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A Appendix

First, note that

Jb(x, y) =
∫
Kb (v − x,w − y)u ((v, w), θ0,b(x, y)) · (A.1)

· ut ((v, w), θ0,b(x, y))ψ ((v, w), θ0,b(x, y)) dvdw

−
∫
Kb (v − x,w − y)∇u ((v, w), θ0,b(x, y)) ·

· [f(v, w)− ψ ((v, w), θ0,b(x, y))] dvdw ,

where u((x, y), θ) = ∇ log(ψ((x, y), θ)). We follow the idea in Hjort and Jones (1995) and

Tjøstheim and Hufthammer (2013). The matrix Jb(x, y) can be written as:

Jb(x, y) =
∫
K(r)K(s)u ((x+ b1r, y + b2s), θ0,b(x, y))ut ((x+ b1r, y + b2s), θ0,b(x, y)) ·

· ψ ((x+ b1r, y + b2s), θ0,b(x, y)) drds

−
∫
K(r)K(s)∇u ((x+ b1r, y + b2s), θ0,b(x, y)) ·

· [f(x+ b1r, y + b2s)− ψ ((x+ b1r, y + b2s), θ0,b(x, y))] drds,

where we set r = v−x
b1

and s = w−y
b2

. Taylor expanding u, it follows that

Jb(x, y) ∼
∫
K(r)K(s)D(x, y)wb(r, s)wtb(r, s)Dt(x, y)·

· ψ ((x+ b1r, y + b2s), θ0,b(x, y)) drds

−
∫
K(r)K(s)∇u ((x+ b1r, y + b2s), θ0,b(x, y)) ·

· [f(x+ b1r, y + b2s)− ψ ((x+ b1r, y + b2s), θ0,b(x, y))] drds,

where wb(r, s) is the 6-dimensional vector defined by wtb(r, s) = (1, b1r, b2s, b
2
1r

2, b1b2rs, b
2
2s

2)

and D(x, y) is the 5 × 6-matrix D(x, y) =
(
u, ∂u

∂x
, ∂u
∂y
, 1

2
∂2u
∂x2 ,

∂2u
∂x∂y

, 1
2
∂2u
∂y2

)
. Taylor expanding
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ψ, ∇u and f only at the first order, we have that

Jb(x, y) ∼ D(x, y)ψ ((x, y), θ0,b(x, y))
[∫

K(r)K(s)wb(r, s)wtb(r, s)drds
]
Dt(x, y)

−∇u ((x, y), θ0,b(x, y)) [f(x, y)− ψ ((x, y), θ0,b(x, y))]
∫
K(r)K(s)drds.

Computing
∫
K(r)K(s)wb(r, s)wtb(r, s)drds, we obtain the following matrix

Hb =



1 0 0 αb2
1 0 αb2

2

0 αb2
1 0 0 0 0

0 0 αb2
2 0 0 0

αb2
1 0 0 βb4

1 0 α2b2
1b

2
2

0 0 0 0 α2b2
1b

2
2 0

αb2
2 0 0 α2b2

1b
2
2 0 βb4
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where α =
∫
K(s)s2ds ≥ 0 and β =

∫
K(s)s4ds ≥ 0. The matrix Hb is of rank 5, therefore,

D(x, y)HbD
t(x, y) is of rank 5. Hence,

Jb(x, y) ∼ D(x, y)ψ ((x, y), θ0,b(x, y))HbD
t(x, y)

−∇u ((x, y), θ0,b(x, y)) [f(x, y)− ψ ((x, y), θ0,b(x, y))] .= Jb,2(x, y). (A.2)

It follows (cf. Tjøstheim and Hufthammer (2013)) that (b1b2)−2Jb,2(x, y) is non-singular

and positive definite as b1, b2 → 0. The same idea can be used to find an approximating

expression for

Mb(x, y) = b1b2

∫
K2
b (v − x,w − y)u((v, w), θ0,b(x, y)))· (A.3)

· ut((v, w), θ0,b(x, y)))f(v, w)dvdw

− b1b2
(∫

Kb(v − x,w − y)u((v, w), θ0,b(x, y)))f(v, w)dvdw
)
·

·
(∫

Kb(v − x,w − y)u((v, w), θ0,b(x, y)))f(v, w)dvdw
)t
.
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B Appendix

In this appendix the proofs of the theorems in Section 2 are given.

Proof of Theorem 2.1. Define M < ∞ such that |L(b)((Xt, Yt), θ) − L(b)((Xt, Yt), θ′)| ≤

Ct|θ − θ′| and Ct ≤ M and ∆ < ∞ such that ‖L(b)((Xt, Yt), θ)‖4 ≤ ∆. Given δ > 0, let

{η(θi, δ) : i = 1, . . . , B} be a finite sub-cover of Θ, where η(θi, δ) = {θ ∈ Θ : |θ − θi| < δ}.

Then

sup
θ∈Θ
|Ln,b(θ)− µb| = max

i
sup

θ∈η(θi,δ)
|Ln,b(θ)− µb|. (B.1)

Hence, we can write

P
(

sup
θ∈Θ
|Ln,b(θ)− µb| > ε

)
≤

B∑
i=1

P
(

sup
θ∈η(θi,δ)

|Ln,b(θ)− µb| > ε

)
. (B.2)

By the Lipschitz continuity of
{
L(b)((Xt, Yt), θ)

}
, if θ ∈ η(θi, δ), then

|Ln,b(θ)− µb| ≤ |Ln,b(θ)− Ln,b(θi)|+ |Ln,b(θi)− µb| ≤
δ

n

n∑
t=1

Ct + |Ln,b(θi)− µb|.

By the Markov inequality,

P
(

sup
θ∈η(θi,δ)

|Ln,b(θ)− µb| > ε

)
≤ P

(
δ

n

n∑
t=1

Ct >
ε

2

)
+ P

(
|Ln,b(θi)− µb| >

ε

2

)

≤ 2δ
nε

E
(

n∑
t=1

Ct

)
+ 4
ε2

Var (Ln,b(θi))

≤ 2δM
ε

+ 4
ε2

Var (Ln,b(θi)) .

By the mixing inequality (Corollary A.2, Hall and Heyde (1980)) and the 4-dominance of{
L(b)((Xt, Yt), θ)

}
,
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Var (Ln,b(θi)) = 1
n2 Var

(
n∑
t=1

L(b)((Xt, Yt), θi)
)

= 1
n2

n∑
t=1

n∑
s=1

Cov
(
L(b)((Xt, Yt), θi), L(b)((Xs, Ys), θi)

)
≤ 8
n2

n∑
t=1

n∑
s=1
‖L(b)((Xt, Yt), θi)‖4‖L(b)((Xs, Ys), θi)‖4α

|t−s|
2

≤ 8∆2

n2

n∑
t=1

n∑
s=1

α
|t−s|

2 = 8∆2

n2

n+ 2
n−1∑
j=1

(n− j)α
j
2


≤ 8∆2

n2

n+ 2(n− 1)
n−1∑
j=1

α
j
2

 = 8∆2

n2

(
n+ 2(n− 1)α

1
2 − α

n
2

1− α
1
2

)
.

Therefore,

P
(

sup
θ∈η(θi,δ)

|Ln,b(θ)− µb| > ε

)
≤ 2δM

ε
+ 32∆2

n2

(
n+ 2(n− 1)α

1
2 − α

n
2

1− α
1
2

)

< ζ + 32∆2

n2

(
n+ 2(n− 1)α

1
2 − α

n
2

1− α
1
2

)
,

∀n sufficiently large, ∀ζ > 0, δ < εζ
2M . From this, it follows that, as n→∞,

P
(

sup
θ∈Θ
|Ln,b(θ)− µb| > ε

)
< Bζ, ∀ζ > 0, B <∞,

therefore,

lim
n→∞

P
(

sup
θ∈Θ
| Ln,b(θ)− µb |> ε

)
= 0, ∀ε > 0.

