
APPENDIX A. Supplementary Material

APPENDIX A.1. Regularity conditions, lemmas, and proofs of
the theorems

The following regularity conditions will be needed for the asymptotic properties of the
proposed prediction accuracy measures R2 and L2.

(C1) The censoring time C is independent of Y and X.

(C2) θ̂ converges in probability to a limit θ∗ as n→∞.

(C3) mθ∗(x) is a bounded function and E(Y 4) <∞.

(C4) As n → ∞, mθ̂(x) − mθ∗(x) = K(x) 1
n

∑n
i=1 ξi + op(

1√
n
), uniformaly in x, for some

bounded function K(x) and some sequence of independent and identically distributed
random variables ξi’s with mean 0 and finite variance.

(C5) F (τH−) < 1 or ∆G(τH) = 0, where F is the marginal distribution of Y , H =
1− (1− F )(1−G), and τH = sup{t : H(t) < 1}

Condition (C1) assumes that the censoring time is independent of both the survival time
Y and the covariate X, which is used to prove the consistency of the proposed censored
accuracy measures. Condition (C2) is satisfied by a consistent estimator under a correctly
specified model. For common parametric and semiparametric models, the maximum likeli-
hood estimate typically converges to a well defined limit even if the model is mis-specified
(see, e.g., Huber (1967)) and, in which case, θ∗ is usually the parameter value that min-
imizes the Kullback-Leibler Information Criterion (Akaike, 1998). (C3)-C4) are technical
conditions for the asymptotic properties in Theorem 2.2, which usually holds for common
used parametric and semiparametric models under mild regularity conditions . For exam-
ple, if θ̂ is the maximum likelihood estimate for a correctly specified parametric model,
then by the Taylor series expansion with respect to θ, (C4) is trivially satisfied provided
that mθ(x) has bounded first and second derivatives with respect to θ. (C5) is required for
the uniform consistency of Ĝ, which is needed by Lemma A.4 and Theorem 3.1.

The following lemma establishes a variance decomposition and a prediction error de-
composition, which provide the rationale for the proposed population prediction accuracy
measures ρ2

mθ∗
and λ2

mθ∗
defined in (6) and (7).
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Lemma A.1 Let m
(c)
θ∗ (X) be the corrected prediction function of mθ∗(X) defined by (3).

Then,

(a) (Variance decomposition)

var(Y ) = E{m(c)
θ∗ (X)− µY }2 + E{Y −m(c)

θ∗ (X)}2, (A.1)

where the first and second terms on the right hand side represent respectively the
explained variance and the unexplained variance of Y by m

(c)
θ∗ (X).

(b) (Prediction Error Decomposition)

MSPE(mθ∗(X)) = E{Y −m(c)
θ∗ (X)}2 + E{m(c)

θ∗ (X)−mθ∗(X)}2 (A.2)

where the first and second terms on the right hand side can be interpreted as the
explained prediction error and unexplained prediction error of mθ∗(X) by m

(c)
θ∗ (X).

PROOF OF LEMMA A.1. (a) Note that

var(Y ) = E(Y − µY )2

= E{Y −m(c)
θ∗ (X)}2 + 2E{m(c)

θ∗ (X)− µY }{Y −m(c)
θ∗ (X)}+ E{m(c)

θ∗ (X)− µY }2.

So it suffices to show that

E{m(c)
θ∗ (X)− µY }{Y −m(c)

θ∗ (X)} = 0. (A.3)

Recall that m
(c)
θ∗ (X) = ã + b̃mθ∗(X), where (ã, b̃) = arg minα,β E{Y − (α + βmθ∗(X))}2.

