, κ) defined above.
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Appendix B: Additional Monte Carlo Results

B.1 Sensitivity to the Choice of umax

In Table 1 and Table 2 we provide Monte Carlo evidence regarding the sensitivity of the

testing procedure to the different choices of umax under the null and alternative hypotheses,

respectively. Recall from Section 4 in the main text that we calculate the test statistic as∫ umax
0

(
L̂nκ(u)− L̂nκ′(u)

)2

w(u)du.

The middle panel of Table 1 and Table 2 corresponds to the original choice of umax

reported in Table 1 in the main text. As seen from the tables, there is very little sensitivity

of the performance of the test to the choice of umax.

B.2 Sensitivity to the Choice of BT

In Table 3 and Table 4 we provide Monte Carlo evidence regarding the sensitivity of the

testing procedure to the different choices of BT under the null and alternative hypotheses,

respectively. Recall from the main text that BT is the cutoff parameter determining the

number of lags used in the computation of the critical values of the test statistic. The

middle panel of Table 3 and Table 4 corresponds to the original choice of BT . As seen

from the reported results, the performance of the test under the null hypothesis is not very

sensitive to the choice of BT . This is consistent with the fact that dt(u) defined in Theorem

2 has little time series persistence. Similarly, the power of the test does not change much

across the different values of BT .
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pT

T 1 2 3 4 5 6

umax:
1
n

∑n
i=1 L̂i∆n(umax) = 0.025

250 0.064 0.055 0.051 0.050 0.049 0.049

500 0.063 0.049 0.047 0.047 0.047 0.047

1000 0.069 0.053 0.052 0.052 0.051 0.051

1500 0.069 0.056 0.052 0.051 0.051 0.051

2000 0.065 0.049 0.046 0.045 0.045 0.044

2500 0.056 0.044 0.042 0.042 0.042 0.042

umax:
1
n

∑n
i=1 L̂i∆n(umax) = 0.05

250 0.054 0.046 0.045 0.044 0.044 0.044

500 0.067 0.057 0.055 0.055 0.055 0.055

1000 0.055 0.050 0.049 0.048 0.047 0.047

1500 0.059 0.053 0.048 0.047 0.047 0.047

2000 0.055 0.048 0.047 0.047 0.047 0.047

2500 0.069 0.062 0.061 0.060 0.060 0.060

umax:
1
n

∑n
i=1 L̂i∆n(umax) = 0.1

250 0.065 0.055 0.054 0.052 0.052 0.052

500 0.045 0.038 0.036 0.036 0.036 0.036

1000 0.063 0.057 0.055 0.053 0.053 0.053

1500 0.064 0.060 0.058 0.058 0.058 0.058

2000 0.065 0.055 0.054 0.053 0.053 0.053

2500 0.061 0.055 0.053 0.052 0.052 0.052

Table 1: Monte Carlo Results under the Null Hypothesis, ft,κ ≡ fκ, for different choices

of umax. The table reports empirical rejection rates of the test of nominal size 0.05 using

1, 000 simulations. Kn and K′n correspond to 8:40-9:10 and 12:30-13:00, respectively. The

values of vn and BT are set as in Section 4 in the main text.
29



8:40 - 9:10 vs 12:30- 13:00 8:40 - 9:10 vs 14:30 - 15:00

pT pT

T 1 2 3 4 5 6 1 2 3 4 5 6

umax: 1
n

∑n
i=1 L̂i∆n(umax) = 0.025

250 0.081 0.058 0.052 0.046 0.045 0.045 0.319 0.270 0.250 0.238 0.233 0.232

500 0.126 0.095 0.077 0.070 0.065 0.063 0.598 0.566 0.540 0.528 0.520 0.519

1000 0.214 0.154 0.130 0.116 0.112 0.109 0.930 0.918 0.907 0.905 0.900 0.900

1500 0.221 0.178 0.160 0.148 0.144 0.144 0.989 0.985 0.984 0.983 0.982 0.982

2000 0.340 0.265 0.238 0.220 0.213 0.209 0.998 0.997 0.997 0.997 0.997 0.997

2500 0.406 0.312 0.284 0.270 0.263 0.258 1.000 1.000 1.000 1.000 1.000 1.000

umax: 1
n

∑n
i=1 L̂i∆n(umax) = 0.05

250 0.093 0.075 0.064 0.062 0.061 0.061 0.322 0.292 0.278 0.269 0.267 0.266

500 0.139 0.100 0.086 0.076 0.075 0.074 0.623 0.588 0.571 0.562 0.555 0.554

1000 0.168 0.126 0.106 0.099 0.096 0.094 0.918 0.903 0.901 0.893 0.890 0.887

1500 0.229 0.173 0.149 0.140 0.135 0.133 0.993 0.990 0.989 0.989 0.989 0.988

2000 0.339 0.285 0.266 0.251 0.240 0.232 1.000 0.998 0.998 0.998 0.998 0.998

2500 0.410 0.347 0.308 0.292 0.286 0.279 0.999 0.999 0.999 0.999 0.999 0.999

umax: 1
n

∑n
i=1 L̂i∆n(umax) = 0.1

250 0.102 0.083 0.075 0.071 0.069 0.067 0.359 0.328 0.318 0.314 0.313 0.310

500 0.141 0.127 0.115 0.111 0.111 0.110 0.660 0.643 0.634 0.626 0.622 0.622

1000 0.214 0.182 0.171 0.171 0.167 0.165 0.951 0.939 0.935 0.934 0.934 0.934

1500 0.288 0.245 0.233 0.230 0.227 0.227 0.993 0.993 0.992 0.992 0.992 0.992

2000 0.418 0.364 0.351 0.342 0.341 0.337 0.997 0.997 0.997 0.997 0.997 0.997

2500 0.447 0.407 0.397 0.390 0.382 0.379 1.000 1.000 1.000 1.000 1.000 1.000

Table 2: Monte Carlo Results under the Alternative Hypothesis, ft,κ 6= fκ, for different