This means that

Ln,b(θ)− E (Ln,b(θ)) P−−→ 0 uniformly on Θ. (B.3)

Note that, from the stationarity of the process {(Xt, Yt)}, it follows that E (Ln,b(θ)) =

E(L(b)((Xt, Yt), θ)). From the fact that Ln,b is continuous on Θ a.s. − P with maximizer

θn,b, assumption A2) and (B.3), it follows that Ln,b(θ0,b)− E (Ln,b(θ0,b)) P−−→ 0. Moreover,

using (B.3) and the definition of θn,b and θ0,b (that is, assumption A2)), we have that
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Ln,b(θn,b)−E
(
L(b)((Xt, Yt), θ0,b)

)
= supθ∈Θ Ln,b(θ)−supθ∈Θ E

(
L(b)((Xt, Yt), θ)

) P−−→ 0. This

means that Ln,b(θn,b)−Ln,b(θ0,b) P−−→ 0. By the assumption that θn,b is a maximizer of Ln,b,

for every ε > 0 there exists a η > 0 such that | Ln,b(θn,b) − Ln,b(θ) |> η for every θ with

| θn,b − θ |> ε. Therefore, if we take θ = θ0,b, the event {| θn,b − θ0,b |> ε} is contained in

the event {| Ln,b(θn,b)− Ln,b(θ0,b) |> η}, meaning that for every ε > 0, there exists η > 0,

such that

P (| θn,b − θ0,b |> ε) ≤ P (| Ln,b(θn,b)− Ln,b(θ0,b) |> η) P−−→ 0.

The last statement of the theorem follows since θ0,b → θ0 by definition.

Proof of Theorem 2.2. It is a generalization of Theorem 3 of Tjøstheim and Hufthammer

(2013). Define Qn(θ) = − n
(b1b2)2Ln,b(θ) and consider the Taylor expansion of ∇Qn(θ)

0 = 1√
n
∇Qn(θn,b) = 1√

n
∇Qn(θ0,b) + 1

n
∇2Qn(θ̃)

√
n(θn,b − θ0,b)

where θ̃ is determined by the mean value theorem. Therefore,

−(b1b2)
3
2

√
n
∇Qn(θ0,b) = (b1b2)

3
2

n
∇2Qn(θ̃)

√
n(θn,b − θ0,b)

= (b1b2)
3
2

n

[
∇2Qn(θ0,b) +

(
∇2Qn(θ̃)−∇2Qn(θ0,b)

)]√
n(θn,b − θ0,b).

If we can prove that

1. 1
n
∇Qn(θ0,b)→ 0 a.s.;

2. 1
n
∇2Qn(θ0,b)→ J̃ a.s., where J̃ is a 5×5 positive definite matrix that can be identified

with the limit of 1
(b1b2)2Jn,b as n→∞ and b→ 0;

3. limn→∞ lim supδ→0
1
nδ
| ∇2Qn(θ̃)−∇2Qn(θ0,b) |<∞;

4. Var
(
− (b1b2)

3
2√

n
∇Qn(θ0,b)

)
= 1

(b1b2)2Mn,b;

then, using Theorem 4.4 of Masry and Tjøstheim (1995) and Theorem 2.2 of Klimko and

Nelson (1978), we have the result. To prove point 1., we need to use Theorem 4.1 of Masry
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and Tjøstheim (1995) and assumption A2). Indeed, with u((x, y), θ) = ∇ log(ψ((x, y), θ)),

we have that

1
n
∇Qn(θ) |θ=θ0,b = 1

(b1b2)2

∫
Kb(v − x,w − y)u((v, w), θ0,b)ψ((v, w), θ0,b)dvdw

− 1
n(b1b2)2

n∑
t=1

Kb(Xt − x, Yt − y)u((Xt, Yt), θ0,b)

= O

(
1

(b1b2)2

( logn
nb1b2

) 1
2
)

= O

(( logn
n(b1b2)5

) 1
2
)
.

and assumption 3, stated in the theorem, can be used. In the same way it is possible to

prove point 2.,

1
n
∇2Qn(θ) |θ=θ0,b = 1

(b1b2)2

∫
Kb(v − x,w − y)u((v, w), θ0,b)ut((v, w), θ0,b)ψ((v, w), θ0,b)dvdw

+ 1
(b1b2)2

∫
Kb(v − x,w − y)∇u((v, w), θ0,b)ψ((v, w), θ0,b)dvdw

− 1
n(b1b2)2

n∑
t=1

Kb(Xt − x, Yt − y)∇u((Xt, Yt), θ0,b)

= 1
(b1b2)2Jb,2 −

1
n(b1b2)2

n∑
t=1

Kb(Xt − x, Yt − y)∇u((Xt, Yt), θ0,b)

+ 1
(b1b2)2

∫
Kb(v − x,w − y)∇u((v, w), θ0,b)f(v, w)dvdw → J̃ a.s. ,

where Jb,2 is defined in Appendix A. Point 3. follows from the mean value theorem and

the fact that the third derivative of Q′n(θ) = (b1b2)2Qn(θ) can be bounded by a constant

c,

1
nδ

[
∇2Qn(θ̃)−∇2Qn(θ0,b)

]
= 1
nδ
∇3Qn(θ̂)(θ0,b − θ̃)

= 1
nδ(b1b2)2∇

3Q′n(θ̂)(θ0,b − θ̃) ≤
c

n(b1b2)2

where θ̂ is determined by the mean value theorem and | θ0,b − θ̃ |< δ. Finally, point 4. is

a straightforward consequence of the definition of ∇Qn(θ0,b).
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C Appendix

In this appendix the proof of the theorems in Section 3 are given.

Proof of Theorem 3.1. The proof is just an application of the continuous mapping theorem.

Proof of Theorem 3.2. The proof of this theorem is essentially the same as for of Theorem

3.1 in Lacal and Tjøstheim (2016). The asymptotic normality for b fixed is proved as

in that theorem. We only need to evaluate the variance of
∫
Ab(x, y)dGn(x, y), where

Gn(x, y) =
√
n(Fn(x, y)− F (x, y)). Since E (

∫
Ab(x, y)dGn(x, y)) = 0,

Var
(∫

Ab(x, y)dGn(x, y)
)

= E
(∫

Ab(x, y)Ab(v, w)dGn(x, y)dGn(v, w)
)

= 1
n

∑
r

∑
s

E (Ab (Xr, Yr)Ab (Xs, Ys))

−
∑
r

E
(∫

Ab (Xr, Yr)Ab(v, w)dF (v, w)
)

−
∑
s

E
(∫

Ab(x, y)Ab (Xs, Ys) dF (x, y)
)

+ n

∫
Ab(x, y)Ab(v, w)dF (x, y)dF (v, w)

= E1 + E2 + E3 + E4

The contribution of terms with r 6= s to E1 is

1
n

∑
r 6=s

∫
Ab(x, y)Ab(v, w)dF (r−s)(x, y, v, w) =

n∑
k=1

n− k
n

∫
Ab(x, y)Ab(v, w)·

·
[
dF (k)(x, y, v, w) + dF (−k)(x, y, v, w)

]
,

whereas, terms with r = s contribute with
∫
Ab(x, y)Ab(x, y)dF (x, y). Moreover, E2 =
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E3 = −E4, so that,

Var
(∫

Ab(x, y)dGn(x, y)
)

=
∫
A2
b(x, y)dF (x, y)

− n
∫
Ab(x, y)Ab(v, y)dF (x, y)dF (v, w)

+
∫
Ab(x, y)Ab(v, w)

n∑
k=1

n− k
n

[
dF (k)(x, y, v, w) + dF (−k)(x, y, v, w)

]
+
∫
Ab(x, y)Ab(v, w)dF (x, y)dF (v, w)

−
∫
Ab(x, y)Ab(v, w)dF (x, y)dF (v, w)

=
∫
A2
b(x, y)dF (x, y)

−
∫
Ab(x, y)Ab(v, w)dF (x, y)dF (v, w)

+
∫
Ab(x, y)Ab(v, w)

n∑
k=1

n− k
n

[
dF (k)(x, y, v, w) + dF (−k)(x, y, v, w)

]
+
∫
Ab(x, y)Ab(v, w)

n∑
k=1

1− n
n

dF (x, y)dF (v, w).

Focusing on the last two terms, if we add and subtract∑n
k=1

2(n−k)
n

F (x, y)F (v, w), we have:

∫
Ab(x, y)Ab(v, w)

n∑
k=1

[
n− k
n

(
dF (k)(x, y, v, w) + dF (k)(x, y, v, w)

)
+ 1− n

n
dF (x, y)dF (v, w)

]

=
∫
Ab(x, y)Ab(v, w)

n∑
k=1

n− k
n

[
dF (k)(x, y, v, w)− dF (x, y)dF (v, w)

]
+
∫
Ab(x, y)Ab(v, w)

n∑
k=1

n− k
n

[
dF (−k)(x, y, v, w)− dF (x, y)dF (v, w)

]
.