Thus,

∂E{Y − (α + βmθ∗(X))}2

∂α

∣∣∣∣
(α,β)=(ã,b̃)

= −2E{Y − (ã+ b̃mθ∗(X))} = 0,

and

∂E{Y − (α + βmθ∗(X))}2

∂β

∣∣∣∣
(α,β)=(ã,b̃)

= −2E[{Y − (ã+ b̃mθ∗(X))}mθ∗(X)] = 0,

which imply that

E{Y −m(c)
θ∗ (X)} = 0, (A.4)
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and

E[{Y −m(c)
θ∗ (X)}mθ∗(X)] = 0. (A.5)

Finally, (A.3) follows from (A.2) and (A.5). This proves (A.1).
(b). Note that

E{Y −m(c)
θ∗ (X)}{m(c)

θ∗ (X)−mθ∗(X)}
= E{Y −m(c)

θ∗ (X)}{ã+ b̃mθ∗(X)−mθ∗(X)}
= ãE{Y −m(c)

θ∗ (X)}+ (b̃− 1)E[{Y −m(c)
θ∗ (X)}mθ∗(X)]

= 0,

where the last equality follows from (A.2) and (A.5). This implies that (A.2) holds. �

PROOF OF THEOREM 2.1. The proofs for parts (a)-(c) are straightforward. Part (d)
follows directly from the fact that µ(X) = E(Y |X) is the best prediction function for Y
among all functions of X in a sense that E{Y −µ(X)}2 ≤ E{Y −Q(X)}2 for any p-variate
function Q, and that the equality holds when Q(X) = µ(X). �

The following lemma establishes a sample variance decomposition and a sample predic-
tion error decomposition, which provide the rationale for the proposed sample prediction
accuracy measures R2

mθ̂
and L2

mθ̂
defined in (11) and (12).

Lemma A.2 Define
m

(c)

θ̂
(x) = â+ b̂mθ̂(x), (A.6)

to be the linearly corrected function for mθ̂(x), where â = Ȳ−b̂m̄θ̂, b̂ =
∑n
i=1(Yi−Ȳ ){mθ̂(Xi)−m̄θ̂}∑n

i=1{mθ̂(Xi)−m̄θ̂}2
,

Ȳ = n−1
∑n

i=1 Yi, and m̄θ̂ = n−1
∑n

i=1mθ̂(Xi). In other words, m
(c)

θ̂
(x) is the ordinary least

squares regression function obtained by linearly regressing Y1, . . . , Yn on mθ̂(X1), . . . ,mθ̂(Xn).
Then

(a) (Variance Decomposition)

n∑
i=1

(Yi − Ȳ )2 =
n∑
i=1

(m
(c)

θ̂
(Xi)− Ȳ )2 +

n∑
i=1

(Yi −m(c)

θ̂
(Xi))

2; (A.7)
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(b) (Prediction Error Decomposition)

n∑
i=1

(Yi −mθ̂(Xi))
2 =

n∑
i=1

(Yi −m(c)

θ̂
(Xi))

2 +
n∑
i=1

(m
(c)

θ̂
(Xi)−mθ̂(Xi))

2. (A.8)

PROOF OF LEMMA A.2. (a). The variance decomposition (A.7) is a trivial conse-

quence of the fact that m
(c)

θ̂
(X) is the fitted value from the simple linear regression of Y

on mθ̂(X).
(b) Now we prove the prediction error decomposition (A.8). For the simple linear

regression of Y on a covariate Z, it is well known that

n∑
i=1

eiZi = 0 and
n∑
i=1

eiŷi = 0, (A.9)

where ŷi is the fitted value and ei = Yi − ŷi is the residual at Zi, i = 1, . . . , n. In our
context, Zi = mθ̂(Xi) and ŷi = m

(c)

θ̂
(Xi), and thus (A.9) implies that

n∑
i=1

{Yi −m(c)

θ̂
(Xi)}mθ∗(Xi) = 0 and

n∑
i=1

{Yi −m(c)

θ̂
(Xi)}m(c)

θ̂
(Xi) = 0.

Consequently,

n∑
i=1

{Yi −mθ̂(Xi)}2 =
n∑
i=1

{Yi −m(c)

θ̂
(Xi)}2 +

n∑
i=1

{m(c)

θ̂
(Xi)−mθ̂(Xi)}2

+2
n∑
i=1

{Yi −m(c)

θ̂
(Xi)}{m(c)

θ̂
(Xi)−mθ̂(Xi)}2

=
n∑
i=1

{Yi −m(c)

θ̂
(Xi)}2 +

n∑
i=1

{m(c)

θ̂
(Xi)−mθ̂(Xi)}2.

