"Credit Availability and Internal Migration: Evidence from Thailand" Supplementary Material

CECILIA POGGI¹

Department of Economics, University of Sussex, Falmer, Brighton, UK.

Figure A1. Migration Rate by Region and Village Size (1998-2007).

Notes: Small and Large Villages are defined according to the median size of 109 households. Northeast stands for north-eastern region (Sisaket and Buriram) represented by light grey lines; Centre stands for central region (Lop Buri and Chanchoengsao) represented by darker lines.

¹ Contact e-mail address: <u>C.Poggi@sussex.ac.uk</u>.

	Non m	nigrant	Mig	rant	Tests
	Mean	St.Dev	Mean	St.Dev	p-value
Income and assets					
Agriculture	0.55		0.61		0.00
Net Income	102,722	168,784	106,899	266,112	0.46
Assets Stock	62,338	162,966	56,771	95,684	0.22
Land stock	694,524	1,621,951	587,889	1,415,949	0.02
Kinship Transfers	18,176	30,038	22,463	51,521	0.00
Borrowing					
VFP borrower	0.35		0.41		0.00
VFP loan	16,818	9,017	15,902	7,171	0.04
Other formal loan	49,020	63,763	43,096	44,924	0.88
Informal loans	43,472	92,366	42,797	93,459	0.15
Default	0.26		0.28		0.07
Formal default rate	0.16		0.17		0.56
Informal default rate	0.10		0.10		0.48
Village type/size					
Village Size	179	334	145	201	0.00
North-east Region	0.48		0.71		0.00
Village Size(North)	122	66	121	63	0.00
Village Size(Centre)	232	454	203	353	0.00
Small village	0.50		0.49		0.43
Village Size(Small)	78	21	78	20	0.46
Village Size(Large)	279	450	208	265	0.00

Table A1. Summary statistics for non-migrant and migrant households (1998-2007).

Notes: Pooled data for non-migrant (6,110 obs.) and migrant households (1,400 obs.). The table reports mean and St.Dev for characteristics related to income generation, borrowing and village characteristics. Monetary variables are expressed in 2001 prices and they are calculated conditional on having made at least one transaction. Tests p-value: χ^2 for binary variables, t-test with equal or unequal variance for levels.

Table A2. Orthogonality of regressors: Migration on VFP and instruments residuals.

	Short	Medium
	Term	Term
Residuals	0.041*	0.038***
	(0.024)	(0.015)
VFP	-0.025	-0.031**
	(0.022)	(0.013)
Controls	Yes	Yes
Observations	4506	7510

Notes: 2SLS second stage regression for short and medium term. Controls as main specification. Significance: * p < .05, *** p < .01.

	0	LS	2SLS S	hort term	2SLS Me	edium term
	Short	Medium	First	Second	First	Second
	(I)	(II)	(III)	(IV)	(V)	(VI)
2002*inv V size			81.513***		81.420***	
			(9.664)		(9.695)	
2003*inv V size			68.448***		68.463***	
			(9.585)		(9.651)	
2004*inv V size					83.810***	
					(5.886)	
2005*inv V size					61.717***	
					(16.022)	
2006*inv V size					74.951***	
					(6.563)	
2007*inv V size					61.590***	
					(9.940)	
VFP	0.007	-0.006		-0.039		-0.043**
	(0.011)	(0.007)		(0.031)		(0.022)
Head is male	0.146***	0.061*	0.186***	0.153***	0.132**	0.065**
	(0.050)	(0.031)	(0.072)	(0.050)	(0.058)	(0.031)
Head age	0.042***	0.026***	0.046**	0.046***	0.043***	0.028***
	(0.011)	(0.007)	(0.020)	(0.011)	(0.011)	(0.007)
Head age sq.	-0.036***	-0.023***	-0.039**	-0.039***	-0.038***	-0.025***
(/100)	(0.009)	(0.006)	(0.017)	(0.009)	(0.009)	(0.006)
Head education	0.008	0.009	0.005	0.009	0.024*	0.010*
	(0.006)	(0.006)	(0.016)	(0.007)	(0.013)	(0.006)
N adults male	-0.161***	-0.098***	0.005	-0.161***	0.040**	-0.096***
	(0.013)	(0.009)	(0.018)	(0.013)	(0.017)	(0.009)
N adults female	-0.099***	-0.092***	0.050**	-0.098***	0.049***	-0.090***
	(0.019)	(0.014)	(0.020)	(0.019)	(0.018)	(0.014)
N of children	-0.012	-0.021**	0.027	-0.009	0.026*	-0.020**
	(0.014)	(0.010)	(0.017)	(0.014)	(0.015)	(0.010)
Head is farmer	-0.025	-0.019	-0.014	-0.027	-0.013	-0.020*
	(0.017)	(0.012)	(0.029)	(0.017)	(0.029)	(0.012)
Stock of Wealth	-0.00001	-0.00002	0.00001	-0.00001	-0.00002	-0.00002
	(0.00003)	(0.00003)	(0.00006)	(0.00003)	(0.00005)	(0.00003)
Constant	-0.774**	-0.347*				
	(0.321)	(0.201)				
Fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Observations	4506	7510	4506	4506	7510	7510
\mathbf{R}^2	0.13	0.08		0.12		0.07
Kleibergen-Paap				41.96		47.96
Hansen J				0.51		2.92
p-value				0.48		0.71