Therefore,

Var
(∫

Ab(x, y)dGn(x, y)
)

=
∫
A2
b(x, y)dF (x, y)−

∫
Ab(x, y)Ab(v, w)dF (x, y)dF (v, w)

+
∫
Ab(x, y)Ab(v, w)

n∑
k=1

n− k
n

[
dF (k)(x, y, v, w)− dF (x, y)dF (v, w)

]
+
∫
Ab(x, y)Ab(v, w)

n∑
k=1

n− k
n

[
dF (−k)(x, y, v, w)− dF (x, y)dF (v, w)

]

To check whether the variance converges, we need to prove the convergence of the sum in
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the last two integrals. Using Assumption A1 and Corollary A.2 of Hall and Heyde (1980),

and choosing arbitrary 1 < q < p such that 1
p

+ 1
q
< 1,

|
n∑
k=1

n− k
n

∫
Ab(x, y)Ab(v, w)

[
f (k)(x, y, v, w)− f(x, y)f(v, w)

]
dxdydvdw |

≤
n∑
k=1

n− k
n
| E (Ab(Xs, Ys)Ab(Xs−k, Ys−k))− E (Ab(Xs, Ys))E (Ab(Xs−k, Ys−k)) |

≤ 8
n∑
k=1

n− k
n
‖Ab‖p‖Ab‖qα

1− 1
p
− 1
q

k = 8‖Ab‖p‖Ab‖q O
(

(n− 1)
n

n∑
k=1

(
α

1− 1
p
− 1
q

)k)

n→∞−−−→ 8 α
1− 1

p
− 1
q

1− α1− 1
p
− 1
q

‖Ab‖p‖Ab‖q <∞,

where f (k) is the density function of (Xt, Yt, Xs, Ys) with k = t − s. The same is true

for k = s − t. For n → ∞ and b → 0, we need assumption 3 of Theorem 2.2 and use

the approach of Joe (1989) and let b → 0 in the expressions for b fixed. Finally, the

asymptotic normality of
∫
Ab(x, y)dGn(x, y) follows from Francq and Zakoïan (2005) since

p > 2, Assumption A1 holds and

lim
n→∞

Var
(∫

Ab(x, y)dGn(x, y)
)
<∞.

The last part of the theorem follows from the above proof, from Theorem 2.1, and Propo-

sition 6.3.9 of Brockwell and Davis (2006).

Proof of Corollary 3.1. This follows in a straightforward fashion from the method of proof

of Theorem 3.2.

D Appendix

In this appendix the asymptotic theory for the validity of the bootstrap is given with some

auxiliary preliminary results proved in Appendix E.

Let (Λ,G,P∗ω) be the probability space where {X∗t } and {Y ∗t }, the bootstraps of {Xt}
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and {Yt}, respectively, are defined. In particular, for the estimation part, the two times

series are bootstrapped together ({(Xt, Yt}), while, for the independence testing part, they

are bootstrapped separately ({Xt} and {Yt}). As we stated in Section 2 for θ0,b and for θn,b

we assume that the point (x, y), at which the local log-likelihood is estimated, is fixed, so

that, θ∗n,b = θ∗n,b(x, y), which is the 5-dimensional vector of parameter estimates obtained

with the bootstrap.

First, we need some expressions for calculating the mean value and the variance of a time

series under the bootstrap and referring to the probability space (Λ,G,P∗ω). For fixed b, con-

sider a stationary time series
{
Z

(b)
t (θ)

}
, θ ∈ Θ and define Z̄n(θ) = Z̄n,b(θ) = 1

n

∑n
t=1 Z

(b)
t (θ),

Z̄α,n(θ) = Z̄α,n,b(θ) = ∑n
t=1 αn(t)Z(b)

t (θ), where αn(t) is defined below. Moreover, E∗ is the

mean value under the measure P∗ω. From Politis and Romano (1994) and Gonçalves and

White (2004), we know that, for the stationary bootstrap,

E∗
(
Z̄∗n(θ)

)
= Z̄n(θ) (D.1)

and, again, using Var to denote the covariance matrix,

Var∗
(
Z̄∗n(θ)

)
= 1
n2

n∑
s=1

(Z(b)
s (θ)− Z̄n(θ))(Z(b)

s (θ)− Z̄n(θ))t (D.2)

+ 1
n2

n−1∑
τ=1

γn(τ)
n−τ∑
s=1

[
(Z(b)

s (θ)− Z̄n(θ))(Z(b)
s+τ (θ)− Z̄n(θ))t

+(Z(b)
s+τ (θ)− Z̄n(θ))(Z(b)

s (θ)− Z̄n(θ))t
]

and where

γn(τ) =
(

1− τ

n

)(
1− 1

ln

)τ
+ τ

n

(
1− 1

ln

)n−τ
,
n−1∑
τ=1

γn(τ) ≤ ln (D.3)

and for the moving block bootstrap,

E∗
(
Z̄∗n(θ)

)
=

n∑
t=1

αn(t)Z(b)
t = Z̄n(θ) +Op

(
ln
n

)
(D.4)
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Var∗
(
Z̄∗n(θ)

)
= 1
n

n∑
s=1

αn(s)(Z(b)
s (θ)− Z̄α,n(θ))(Z(b)

s (θ)− Z̄α,n(θ))t (D.5)

+ 1
n

ln−1∑
τ=1

(
1− τ

ln

) n−|τ |∑
s=1

βn(t, τ)
[
(Z(b)

s (θ)− Z̄α,n(θ))(Z(b)
s+τ (θ)− Z̄α,n(θ))t

+(Z(b)
s+τ (θ)− Z̄α,n(θ))(Z(b)

s (θ)− Z̄α,n(θ))t
]

where

αn(t) =



t
ln(n−ln+1) , 1 ≤ t ≤ ln − 1

1
n−ln+1 , l ≤ t ≤ n− ln + 1

n−t+1
ln(n−ln+1) , n− ln + 2 ≤ t ≤ n

,
n∑
t=1

αn(t) = 1 (D.6)

βn(t, τ) =



t
(ln−|τ |)(n−ln+1) , 1 ≤ t ≤ ln− | τ | −1

1
n−ln+1 , ln− | τ |≤ t ≤ n− ln + 1

n−t−|τ |+1
(ln−|τ |)(n−ln+1) , n− ln + 2 ≤ t ≤ n− | τ |

,

n−|τ |∑
t=1

βn(t, τ) = 1. (D.7)

Remark D.1. It is easy to see that |γn(t)| ≤ 2, αn(t) ≤ 1
n−ln+1 and βn(t, τ) ≤ 1

n−ln+1 for

every t, τ = 1, . . . , n.

In the next theorems, Z(b)
t will be a scalar related to the log-likelihood, i.e. Z(b)

t (θ) =

L(b)((Xt, Yt), θ), or a vector being the gradient, i.e. Z(b)
t (θ) = ∇L(b)((Xt, Yt), θ), or a matrix

being the Hessian matrix of the log-likelihood, i.e. Z(b)
t (θ) = ∇2L(b)((Xt, Yt), θ).

To the assumptions A1)-A3) of Section 2.1, we need to add the assumptions A4 and

A5 below.

A4) (Λ,G) is a measurable space, (Λ,G,P∗ω) is a complete probability space, for all ω ∈ Ω,

and
{
L∗n,b : Λ× Ω×Θ −→ R̄

}
is a sequence of random functions such that L∗n,b(θ) =

Ln,b((X∗n(λ, ω), Y ∗n(λ, ω)), θ), where X∗t (λ, ω) = XτXt (λ)(ω), Y ∗t (λ, ω) = YτYt (λ)(ω),

τXt , τ
Y
t : Λ −→ N, ω ∈ Ω, λ ∈ Λ, τXt and τYt are vectors of random indexes, represent-

ing the bootstrap operation. If the two time series are bootstrapped together, then

τXt = τYt . Moreover, the block length ln is such that ln = o(
√
n) as n→∞.

12



A5) For θ ∈ Θ and for every t = 1, . . . , n,
{
L(b)((Xt, Yt), θ)

}
is Lipschitz continuous on Θ,{

∇L(b)((Xt, Yt), θ)
}
is 6-dominated on Θ uniformly in t, n, and

{
∇2L(b)((Xt, Yt), θ)

}
is Lipschitz continuous on Θ and 2−dominated on Θ uniformly in t, n.