This proves (A.8). �
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PROOF OF THEOREM 2.2. (a) It suffices to show that

1

n

n∑
i=1

Yimθ̂(Xi)
P−→ E{Y mθ∗(X)}, (A.10)

1

n

n∑
i=1

mθ̂(Xi)
P−→ E{mθ∗(X)}, (A.11)

1

n

n∑
i=1

m2
θ̂
(Xi)

P−→ E{m2
θ∗(X)}. (A.12)

We only prove (A.10) here because the proof of the other two results are similar. Note that

1

n

n∑
i=1

Yimθ̂(Xi) =
1

n

n∑
i=1

Yimθ∗(Xi) +
1

n

n∑
i=1

Yi{mθ̂(Xi)−mθ∗(Xi)}

= I1 + I2.

By the law of large numbers, I1
P−→ E{Y mθ∗(X)}. Moreover, by condition (C4) and the

law of large numbers,

I2 =

{
1

n

n∑
i=1

YiK(Xi)

}(
1

n

n∑
j=1

ξj

)
+ op(

1√
n

)

(
1

n

n∑
i=1

Yi

)
P−→ 0.

This proves (A.10).
(b). Note that

1√
n

n∑
i=1

[Yimθ̂(Xi)− E{Y mθ∗(X)}] =
1√
n

n∑
i=1

[Yimθ∗(Xi)− E{Y mθ∗(X)}]

+
1√
n

n∑
i=1

Yi{mθ̂(Xi)−mθ∗(Xi)}

= J1 + J2.
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Furthermore,

J2 =
1√
n

n∑
i=1

Yi{mθ̂(Xi)−mθ∗(Xi)}

=
1√
n

n∑
i=1

Yi{K(Xi)
1

n

n∑
j=1

ξj + op(
1√
n

)}

=
1√
n

n∑
i=1

ξiE[Y K(X)]+

(
1√
n

n∑
i=1

ξi

){
1

n

n∑
i=1

YiK(Xi)−E[Y K(X)]

}
+op(

1√
n

)
1√
n

n∑
i=1

Yi

≡ J21 + J22 + J23,

where the second equality is from condition (C4). Then, by the central limit theorem,
J1 + J21 is asymptotically normal with mean 0. Moreover, applying the central limit
theorem and the law of large numbers, J22 = op(1) and J23 = op(1) as n→∞. Therefore,

1√
n

∑n
i=1[Yimθ̂(Xi)− E{Y mθ∗(X)}] is asymptotically normal with mean 0.

Part (b) can be proved by first establishing the joint convergence of multiple quantities
in the expression of R2

mθ̂
and L2

mθ̂
to a multivariate normal limit along similar lines to the

above and then applying the delta method. �

The following lemma establishes a weighted sample version of the variance decompo-
sition and prediction error decompositions, which together with Lemma A.4 stated later,
provides the rationale for the proposed right-censored sample prediction accuracy measures
R2
mθ̂

and L2
mθ̂

defined in (16) and (17).

Lemma A.3 Let w1, . . . , wn be a set of nonnegative real numbers satisfying
∑n

i=1wi = 1
Define

m
(wc)

θ̂
(x) = â(w) + b̂(w)mθ̂(x), (A.13)

to be a linearly corrected function for mθ̂(x), where â(w) = T̄ (w) − b̂(w)m̄
(w)

θ̂
, T̄ (w) =∑n

i=1wiTi, b̂
(w) =

∑n
i=1 wi(Ti−T̄ (w)){mθ̂(Xi)−m̄

(w)

θ̂
}∑n

i=1 wi{mθ̂(Xi)−m̄
(w)

θ̂
}2

, and m̄
(w)

θ̂
=
∑n

i=1wimθ̂(Xi). In other words,

m
(wc)

θ̂
(x) is the fitted regression function from the weighted least squares linear regression

of Y1, . . . , Yn on mθ̂(X1), . . . ,mθ̂(Xn) with weight W = diag{w1, . . . , wn}. Then

(a) (Weighted Variance Decomposition for T )

n∑
i=1

wi{Ti − T̄ (w)}2 =
n∑
i=1

wi{m(wc)

θ̂
(Xi)− T̄ (w)}2 +

n∑
i=1

wi{Ti −m(wc)

θ̂
(Xi)}2; (A.14)
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(b) (Weighted Prediction Error Decomposition for T )

n∑
i=1

wi{Ti −mθ̂(Xi)}2 =
n∑
i=1

wi{Ti −m(wc)

θ̂
(Xi)}2 +

n∑
i=1

wi{m(wc)

θ̂
(Xi)−mθ̂(Xi)}2.