choices of umax. The table reports empirical rejection rates for the test at nominal size 0.05

using 1000 simulations.
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pT

T 1 2 3 4 5 6

BT = bT 1/5c/2

250 0.061 0.055 0.053 0.051 0.050 0.049

500 0.060 0.053 0.050 0.050 0.050 0.050

1000 0.065 0.059 0.057 0.057 0.056 0.055

1500 0.055 0.049 0.046 0.046 0.045 0.045

2000 0.059 0.048 0.046 0.044 0.044 0.042

2500 0.069 0.057 0.054 0.054 0.054 0.054

BT = bT 1/5c

250 0.054 0.046 0.045 0.044 0.044 0.044

500 0.067 0.057 0.055 0.055 0.055 0.055

1000 0.055 0.050 0.049 0.048 0.047 0.047

1500 0.059 0.053 0.048 0.047 0.047 0.047

2000 0.055 0.048 0.047 0.047 0.047 0.047

2500 0.069 0.062 0.061 0.060 0.060 0.060

BT = 2bT 1/5c

250 0.057 0.051 0.049 0.048 0.047 0.047

500 0.059 0.046 0.044 0.044 0.044 0.044

1000 0.066 0.055 0.054 0.054 0.054 0.053

1500 0.053 0.046 0.045 0.045 0.045 0.045

2000 0.056 0.048 0.048 0.046 0.046 0.045

2500 0.068 0.057 0.055 0.055 0.054 0.054

Table 3: Monte Carlo Results under the Null Hypothesis, ft,κ ≡ fκ, for different choices of

BT . The table reports empirical rejection rates of the test of nominal size 0.05 using 1, 000

simulations. Kn and K′n correspond to 8:40-9:10 and 12:30-13:00, respectively. The values

of umax and vn are set as in Section 4 in the main text.
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8:40 - 9:10 vs 12:30- 13:00 8:40 - 9:10 vs 14:30 - 15:00

pT pT

T 1 2 3 4 5 6 1 2 3 4 5 6

BT = bT 1/5c/2

250 0.080 0.066 0.059 0.057 0.056 0.054 0.348 0.319 0.310 0.297 0.290 0.285

500 0.124 0.095 0.076 0.071 0.067 0.067 0.690 0.663 0.647 0.635 0.627 0.623

1000 0.188 0.142 0.126 0.120 0.113 0.113 0.929 0.919 0.910 0.907 0.903 0.902

1500 0.242 0.195 0.173 0.167 0.163 0.161 0.983 0.982 0.979 0.978 0.977 0.977

2000 0.331 0.260 0.234 0.221 0.217 0.216 0.998 0.998 0.997 0.997 0.997 0.997

2500 0.337 0.283 0.268 0.258 0.247 0.243 0.999 0.998 0.998 0.998 0.998 0.998

BT = bT 1/5c

250 0.093 0.075 0.064 0.062 0.061 0.061 0.322 0.292 0.278 0.269 0.267 0.266

500 0.139 0.100 0.086 0.076 0.075 0.074 0.623 0.588 0.571 0.562 0.555 0.554

1000 0.168 0.126 0.106 0.099 0.096 0.094 0.918 0.903 0.901 0.893 0.890 0.887

1500 0.229 0.173 0.149 0.140 0.135 0.133 0.993 0.990 0.989 0.989 0.989 0.988

2000 0.339 0.285 0.266 0.251 0.240 0.232 1.000 0.998 0.998 0.998 0.998 0.998

2500 0.410 0.347 0.308 0.292 0.286 0.279 0.999 0.999 0.999 0.999 0.999 0.999

BT = 2bT 1/5c

250 0.080 0.053 0.047 0.046 0.044 0.043 0.311 0.264 0.238 0.231 0.229 0.226

500 0.119 0.076 0.064 0.060 0.059 0.059 0.668 0.631 0.610 0.601 0.595 0.593

1000 0.199 0.142 0.121 0.115 0.110 0.105 0.925 0.909 0.902 0.897 0.896 0.894

1500 0.242 0.195 0.170 0.161 0.157 0.153 0.982 0.982 0.979 0.978 0.978 0.977

2000 0.340 0.260 0.226 0.214 0.208 0.207 0.998 0.998 0.997 0.997 0.997 0.997

2500 0.351 0.293 0.258 0.248 0.242 0.239 0.999 0.998 0.998 0.998 0.998 0.998

Table 4: Monte Carlo Results under the Alternative Hypothesis, ft,κ 6= fκ, for different

choices of BT . The table reports empirical rejection rates for the test at nominal size 0.05

using 1000 simulations.

32



References

[1] D. Bosq. Linear Processes in Function Spaces. Springer, 2000.

[2] J. Jacod and A.N. Shiryaev. Limit Theorems For Stochastic Processes. Springer-Verlag,

Berlin, 2nd edition, 2003.

[3] Adam Jakubowski. On Limit Theorems for Sums of Dependent Hilbert Space Valued

Random Variables, pages 178–187. Springer New York, New York, NY, 1980.

[4] J. Weidmann. Linear operators in Hilbert Spaces. Springer, 1980.

33