Assumption A4 sets the stage for proving the validity of the bootstrap. It defines

the probability space of the bootstrapped samples {X∗t } and {Y ∗t }. Assumption A5 is

needed in Theorem D.2, and it is fulfilled in the situation we consider. Indeed, the kernel

function has a compact support and the term log(ψ((Xt, Yt), θ)) is differentiable, therefore{
L(b)((Xt, Yt), θ)

}
and

{
∇2L(b)((Xt, Yt), θ)

}
are Lipschitz continuous. Further, since the

kernel function has a compact support and the continuous term log(ψ((Xt, Yt), θ)) has

a maximum in the compact set Θ, so
{
∇L(b)((Xt, Yt), θ)

}
and

{
∇2L(b)((Xt, Yt), θ)

}
are

bounded by a constant. This implies that the two processes are, respectively, 6-dominated

and 2-dominated.

We will use the following notations, taken from Gonçalves and White (2002, 2004), for

the convergence of variables in the probability space (Λ,G,P∗ω). First, we write Y ∗n
P∗ω ,P−−−→ 0,

if for any ε, δ > 0,

lim
n→∞

P (ω : P∗ω (λ :| Y ∗n (λ, ω) |> ε) > δ) = 0.

Further, we write Y ∗n ⇒
dP∗ω N(0, 1) prob- P, if for every subsequence {n′}, there exists a

further subsequence {n′′} such that Y ∗n′′ ⇒
dP∗ω N(0, 1) a.s. (see Gonçalves and White (2004),

page 210). This definition is based on the fact that convergence in probability implies almost

sure convergence for such kinds of subsequences (see Theorem 20.5 of Billingsley (2012)).

D.1 Estimation

We need to show that the bootstrap is valid and to do that we need to prove the consistency

(Theorem D.1) and the asymptotic normality (Theorem D.2) of the parameter estimates

after the bootstrap.

Theorem D.1 Let assumptions A1), A2) and A4) hold, and let
{
L(b)((Xt, Yt), θ)

}
,

13



θ ∈ Θ, be Lipschitz continuous on Θ and 4-dominated on Θ uniformly in t, n.. More-

over, assume that, as b = bn → 0, σ2
b
.= Var(L(b)(Xt, Yt), θ) → σ2 < ∞ and µb

.=

E(L(b)(Xt, Yt), θ))→ µ <∞, for all t = 1, . . . , n and θ ∈ Θ. Then θ∗n,b − θn,b
P∗ω ,P−−−−→ 0.

Proof of Theorem D.1. Using the same arguments as in Theorem 2.1 with (D.1) and (D.4)

instead of the stationary condition and Lemmas E.1 and E.2 in Appendix E, it is seen that

θ∗n,b − θ0,b
P∗ω ,P−−−→ 0. Therefore,

P
(
P∗ω
(
| θ∗n,b − θn,b |> δ

)
> ξ

)
≤ P

(
P∗ω
(
| θ∗n,b − θ0,b |>

δ

2

)
>
ξ

2

)
+ P

(
| θn,b − θ0,b |>

ξ

2

)
→ 0,

as n→∞ and ∀δ, ξ > 0.

Theorem D.2 Let the assumptions of Theorem 2.2 and A1) - A5) hold, then
√
b1b2M

− 1
2

n,b Jn,b
√
n
(
θ∗n,b − θn,b

)
⇒dP∗ω N(0, I5) prob− P.

Proof of Theorem D.2. By A4 and Lemma A.1 of Gonçalves and White (2004), X∗n is

G−measurable, ∀ω ∈ Ω. Therefore, L∗n,b is G−measurable, ∀(ω, θ) ∈ Ω×Θ. By definition,

L∗n,b is continuously differentiable of order 2 on Θ a.s.− P. Taylor expanding ∇L∗n,b(θ), we

have that

∇L∗n,b(θn,b) = ∇L∗n,b(θ∗n,b) +∇2L∗n,b(θ∗n,b)
(
θn,b − θ∗n,b

)
+ op∗(1)

=
[
∇2L∗n,b(θ∗n,b)−∇2L∗n,b(θ0,b)

] (
θn,b − θ∗n,b

)
+∇2L∗n,b(θ0,b)

(
θn,b − θ∗n,b

)
+ op∗(1),

where op∗(1) denotes the small order under P∗ω. To prove this theorem, we first need

to ensure that
[
∇2L∗n,b(θ∗n,b)−∇2L∗n,b(θ0,b)

] (
θn,b − θ∗n,b

) P∗ω ,P−−−→ 0 and second calculate the
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asymptotic distribution of ∇L∗n,b(θn,b). For the first part, we have that

∇2L∗n,b(θ∗n,b)−∇2L∗n,b(θ0,b) =
[
∇2L∗n,b(θ∗n,b)−∇2Ln,b(θ∗n,b)

]
+
[
∇2Ln,b(θ∗n,b)−∇2Ln,b(θ0,b)

]
+
[
∇2Ln,b(θ0,b)−∇2L∗n,b(θ0,b)

] .= E1 + E2 + E3.

Applying Lemma E.1 and Lemma E.2 to each component of Z(b)
t (θ) = ∇2L(b)((Xt, Yt), θ),

it follows that ∇2L∗n,b(θ)−∇2Ln,b(θ)
P∗ω ,P−−−→ 0 uniformly on Θ. We have that, for suitable

matrix and vector norms | · |,

| E1 |≤ sup
θ∈Θ
| ∇2L∗n,b(θ)−∇2Ln,b(θ) |

P∗ω ,P−−−−→ 0,

| E2 | ≤
1
n

n∑
t=1
| ∇2L(b)((Xt, Yt), θ∗n,b)−∇2L(b)((Xt, Yt), θ0,b) |

≤ 1
n

n∑
t=1

Ct | θ∗n,b − θ0,b |≤M | θ∗n,b − θ0,b |
P∗ω ,P−−−−→ 0

and

| E3 |≤ sup
θ∈Θ
| ∇2Ln,b(θ)−∇2L∗n,b(θ) |

P∗ω ,P−−−−→ 0,

whereM is a sufficiently large constant such that Ct ≤M , for every t = 1, . . . , n. Moreover,

we have that

√
n
(
∇L∗n,b(θn,b)−∇Ln,b(θn,b)

)
=
√
n
(
∇L∗n,b(θ0,b)−∇Ln,b(θ0,b)

)
−
√
n (∇Ln,b(θn,b)−∇Ln,b(θ0,b))

+
√
n
(
∇L∗n,b(θn,b)−∇L∗n,b(θ0,b)

) .= E1 + E2 + E3.

Taylor expanding E2 and E3, we have, in probability,

√
b1b2M

− 1
2

n,b (E2 + E3) ∼
√
b1b2M

− 1
2

n,b

(
∇2L∗n,b(θ0,b)−∇2Ln,b(θ0,b)

)√
n(θn,b − θ0,b),
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but, from Theorem 2.2,
√
b1b2M

− 1
2

n,b Jn,b
√
n (θn,b − θ0,b) ⇒ N(0, I5), which implies, together

with A3, that
√
n
√
b1b2(θn,b − θ0,b) = Op(1). Moreover, applying Lemma E.1 to each

element of Z(b)
t (θ) = ∇2L(b)((Xt, Yt), θ), it follows that:

∇2L∗n,b(θ)−∇2Ln,b(θ)⇒dP∗ω 0 prob− P, ∀θ ∈ Θ .

Then, from the results above and from A3, it follows that

√
b1b2M

− 1
2

n,b (E2 + E3)⇒dP∗ω 0 prob− P .

By the definition of θn,
√
n∇Ln,b(θn,b) = 0, therefore,

√
n
√
b1b2M

− 1
2

n,b ∇L∗n,b(θn,b)−
√
b1b2M

− 1
2

n,b E1

=
√
b1b2M

− 1
2

n,b (E2 + E3)⇒dP∗ω 0 prob− P.

Applying (E.5) of Theorem E.1 of Appendix E with Z(b)
t (θ) = ∇L(b)((Xt, Yt), θ) and Vn =

(b1b2)−1Mn,b, we have that
√
b1b2M

− 1
2

n,b E1 ⇒dP∗ω N(0, I5) prob- P. Therefore,

√
n
√
b1b2M

− 1
2

n,b ∇L∗n,b(θn,b)⇒
dP∗ω N(0, I5) prob− P .