(A.15)

PROOF OF LEMMA A.3. (a) Recall thatW = diag(w1, . . . , wn). Define t = (T1, . . . , Tn)
′
,

t̂ = (m
(wc)

θ̂
(X1), . . . ,m

(wc)

θ̂
(Xn))

′
, z = (mθ̂(X1), . . . ,mθ̂(Xn))

′
, and Z = (1, z). where

1 = (1, . . . , 1)
′

is a n dimensional column vector of 1’s. Then, by the definition of m
(wc)

θ̂
,

we have
t̂ = Z(Z

′
WZ)−1Z

′
W t.

Note that

(t−t̂)′W (1 z) = (t−t̂)′WZ = t
′{I −WZ(Z

′
WZ)−1Z

′}WZ = 0,

which implies that

(t− t̂)
′
W1 = 0, (t− t̂)

′
Wz = 0, and(t−t̂)′W t̂ = (t−t̂)′WZ(Z

′
WZ)−1Z

′
W t = 0.(A.16)

Therefore,

n∑
i=1

wi{Ti − T̄ (w)}2 = (t− 11
′
W t)

′
W (t− 11

′
W t)

= (t− t̂)
′
W (t− t̂) + (t̂− 11

′
W t)

′
W (t̂− 11

′
W t)

+2(t− t̂)
′
W (t̂− 11

′
W t)

= (t− t̂)
′
W (t− t̂) + (t̂− 11

′
W t)

′
W (t̂− 11

′
W t)

=
n∑
i=1

wi{m(wc)

θ̂
(Xi)− T̄ (w)}2 +

n∑
i=1

wi{Ti −m(wc)

θ̂
(Xi)}2,

where the third equality follows from (A.16). This proves part (a).
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(b).
n∑
i=1

wi{Ti −mθ̂(Xi)}2 =
n∑
i=1

wi{Ti −m(wc)

θ̂
(Xi)}2 +

n∑
i=1

wi{m(wc)

θ̂
(Xi)−mθ̂(Xi)}2

+2
n∑
i=1

wi{Ti −m(wc)

θ̂
(Xi)}{m(wc)

θ̂
(Xi)−mθ̂(Xi)}

=
n∑
i=1

wi{Ti −m(wc)

θ̂
(Xi)}2 +

n∑
i=1

wi{m(wc)

θ̂
(Xi)−mθ̂(Xi)}2

+2(t− t̂)
′
W (t̂− z)

=
n∑
i=1

wi{Ti −m(wc)

θ̂
(Xi)}2 +

n∑
i=1

wi{m(wc)

θ̂
(Xi)−mθ̂(Xi)}2,

where the last equality follows from (A.16). This proves part (b). �

The following lemma, together with Lemma A.3, provides the rationale for the right-
censored sample prediction accuracy measures R2

mθ̂
and L2

mθ̂
defined in (16) and (17).

Lemma A.4 Let

wi =

δi
Ĝ(Ti−)∑n
j=1

δj

Ĝ(Tj−)

, i = 1, ..., n, (A.17)

where Ĝ is the Kaplan-Meier (Kaplan and Meier, 1958) estimate of G(c) = P (C > c).
Assume conditions (C1)-(C5) hold. Then,

n∑
i=1

wi{Ti − T̄ (w)}2 P−→ var(Y );

n∑
i=1

wi{m(wc)

θ̂
(Xi)− T̄ (w)}2 P−→ E{m(c)

θ∗ (X)− µY }2;

n∑
i=1

wi{Ti −m(wc)

θ̂
(Xi)}2 P−→ E{Y −m(c)

θ∗ (X)}2;

n∑
i=1

wi{Ti −mθ̂(Xi)}2 P−→ E{Y −mθ∗(X)}2;

n∑
i=1

wi{m(wc)

θ̂
(Xi)−mθ̂(Xi)}2 P−→ E{m(c)