Table A3. Determinants of migration: OLS and 2SLS models, full table.

Notes: Balanced panel data for short (1998-2003) and medium term (1998-2007). Col. I-II report OLS model, Col. III-VI the 2SLS model. Standard errors in parentheses, clustered at village level. The OLS estimates are not distinguishable from zero, due to either measurement error or to the existence of a positive correlation with the error term due to self-selection into credit (or both).

	Fi	rst stage: VFP o	on instruments		
Lags post take-up	1	2	3	4	5
2002*inv V size	01 011444	01 61 6444	01 402***	01 101 444	01 260***
	81.911***	81.616***	81.403***	81.491***	81.362***
	(9.390)	(9.004)	(9.719)	(9.098)	(9.700)
2003*inv V size	50 971***	68 810***	68 607***	68 575***	68 330***
	(12.596)	(9.618)	(9.672)	(9.635)	(9.656)
2004*' 17 '	((,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(2.0000)
2004*1nv V size	41.206***	60.429***	83.967***	83.893***	83.674***
	(6.770)	(10.981)	(5.845)	(5.834)	(5.856)
2005*inv V size					
2005 111 V 5120	31.564***	45.503***	63.722***	61.762***	61.556***
	(7.803)	(9.114)	(13.076)	(15.982)	(16.004)
2006*inv V size	40 101***	52 250***	70 114***	70 740***	74 025***
	42.121^{++++}	(12,805)	(12.114^{+++++})	(9.742^{***})	(6.521)
	(10.078)	(12.893)	(15.155)	(9.363)	(0.331)
2007*inv V size	35,943***	47.614***	58.384***	68.859***	72.651***
	(7.234)	(8.266)	(10.381)	(13.621)	(21.245)
Controls	Yes	Yes	Yes	Yes	Yes
Observations	4848	5425	5990	6534	7052
	Secon	d stage: migrat	ion on VFP crec	lit	
Lags post	1	2	3	4	5
take-up	1	2	5		
1 lag after VFP	-0.038				
	(0.028)	0.020			
2 lags after VFP		-0.039			
3 lags after VED		(0.030)	0.047*		
5 lags after VIT			(0.047)		
4 lags after VFP			(0.025)	-0.045*	
				(0.024)	
5 lags after VFP				× /	-0.043*
C .					(0.022)
Controls	Ves	Ves	Ves	Ves	Ves
Observations	4848	5425	5990	6534	7052
R^2	0.11	0.10	0.09	0.09	0.08
Kleibergen-Paap	20.76	22.00	49.99	50.60	50.82
Hansen J	7.45	2.01	1.54	1.68	2.58
p-value	0.19	0.85	0.91	0.89	0.76

Table A4. IV Fixed Effects Model with sample cut-off after first-time borrowing.

Notes: Sample 1998-2007, 2SLS model. In each column the data for VFP borrowers is dropped after a number of lags since initial borrowing. Top panel reports the first stage, the bottom the second stage where the coefficient for VFP is reported. Same controls and clustering as the main specification (full table available on request).