Now, putting everything together, using Theorem D.1 with Z(b)
t (θ) = ∇2L

(b)
t (θ) and Lemma

E.1

∇L∗n,b(θn,b) = ∇2L∗n,b(θ0,b)
(
θn,b − θ∗n,b

)
+ op∗(1)

= ∇2Ln,b(θ0,b)
(
θn,b − θ∗n,b

)
+ op∗(1)

Using the Markov inequality, the mixing inequality (Corollary A.2, Hall and Heyde (1980))

and the 4-dominance of
{
∇2L

(b)
t (θ)

}
, one can show, using the same technique as in (E.3),

16



that ∇2Ln,b(θ0,b)− E (∇2Ln,b(θ0,b)) P−−→ 0. This leads to

∇L∗n,b(θn,b) = E
(
∇2Ln,b(θ0,b)

) (
θn,b − θ∗n,b

)
+ op(1) + op∗(1)

= −Jn,b
(
θn,b − θ∗n,b

)
+ op(1) + op∗(1).

Therefore, √
b1b2M

− 1
2

n,b Jn,b
√
n
(
θ∗n,b − θn,b

)
⇒dP∗ω N(0, I5) prob− P.

Like in Section 2.1, Theorems D.1 and D.2 still hold if we consider the case of {(Xt, Yt−k)}

instead of {(Xt, Yt)}, because to prove them it is just sufficient to substitute θ with θ(k).

Also in this case, the matrices Mn,b and Jn,b will depend on the lag k. Moreover, the same

asymptotic results hold with essentially the same proofs for the bootstrapped time series

Xn,∗
t and Y n,∗

t , where, Xn,∗
t and Y n,∗

t are originated from the transformed series {Xn
t , Y

n
t }.

D.2 Testing

To ensure the validity of the bootstrap, we need to check the consistency (see Theorem D.3

below) and the asymptotic normality (see Theorem D.4) of the test statistic T ∗n,b. We can

do that for both the stationary and the moving block bootstrap.

Theorem D.3 Under the assumptions of Theorem D.1 and assuming that h is continuous,

it follows that T ∗n,b − Tn,b
P∗ω ,P−−−−→ 0.

Proof of Theorem D.3. The proof is just an application of the continuous mapping theorem

to the result obtained in Theorem D.1.

Theorem D.4 Under the assumptions of Corollary 3.1 and Theorem 2.1, and A4, it

follows that
√
n [Cn (Ab)]−

1
2
(
T ∗n,b − Tn,b

)
⇒dP∗ω N (0, 1) prob− P.
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Proof of Theorem D.4. For the stationary bootstrap, the proof of this theorem is the same

one as for Theorem 4.4 part B in Lacal and Tjøstheim (2016). Instead, for the moving block

bootstrap, we need to check whether E∗ (−I∗((x, y), θn,b(x, y))) P−−→ −I((x, y), θ0,b(x, y))

still holds, where I((x, y), θ) = ∂2

∂θ2Ln,b((x, y), θ). This is true because, using the same

reasoning of Theorem 4.4 part B in Lacal and Tjøstheim (2016) and (D.4),

E∗ (−I∗((x, y), θn,b(x, y))) = −I((x, y), θn,b(x, y)) +Op

(
ln
n

)
∼ −I((x, y), θ0,b(x, y)),

where the last approximation holds in probability.

The situation with a standardized and normalized series {(Xn
t , Y

n
t )} can be treated

in essentially the same way, with modification mentioned in the remark after Corollary

3.1, under the null hypothesis of independence between {Xt} and {Yt}, and with the test

functional Tn,b having the same asymptotic distribution. Finally, a bootstrap version of the

test functionals in Remark 3.2 can be constructed.

E Appendix

The proofs of the lemmas are inspired by corresponding lemmas in Gonçalves and White

(2002, 2004). We prove Lemmas E.1 and E.2 in the situation in which
{
Z

(b)
t

}
is a scalar,

but the results still hold with notational changes when
{
Z

(b)
t

}
is a vector or a matrix.

Indeed, as is well known (Brockwell and Davis (2006)), the convergence in probability of a

vector or a matrix holds when convergence in probability of their components holds.

Lemma E.1 Let
{
Z

(b)
t (θ)

}
, θ ∈ Θ, be a stationary and 2-dominated on Θ uniformly in

t, n, ∀t = 1, . . . , n, ln = o(n) and ln → ∞. Moreover, assume that, as b = bn → 0,

σ2
b
.= Var(Z(b)

t )→ σ2 <∞ and µb
.= E(Z(b)

t )→ µ <∞. Then, ∀θ ∈ Θ, Θ a compact set,

Z̄∗n(θ)− Z̄n(θ) P∗ω ,P−−−−→ 0
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both for the stationary and for the moving block bootstrap.

Proof. Define ∆ < ∞ such that, by the 2-dominance, ‖Z(b)
t ‖2 < ∆. This is reasonable

since ‖Z(b)
t ‖2 =

(
E
(
|Z(b)

t |2
)) 1

2 = (σ2
b + µ2

b)
1
2 → (σ2 + µ2)

1
2 as b→ 0.

Z̄∗n(θ)− Z̄n(θ) =
[
Z̄∗n(θ)− E∗

(
Z̄∗n(θ)

)]
+
[
E∗
(
Z̄∗n(θ)

)
− Z̄n(θ)

]
= E1 + E2

For the second term, using (D.1) and (D.4), we have that:

(i) for the stationary bootstrap, E2 = 0;

(ii) for the moving block bootstrap, E2 = Op

(
ln
n

)
.

Therefore, in both cases, E2
P−−→ 0. Applying the Markov inequality twice, we have:

P (P∗ω (| E1 |> δ) > ξ) ≤ P
(
Var∗

(
Z̄∗n(θ)

)
> δ2ξ

)
≤ 1
δ2ξ
‖Var∗

(
Z̄∗n(θ)

)
‖1.

By (D.2), (D.5), Remark D.1, the Minkowski inequality, the Hölder inequality and the

2-dominance property of
{
Z

(b)
t (θ)

}
,

(i) for the stationary bootstrap,

‖Var∗
(
Z̄∗n(θ)

)
‖1 ≤

1
n2

n∑
s=1
‖Z(b)

s (θ)− Z̄n(θ)‖2‖Z(b)
s (θ)− Z̄n(θ)‖2

+ 1
n2

n−1∑
τ=1

γn(τ)
n−τ∑
s=1

[
‖Z(b)

s (θ)− Z̄n(θ)‖2‖Z(b)
s+τ (θ)− Z̄n(θ)‖2

+‖Z(b)
s+τ (θ)− Z̄n(θ)‖2‖Z(b)

s (θ)− Z̄n(θ)‖2
]

≤ 1
n2n4∆2 + 1

n2

n−1∑
τ=1

γn(τ)8∆2(n− τ) ≤ 4∆2

n

(
1 + 2

n
(n− 1)ln

)
.
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(ii) for the moving block bootstrap,

‖Var∗
(
Z̄∗n(θ)

)
‖1 ≤

1
n

n∑
s=1

αn(s)‖Z(b)
s (θ)− Z̄α,n(θ)‖2‖Z(b)

s (θ)− Z̄α,n(θ)‖2

+ 1
n

ln−1∑
τ=1

(
1− τ

ln

) n−τ∑
s=1

βn(t, τ)
[
‖Z(b)

s (θ)− Z̄α,n(θ)‖2‖Z(b)
s+τ (θ)− Z̄α,n(θ)‖2

+‖Z(b)
s+τ (θ)− Z̄α,n(θ)‖2‖Z(b)

s (θ)− Z̄α,n(θ)‖2
]

≤ 4∆2

n

n∑
s=1

αn(s) + 8∆2

n

ln−1∑
τ=1

(
1− τ

ln

) n−τ∑
s=1

βn(t, τ)

= 4∆2

n

1 + 2
ln−1∑
τ=1

(
1− τ

ln

) = 2∆2ln
n

.

Therefore,

P
(
P∗ω
(
| Z̄∗n(θ)− Z̄n(θ) |> δ

)
> ξ

)
= O

(
ln
n

)
.

Lemma E.2 Let
{
Z

(b)
t (θ)

}
, θ ∈ Θ, be Lipschitz continuous on Θ, that is | Z(b)

t (θ) −

Z
(b)
t (θ′) |≤ Ct | θ − θ′ | a.s.− P, ∀θ, θ′ ∈ Θ with a sufficiently large constant M such that

Ct ≤M . Moreover, assume that ∀θ ∈ Θ, Θ a compact set, Z̄∗n(θ)− Z̄n(θ) P∗ω ,P−−−−→ 0, that is

Lemma E.1 holds, with ln = o(n) and ln →∞. Then, ∀δ, ξ > 0,

lim
n→∞

P
(
P∗ω

(
sup
θ∈Θ
| Z̄∗n(θ)− Z̄n(θ) |> δ

)
> ξ

)
= 0

both for the stationary and for the moving block bootstrap.

Proof. The idea of this proof is equal to the one of Lemma C.2 of Lacal and Tjøstheim

(2017). The only thing that we need to check is whether the following expression still

holds:

P
(
P∗ω

(
sup

θ∈η(θi,ε)
| Z̄∗n(θ)− Z̄∗n(θi) |>

δ

3

)
>
ξ

3

)
<
ζ

3 ,

∀n sufficiently large and ∀ζ > 0, where η(θi, ε) = {θ ∈ Θ : |θ − θi| < ε} with ε > 0. By the
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Markov inequality and the Fatou’s lemma for series,

P∗ω

(
sup

θ∈η(θi,ε)
| Z̄∗n(θ)− Z̄∗n(θi) |>

δ

3

)
≤ 3
δ
E∗
(

sup
θ∈η(θi,ε)

| Z̄∗n(θ)− Z̄∗n(θi) |
)

≤ 3
δn

n∑
t=1

E∗
(

sup
θ∈η(θi,ε)

| Z∗(b)t (θ)− Z∗(b)t (θi) |
)
.

For the stationary bootstrap, using (D.1), we have that

P∗ω

(
sup

θ∈η(θi,ε)
| Z̄∗n(θ)− Z̄∗n(θi) |>

δ

3

)
≤ 3
δn

n∑
t=1

E∗
(

sup
θ∈η(θi,ε)

| Z∗(b)t (θ)− Z∗(b)t (θi) |
)

≤ 3
δn

n∑
t=1

sup
θ∈η(θi,ε)

| Z(b)
t (θ)− Z(b)

t (θi) |

≤ 3ε
δn

n∑
t=1

Ct ≤
3ε

δ(n− ln + 1)

n∑
t=1

Ct

and for the moving block bootstrap, using Remark D.1, we have that

P∗ω

(
sup

θ∈η(θi,ε)
| Z̄∗n(θ)− Z̄∗n(θi) |>

δ

3

)
≤ 3
δn

n∑
t=1

E∗
(

sup
θ∈η(θi,ε)

| Z∗(b)t (θ)− Z∗(b)t (θi) |
)

≤ 3
δ

n∑
t=1

αn(t) sup
θ∈η(θi,ε)

| Z(b)
t (θ)− Z(b)

t (θi) | +Op
(
ln
n

)

≤ 3ε
δ(n− ln + 1)

n∑
t=1

Ct +Op

(
ln
n

)
.

Therefore, again using the Markov inequality for both, asymptotically,

P
(
P∗ω

(
sup

θ∈η(θi,ε)
| Z̄∗n(θ)− Z̄∗n(θi) |>

δ

3

)
>
ξ

3

)
≤ P

(
3ε

δ(n− ln + 1)

n∑
t=1

Ct >
ξ

3

)

≤ 9ε
ξδ(n− ln + 1)E

(
n∑
t=1

Ct

)
≤ 9εM

ξδ
<
ζ

3 ,

∀n sufficiently large, ln = o(n), ∀ζ > 0 and ε < ζδ
9M .

Lemmas E.3 and E.4 are needed in Theorem E.1, which is used to prove the asymptotic

normality of Z(b)
t = ∇L(b)

t (θ).

Lemma E.3 Let
{
Z

(b)
t

}
be a univariate stationary time series with second moments, 6-
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dominated on Θ uniformly in t, n, ∀t = 1, . . . , n, with ln = o(
√
n) and ln →∞ and α-mixing

with αk = O(αk), α ∈ (0, 1). Moreover, assume that, as b = bn → 0, σ2
b
.= Var(Z(b)

t ) →

σ2 < ∞ and µb
.= E(Z(b)

t ) → µ < ∞. Then, using the notations of Gonçalves and White

(2002), σ̂2
n − σ2

n
P−→ 0, where σ̂2

n = σ̂2
n,b = Var∗

(√
nZ̄∗n

)
and σ2

n = σ2
n,b = Var

(√
nZ̄n

)
, both

for the stationary and for the moving block bootstrap.

Proof. First we state the proof in the situation of the stationary bootstrap and, then, of

the moving block bootstrap. Define R̂(t, τ) = Z
(b)
t Z

(b)
t+τ , R(t, τ) = E

(
Z

(b)
t Z

(b)
t+τ

)
and ∆ <∞

such that ‖Z(b)
t ‖6 ≤ ∆. Then, we have that,

σ2
n = 1

n
Var

(
n∑
t=1

Z
(b)
t

)
= 1
n

n∑
t=1

Var
(
Z

(b)
t

)
+ 2
n

n−1∑
τ=1

n−τ∑
t=1

Cov
(
Z

(b)
t , Z

(b)
t+τ

)
(E.1)

= σ2
b + 2

n

n−1∑
τ=1

n−τ∑
t=1

(
R(t, τ)− µ2

b

)
.

The proof consists of two steps:

1. σ̃2
n − σ2

n
P−→ 0;

2. σ̂2
n − σ̃2

n
P−→ 0;

where, σ̃2
n is equal to σ̂2

n, except that it replaces Z̄n (for the stationary bootstrap) and Z̄α,n
(for the moving block bootstrap with α defined in Section 3) with µb. First, we will prove

these two steps for the stationary bootstrap (S) and then, for the moving block bootstrap

(M).

Step 1 (S): Since

σ̃2
n = 1

n

n∑
t=1

(
Z

(b)
t − µb

)2
+ 2
n

n−1∑
τ=1

n−τ∑
t=1

γn(τ)
(
Z

(b)
t − µb

) (
Z

(b)
t+τ − µb

)
(E.2)

with γn defined in (D.3), we have that

σ̃2
n − σ2

n =
[

1
n

n∑
t=1

(
Z

(b)
t − µb

)2
− σ2

b

]
+ 2
n

n−1∑
τ=1

n−τ∑
t=1

[
γn(τ)R̂(t, τ)−R(t, τ)

+γn(τ)µ2
b − γn(τ)µb

(
Z

(b)
t + Z

(b)
t+τ

)
+ µ2

b

]
= E1 + E2.
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By the Markov inequality, the mixing inequality (Corollary A.2, Hall and Heyde (1980))

and the fact that E (E1) = 0,

P (| E1 |> ε) ≤ 1
ε2

Var
(

1
n

n∑
t=1

(
Z

(b)
t − µb

)2
)

= 1
ε2n2

n∑
t=1

n∑
s=1

Cov
((
Z

(b)
t − µb

)2
,
(
Z(b)
s − µb

)2
)

≤ 1
ε2n2

n∑
t=1

n∑
s=1

8‖(Z(b)
t − µb)2‖3‖(Z(b)

s − µb)2‖3α
|t−s|

3

= 8
ε2n2

n∑
t=1

n∑
s=1
‖Z(b)

t − µb‖26‖Z(b)
s − µb‖26α

|t−s|
3

≤ 8(∆ + |µb|)4

ε2n2

n∑
t=1

n∑
s=1

α
|t−s|

3

because, by the Minkowski inequality and the 6-dominance of
{
Z

(b)
t

}
, we have that ‖Z(b)

t −

µb‖2
6 ≤ (‖Z(b)

t ‖6 + |µb|)2 ≤ (∆ + |µb|)2. Therefore,

P (| E1 |> ε) ≤ 8(∆ + |µb|)4

ε2n2

n∑
t=1

n∑
s=1

α
|t−s|

3 (E.3)

= 8(∆ + |µb|)4

ε2n2

n+ 2
n−1∑
j=1

(n− j)α
j
3


≤ 8(∆ + |µb|)4

ε2n2

n+ 2(n− 1)
n−1∑
j=1

α
j
3


= 8(∆ + |µb|)4

ε2n2

(
n+ 2(n− 1)α

1
3 − α

n
3

1− α
1
3

)
→ 0,

as n→∞, since α ∈ (0, 1). To prove that the absolute value of E2
P−→ 0, we show that the

bias and the variance of E2 go to 0 as n→∞.

| E (E2) | ≤ 2
n

n−1∑
τ=1

n−τ∑
t=1
| (γn(τ)− 1)R(t, τ)− µ2

b (γn(τ)− 1) |

≤ 2
n

n−1∑
τ=1

n−τ∑
t=1
| γn(τ)− 1 || R(t, τ)− µ2

b |→ 0,
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by Remark D.1, the dominated convergence theorem for series, the mixing inequality

(Corollary A.2, Hall and Heyde (1980)), since 1
n
| γn(τ)− 1 | · | R(t, τ)− µ2

b |→ 0 and, by

the fact that
{
Z

(b)
t

}
is 6-dominated,

∑
τ≥1

1
n
| γn(τ)− 1 |

n−τ∑
t=1
| R(t, τ)− µ2

b |≤
∑
τ≥1

1
n

3(n− τ)8∆2α
τ
2 ≤ 24∆2 ∑

τ≥1
α
τ
2 <∞.