End-year	Short		End-year	Short	Medium
2003			2008		
VFP	-0.023		VFP	-0.037	-0.041**
	(0.03)			(0.03)	(0.02)
Obs.	5034		Obs.	4440	8140
R^2	0.13		\mathbf{R}^2	0.12	0.07
K-P	64.35		K-P	41.31	41.66
End-year	Short	Medium	End-year	Short	Medium
2004			2009		
VFP	-0.029	-0.039	VFP	-0.036	-0.040*
	(0.03)	(0.03)		(0.03)	(0.02)
Obs.	4890	5705	Obs.	4320	8640
\mathbf{R}^2	0.13	0.11	\mathbf{R}^2	0.12	0.07
K-P	47.89	81.82	K-P	37.12	36.33
End-year	Short	Medium	End-year	Short	Medium
2005			2010		
VFP	-0.039	-0.047*	VFP	-0.038	-0.039*
	(0.03)	(0.02)		(0.03)	(0.02)
Obs.	4752	6336	Obs.	4284	9282
R^2	0.12	0.09	\mathbf{R}^2	0.12	0.07
K-P	46.51	70.64	K-P	36.12	32.27
End-year	Short	Medium	End-year	Short	Medium
2006			2011		
VFP	-0.04	-0.043*	VFP	-0.039	-0.039*
	(0.03)	(0.02)		(0.03)	(0.02)
Obs.	4644	6966	Obs.	4230	9870
\mathbf{R}^2	0.12	0.08	\mathbf{R}^2	0.12	0.07
K-P	45.9	59.74	K-P	35.87	29.88
End-year	Short	Medium			
2007					
VFP	-0.039	-0.043**			
	(0.03)	(0.02)			
Obs.	4506	7510			
\mathbb{R}^2	0.12	0.07			
K-P	41.96	47.96			

Table A5. Migration on VFP credit: Second stage regression with balanced panels from 1998to a specific end-year.

Notes: Set of balanced panels between 1998-2003 to 1998-2011 (each end-year is in bold). Each column represents the second stage regression of VFP coefficient for short term (2003) or medium term (end year of the panel), with observation per panel (Obs.), R^2 and the Kleibergen-Paap F statistic (K-P). All estimations are with same controls and cluster as main specification; Hansen J test not rejected in all instances (full tables available on request).

Second stage	(]	[)	(I	I)	(I	II)
-	Short	Medium	Short	Medium	Short	Medium
VFP	-0.03	-0.038*	-0.031	-0.035*	-0.034	-0.033*
	(0.030)	(0.021)	(0.027)	(0.018)	(0.027)	(0.018)
Head is male	0.111**	0.035	0.138***	0.060**	0.151***	0.061**
	(0.047)	(0.026)	(0.049)	(0.028)	(0.052)	(0.028)
Head age	0.049***	0.029***	0.043***	0.026***	0.043***	0.023***
	(0.009)	(0.006)	(0.011)	(0.007)	(0.012)	(0.006)
Head age sq.	-0.042***	-0.025***	-0.036***	-0.023***	-0.037***	-0.021***
	(0.008)	(0.005)	(0.009)	(0.006)	(0.010)	(0.005)
Head education	0.005	0.009	0.012	0.010*	0.006	0.006
	(0.006)	(0.006)	(0.008)	(0.006)	(0.007)	(0.006)
N of adults male	-0.135***	-0.073***	-0.149***	-0.092***	-0.155***	-0.096***
	(0.013)	(0.009)	(0.012)	(0.009)	(0.013)	(0.010)
N of adults female	-0.098***	-0.093***	-0.090***	-0.083***	-0.087***	-0.080***
	(0.016)	(0.012)	(0.017)	(0.013)	(0.018)	(0.014)
N of children	-0.014	-0.021**	-0.007	-0.017*	-0.003	-0.012
	(0.011)	(0.009)	(0.013)	(0.009)	(0.013)	(0.009)
Head is farmer	-0.001	0.002	-0.029*	-0.019*	-0.028*	-0.007
	(0.016)	(0.011)	(0.016)	(0.011)	(0.017)	(0.013)
Stock of Wealth	-0.00003	-0.00001	-0.00002	-0.00002	-0.00003	-0.00002
	(0.00004)	(0.00003)	(0.00002)	(0.00003)	(0.00002)	(0.00003)
HH-Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Observations	4506	7510	4506	7510	4260	6800
\mathbf{R}^2	0.11	0.06	0.11	0.06	0.11	0.07
Kleibergen-Paap	41.96	47.96	41.96	47.96	43.53	58.61
Hansen J	0.6	4.05	0.89	5.72	0.43	5.94
p-value	0.44	0.54	0.34	0.33	0.51	0.31

Table A6. Robustness: Second stage 2SLS of non-seasonal migration, migration excluding schooling or reduced sample (no schooling households).