By the Cauchy-Schwarz inequality,

Var (E2) = 4
n2 Var

(
n−1∑
τ=1

n−τ∑
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[
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(
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)])
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n2

n−1∑
τ=1
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(
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(
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[
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(
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s + Z
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≤ 4
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√√√√Var
(
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(
Z
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)])
·

·

√√√√Var
(
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s=1

[
R̂(s, λ)− µb

(
Z

(b)
s + Z

(b)
s+λ

)])
.

By the mixing inequality (Corollary A.2, Hall and Heyde (1980)), we have that

Var
(
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[
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(
Z

(b)
t + Z
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(
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[
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(
Z

(b)
t + Z

(b)
t+τ

)])
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(
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≤
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t Z
(b)
t+τ − µb(Z

(b)
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(b)
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+ 2
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(b)
t+τ − µb(Z
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3
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α
|t−s|

3 ,
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because, by the Minkowski inequality, the generalization of the Hölder inequality and the

6-dominance of
{
Z

(b)
t

}
,

‖Z(b)
t Z

(b)
t+τ − µb(Z

(b)
t + Z

(b)
t+τ )‖3 ≤ ‖Z(b)

t Z
(b)
t+τ‖3 + |µb|(‖Z

(b)
t ‖3 + ‖Z(b)

t+τ‖3)

≤ ‖Z(b)
t ‖6‖Z

(b)
t+τ‖6 + |µb|(‖Z

(b)
t ‖3 + ‖Z(b)

t+τ‖3) ≤ ∆2 + 2|µb|∆.

Therefore, using the reasoning of (E.3),
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[
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(
Z

(b)
t + Z

(b)
t+τ

)])
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s=t+1

α
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3

)
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1 + 16α
1
3 − α

n
3

1− α
1
3

)
.

Putting everything together and using the definition of γn, we have that,

Var (E2) ≤ 4
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√√√√Var
(
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(
Z
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·

·
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[
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(
Z
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≤ 4
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(
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1
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n
2
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1
2
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≤ 4
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(
1 + 16α

1
2 − α

n
2

1− α
1
2

)
l2n → 0,

since ln = o(
√
n) and α ∈ (0, 1).
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Step 2 (S): By (D.2) we know that,

σ̂2
n = 1

n

n∑
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(
Z

(b)
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)2
+ 2
n
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Z
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)
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(
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n
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2
n
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(
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)
= 2
n
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[
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(
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n
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Z
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τ

n

)(
1− 1

ln

)n−τ

·
(
n− τ
n

n∑
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Z
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n
Z̄n

n−1∑
τ=1

(
n− τ
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n
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Z
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Z
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Z
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n

n∑
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Z
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t −
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Z
(b)
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Z
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)
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n
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(
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n

)(
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.

In the same way,

σ̃2
n = 1

n

n∑
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(
Z
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t

)2
+ µ2

b − 2µbZ̄n + 2
n
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Therefore,

σ̂2
n − σ̃2

n = −Z̄2
n − 2Z̄2

n

n−1∑
τ=1

(
1− τ

n

)(
1− 1
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)τ
− µ2

b + 2µbZ̄n
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)(
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)τ (
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)
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− 2

(
Z̄n − µb
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(
1− τ

n

)(
1− 1
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)τ
P−→ 0,

because
(
Z̄n − µb

)2
= Op

(
1
n

)
= op(1) and

(
Z̄n − µb

)2∑n−1
τ=1

(
1− τ

n

) (
1− 1

ln

)τ
= Op

(
ln
n

)
=

op(1), since ln = o(
√
n).

The proof for the moving block bootstrap follows the same technique as the one for the

stationary bootstrap.

Step 1 (M): Since

σ̃2
n =

n∑
t=1

αn(t)
(
Z

(b)
t − µb

)2
+ 2

ln−1∑
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(
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t=1

βn(t, τ)
(
Z

(b)
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) (
Z

(b)
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)
(E.4)

with αn and βn defined in (D.6) and (D.7), we have that

σ̃2
n − σ2

n =
[
n∑
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αn(t)
(
Z

(b)
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b

]

+ 2
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− 1
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(
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b
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= E1 + E2.

By the Markov inequality, the Minkowski inequality, Remark D.1, the 6-dominance of{
Z

(b)
t

}
, the mixing inequality (Corollary A.2, Hall and Heyde (1980)) and the fact that

E (E1) = 0,
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P (| E1 |> ε) ≤ 1
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because of the same reasoning as for (E.3), ln = o(
√
n) and α ∈ (0, 1). To prove that
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P−→ 0, we show that the bias and the variance of E2 go to 0 as n→∞.
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The first term is going to 0, because of the dominated convergence theorem for series,

since τ
nln
| R(t, τ)− µ2

b |→ 0 and, by the mixing inequality (Corollary A.2, Hall and Heyde

(1980)) and the fact that
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}
is 6-dominated,

∑
τ≥1

τ

nln

n−τ∑
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Also the second term is going to 0, because, by the mixing inequality (Corollary A.2, Hall

and Heyde (1980)) and the fact that
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}
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Therefore, E (| E2 |)→ 0. By the Cauchy-Schwarz inequality,
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By the Minkowski inequality, the generalization of the Hölder inequality, the mixing in-

equality (Corollary A.2, Hall and Heyde (1980)), Remark D.1, the 6-dominance of
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}
and the same reasoning of (E.3),
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(b)
t+τ )‖3‖Z(b)

s Z
(b)
s+τ − µb(Z(b)

s + Z
(b)
s+τ )‖3α

|t−s|
3

≤ (∆2 + 2|µb|∆)2

(n− ln + 1)2

(
(n− τ) + 16

n−τ∑
t=1

n−τ∑
s=t+1

α
|t−s|

3

)

= (∆2 + 2|µb|∆)2(n− 1)
(n− ln + 1)2

(
1 + 16α

1
3 − α

n
3

1− α
1
3

)
.

Therefore,

Var (E2) ≤ 4
ln−1∑
τ=1

ln−1∑
λ=1

(
1− τ

ln

)(
1− λ

ln

)√√√√Var
(
n−τ∑
t=1

[
R̂(t, τ)− µb

(
Z

(b)
t + Z

(b)
t+τ

)])
·

·

√√√√Var
(
n−λ∑
s=1

[
R̂(s, λ)− µb

(
Z

(b)
s + Z

(b)
s+λ

)])

≤ 4(∆2 + 2|µb|∆)2(n− 1)
(n− ln + 1)2

(
1 + 16α

1
2 − α

n
2

1− α
1
2

)
ln−1∑
τ=1

ln−1∑
λ=1

(
1− τ

ln

)(
1− λ

ln

)

= 4(∆2 + 2|µb|∆)2(n− 1)
(n− ln + 1)2

(
1 + 16α

1
2 − α

n
2

1− α
1
2

)(
ln − 1

2

)2
→ 0,

since ln = o(
√
n) and α ∈ (0, 1).
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Step 2 (M): By (D.5) we know that,

σ̂2
n =

n∑
t=1

αn(t)
(
Z

(b)
t − Z̄α,n

)2
+ 2

ln−1∑
τ=1

(
1− τ

ln

) n−τ∑
t=1

βn(t, τ)
(
Z

(b)
t − Z̄α,n

) (
Z

(b)
t+τ − Z̄α,n

)

=
n∑
t=1

αn(t)
(
Z

(b)
t

)2
− Z̄2

α,n + 2
ln−1∑
τ=1

(
1− τ

ln

) n−τ∑
t=1

βn(t, τ)Z(b)
t Z

(b)
t+τ

+ 2
ln−1∑
τ=1

(
1− τ

ln

) n−τ∑
t=1

βn(t, τ)
(
Z̄2
α,n − Z̄α,n

(
Z

(b)
t + Z

(b)
t+τ

))

In the same way,

σ̃2
n =

n∑
t=1

αn(t)
(
Z

(b)
t

)2
+ µ2

b − 2µbZ̄α,n + 2
ln−1∑
τ=1

(
1− τ

ln

) n−τ∑
t=1

βn(t, τ)Z(b)
t Z

(b)
t+τ

+ 2
ln−1∑
τ=1

(
1− τ

ln

) n−τ∑
t=1

βn(t, τ)
(
µ2
b − µb

(
Z

(b)
t + Z

(b)
t+τ

))
.
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Therefore,

σ̂2
n − σ̃2

n = −Z̄2
α,n − µ2

b + 2µbZ̄α,n + 2
ln−1∑
τ=1

(
1− τ

ln

) n−τ∑
t=1

βn(t, τ)
[
Z̄2
α,n − Z̄α,n

(
Z

(b)
t + Z

(b)
t+τ

)

−µ2
b + µb

(
Z

(b)
t + Z

(b)
t+τ

)]
= −

(
Z̄α,n − µb

)2
+ 2

ln−1∑
τ=1

(
1− τ

ln

)

·
n−τ∑
t=1

βn(t, τ)
[
Z̄2
α,n −

(
Z̄α,n − µb

) (
Z

(b)
t + Z

(b)
t+τ

)
− µ2

b

]

= −
(
Z̄α,n − µb

)2
+ 2

(
Z̄2
α,n − µ2

b

) ln−1∑
τ=1

(
1− τ

ln

) n−τ∑
t=1

βn(t, τ)

− 2
(
Z̄α,n − µb

) ln−1∑
τ=1

(
1− τ

ln

) n−τ∑
t=1

βn(t, τ)
[(
Z

(b)
t − µb

)
+
(
Z

(b)
t+τ − µb

)]

− 4µb
(
Z̄α,n − µb

) ln−1∑
τ=1

(
1− τ

ln

) n−τ∑
t=1

βn(t, τ)

= −
(
Z̄α,n − µb

)2
+
(
Z̄2
α,n − µ2

b

)
(ln − 1)− 2µb

(
Z̄α,n − µb

)
(ln − 1)

− 2
(
Z̄α,n − µb

) ln−1∑
τ=1

(
1− τ

ln

) n−τ∑
t=1

βn(t, τ)
[(
Z

(b)
t − µb

)
+
(
Z

(b)
t+τ − µb

)]

=
(
Z̄2
α,n − µ2

b

)
(ln − 2)− 2

(
Z̄α,n − µb

) ln−1∑
τ=1

(
1− τ

ln

)

·
n−τ∑
t=1

βn(t, τ)
[(
Z

(b)
t − µb

)
+
(
Z

(b)
t+τ − µb

)] P−→ 0,

because ln = o(
√
n). Actually, by Remark D.1,

P
(
| Z̄α,n − µb |2| ln − 2 |> ε

)
≤ | ln − 2 |

ε
Var

(
Z̄α,n

)
≤ | ln − 2 |

ε

n∑
t=1

α2
n(t)σ2

b

≤ | ln − 2 | σ2
bn

ε(n− ln + 1)2 → 0,

P
(
| Z̄α,n − µb |> ε

)
≤ 1
ε

Var
(
Z̄α,n

)
≤ σ2

bn

ε(n− ln + 1)2 → 0
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and

P

| ln−1∑
τ=1

(
1− τ

ln

) n−τ∑
t=1

βn(t, τ)
[(
Z

(b)
t − µb

)
+
(
Z

(b)
t+τ − µb

)]
|> ε


≤ 1
ε

ln−1∑
τ=1

(
1− τ

ln

) n−τ∑
t=1

βn(t, τ)
[
E
(
| Z(b)

t − µb |
)

+ E
(
| Z(b)

t+τ − µb |
)]

≤ 2
ε(n− ln + 1)

ln−1∑
τ=1

(
1− τ

ln

)
(∆+ | µb |)→ 0.

Lemma E.4 Let
{
Z

(b)
t

}
be a d×1 stationary time series with second moments, 6-dominated

on Θ uniformly in t, n, ∀t = 1, . . . , n, with ln = o(
√
n), ln → ∞, n → ∞ and α-mixing

with αk = O(αk), α ∈ (0, 1). Moreover, assume that, as b → 0, Σb
.= Var(Z(b)

t ) → Σ <

∞ and µb
.= E(Z(b)

t ) → µ < ∞. Then V̂n − Vn
P−→ 0, where V̂n = Var∗

(√
nZ̄∗n

)
and

Vn = Var
(√

nZ̄n
)
are covariance matrices, both for the stationary and for the moving

block bootstrap.

Proof. Define Wi = λtZ
(b)
i , λ ∈ Rd such that λtλ = 1. If we apply Lemma E.3 to the time

series {Wi}, we have that λtV̂nλ− λtVnλ P−→ 0 which implies V̂n − Vn P−→ 0.

To prove the asymptotic normality of the parameter estimates after the bootstrap, we

will need the following theorem from Gonçalves and White (2002), adapted to our situation.

The only change to be made in the proof is that, in our case, to ensure the consistency of

the variance after the bootstrap we use Lemma E.4.

Theorem E.1 Let
{
Z

(b)
t

}
be a 5 × 1 stationary time series with second moments, 6-

dominated on Θ uniformly in t, n, ∀t = 1, . . . , n, with ln = o(
√
n) and ln →∞ and α-mixing

with αk = O(αk), α ∈ (0, 1). Moreover, assume that, as b → 0, Σb
.= Var(Z(b)

t ) → Σ < ∞

and µb
.= E(Z(b)

t ) → µ < ∞, V̂n
.= Var∗

(√
nZ̄∗n

)
and Vn

.= Var
(√

nZ̄n
)
are covariance
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matrices, and, in particular Vn is positive definite uniformly in n. Then, Vn = O(1),

V
− 1

2
n

√
n
(
Z̄∗n − Z̄n

)
⇒dP∗ω N(0, I5) prob− P (E.5)

and, ∀ε > 0,

lim
n→∞

P
(

sup
x∈Rd
| P∗ω

(√
n
(
Z̄∗n − Z̄n

)
≤ x

)
− P

(√
n
(
Z̄n − µb

)
≤ x

)
|> ε

)
= 0

both for the stationary and for the moving block bootstrap.

F Appendix

For the estimation of the parameters and for the test of independence, we need to calculate

the bandwidth and to do this there are several algorithms available. For our purposes, we

are using the one based on the likelihood cross-validation technique as was done in Lacal

and Tjøstheim (2017). This consists in two steps. First, we calculate the leave-one-out

estimate θ−in,b(x, y) of θ(x, y), that is, the maximum point of

1
n− 1

∑
j 6=i

Kb (Xj − x, Yj − y) log (ψ ((Xj , Yj), θb(x, y)))

−
∫
Kb (v − x,w − y)ψ ((v, w), θb(x, y)) dvdw

Then, we take the bandwidth b = (b1, b2) such that the following expression is maximized

CV (b) = 1
n

∑
i

log
(
ψ
(
(Xi, Yi), θ−in,b(x, y)

))
.

As was done in Lacal and Tjøstheim (2017), to avoid extreme bandwidths, we implement

lower and upper bounds for the bandwidth (e.g. expressed as a fraction of the standard

deviation). As expected, such bounds are less needed in the standardized case, because the
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bandwidth is often close to 1 for the sample sizes considered by us. For more details see

Lacal and Tjøstheim (2017).

For the choice of the block length for the bootstrap we use the R-function b.star of the

R-package np (for more details see Politis and White (2004) and Patton et al. (2009)).

We are aware of the fact that the algorithm proposed by Politis and White (2004) uses the

global Pearson serial correlation to calculate the block length. Therefore, it may not be

quite appropriate for our purposes, and we have consequently introduced a lower bound on

the chosen block length. Note that there is a recent paper by Nordman and Lahiri (2014),

where they compare asymptotically different procedures for selecting the block length. It

may seem that this paper too, to some extent, is based on autocorrelation concepts.
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