Notes: Second stage 2SLS model. Description: (I) estimates with non-seasonal migrant as dependent variable; (II) estimates with migrants (excluding any school-related migration) as dependent variable; (III) applies a sample restriction: balanced panel that excludes any household that declares to have a member migrating for educational purposes. Explanatory variables in each stage: household and time fixed effects, dummy if the head is male, head's age and its squared term (deflated by100), head's years of education, number of adult males, females, children, dummy if head primary occupation is in agriculture and stock of wealth. All monetary variables are deflated by the CPI (base year 2001) and expressed in 10,000 Baht. Standard errors in parentheses, clustered at village level.

First stage	(I)	(III)
	Short	Medium
inv V size	75.00***	72.00***
	(8.26)	(4.97)
Controls	Yes	Yes
Observations	4506	7510
\mathbf{R}^2	0.54	0.44
Second stage	(II)	(IV)
	Short	Medium
VFP	-0.04	-0.04*
	(0.03)	(0.02)
Controls	Yes	Yes
Observations	4506	7510
\mathbf{R}^2	0.12	0.07
Kleibergen-Paap	82.36	210.04

Table A7. Robustness: First and second stage of migration on VFP credit (one instrument).

Notes: Model with single instrument. First stage regression: VFP credit on inverse village size in 2002. Explanatory variables as main estimation. Monetary variables deflated by CPI (2001) and expressed in 10,000 Baht. Standard errors in parentheses, clustered at village level.

Second stage	(I)	(II)
	Short	Medium
VFP borrower	-0.168	-0.161**
	(0.131)	(0.074)
Controls	Yes	Yes
Observations	4506	7510
Kleibergen-Paap	13.43	10.82
Hansen J	0.09	2.00
p-value	0.77	0.85

Table A8. Robustness: Second stage 2SLS estimates of migration on VFP binary variable.

Notes: 2SLS Model with predicted binary VFP variable. Covariates as main specification. Monetary variables deflated by CPI (2001) and expressed in 10,000 Baht. Standard errors in parentheses, clustered at village level.

(I)	(III)
Short	Medium
72.972***	72.661***
(11.515)	(11.573)
56.064***	56.052***
(19.068)	(19.163)
	81.495***
	(12.382)
	87.790***
	(14.381)
	81.224***
	(11.197)
	80.413***
	(11.997)
Yes	Yes
3924	6540
3924 0.53	6540 0.44
3924 0.53 (II)	6540 0.44 (IV)
3924 0.53 (II) Short	6540 0.44 (IV) Medium
3924 0.53 (II) Short -0.029	6540 0.44 (IV) Medium -0.074*
3924 0.53 (II) Short -0.029 (0.057)	6540 0.44 (IV) Medium -0.074* (0.038)
3924 0.53 (II) Short -0.029 (0.057) Yes	6540 0.44 (IV) Medium -0.074* (0.038) Yes
3924 0.53 (II) Short -0.029 (0.057) Yes 3924	6540 0.44 (IV) Medium -0.074* (0.038) Yes 6540
3924 0.53 (II) Short -0.029 (0.057) Yes 3924 0.13	6540 0.44 (IV) Medium -0.074* (0.038) Yes 6540 0.07
3924 0.53 (II) Short -0.029 (0.057) Yes 3924 0.13 21.48	6540 0.44 (IV) Medium -0.074* (0.038) Yes 6540 0.07 16.76
3924 0.53 (II) Short -0.029 (0.057) Yes 3924 0.13 21.48 0.92	6540 0.44 (IV) Medium -0.074* (0.038) Yes 6540 0.07 16.76 1.99
	(I) Short 72.972*** (11.515) 56.064*** (19.068) Yes

Table A9. Robustness: Determinants of migration with a reduced sample of village size in between 50 and 250 households.

Notes: Specification for reduced panel (654 groups). The estimates are performed with a balanced panel that excludes seven villages: two with size of 30 and 34 households, and other seven with size comprised between 268 and 3194 households. Controls as main specification. Standard errors in parentheses, clustered at village level.