θ∗ (X)−mθ∗(X)}2.
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PROOF OF LEMMA A.4. We first prove the first result of Lemma A.4. Note that for
any function h(T,X) of (T,X), we have

E

{
δh(T,X)

1−G(T |X)

}
= E

[
E

{
δh(T,X)

1−G(T |X)

∣∣∣X, Y}]
= E

[
E

{
δh(Y,X)

1−G(Y |X)

∣∣∣X, Y}]
= E

{
h(Y,X)

1−G(Y |X)
E(δ|X, Y )

}
= E

{
h(Y,X)

1−G(Y |X)
P (C > Y |X, Y )

}
= E

{
h(Y,X)

1−G(Y |X)
{1−G(Y |X)}

}
= E {h(Y,X)} .

In particular, h(T,X) = 1, h(T,X) = T and h(T,X) = T 2, correspond to

E

{
δ

1−G(T |X)

}
= 1, E

{
δT

1−G(T |X)

}
= E(Y ), and E

{
δT 2

1−G(T |X)

}
= E(Y 2),

which, combined with the uniform consistency of Ĝ (Wang, 1987), imply that T̄ (w) =∑n
i=1wiTi =

∑n
i=1

δiTi
Ĝ(Ti−)∑n

i=1
δi

Ĝ(Ti−)

P−→ E(Y ), and
∑n

i=1wiT
2
i

P−→ E(Y 2). Thus,

n∑
i=1

wi{Ti − T̄ (w)}2 =
n∑
i=1

wiT
2
i − {T̄ (w)}2 P−→ E(Y 2)− {E(Y )}2 = var(Y ).

The proof for the other results of the lemma are similar and omitted. �

PROOF OF THEOREM 3.1. (a). If there is no censoring, or δi = 1 for all i, then the
Kaplan-Meier estimate of the survival function of the censoring time is identical to 1. Thus
wi = 1/n for all i. The conclusion of (a) follows immediately.

The proof of parts (b) and (c) is essentially the same as that of Theorem 2.2. and thus
we omit the details. �
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APPENDIX A.2. Additional Simulation Results

APPENDIX A.2.1. Additional Results for Simulation 1

Figure A.1 depicts the plots of the population R2
NP , R2

SPH , and R2
SH measures versus β

for Cox’s models under the Simulation 1 setting described in Section 4, with the Weibull
baseline shape parameter fixed at different values (top panel: ν = 0.5; middle panel:
ν = 1; and bottom panel: ν = 1). For each pair of (β, ν), the population measures
are approximated by the average over 10 Monte-Carlo samples of size n = 5, 000. 95%
confidence intervals are also provided at selected β values. A snapshot of the results is
given in Table 1 of Section 4 to illustrate some weaknesses of R2

NP , R2
SPH revealed by this

simulation.

APPENDIX A.2.2. Simulation results for Cox’s model (ρ2 = 0.20)

Similar to Figure 3 in which ρ2 = 0.50 for the Cox model, Figure A.2 presents box plots of
simulated R2 and L2 for the Cox model when ρ2 = 0.20, based on 1,000 replications. Here
the parameters under each data setting are adjusted to produce ρ2 = 0.20. Specifically,
for the Weibull setting, data is generated from a Weibull model log(Y ) = βTX + σW ,
where β = 1, σ = 0.52, X ∼ U(0, 1), W ∼ standard extreme value distribution. For the
log-normal setting, data is generated from log(Y ) = βTX + σW , where β = 1, σ = 0.52,
X ∼ U(0, 1), W ∼ N(0,1), and C ∼ Weibull(shape = 1, scale = b) with b adjusted to
produce a given censoring rate. For the inverse Gaussian setting, data is generated from
Y ∼ InverseGaussian(mean = − eα0+α1X

β0+β1X
, shape = e2∗(α0+α1X)),where α0 = 3, α1 = −1.55,

β0 = −1, β1 = 0.6, X ∼ U(0, 1). For all three data generation settings, censoring time
is generated from C ∼ Weibull(shape = 1, scale = b) with b adjusted to produce a given
censoring rate.

Cox-Snell residual plots for the Cox model under the nine scenarios of Figure A.2 with
no censoring are provided in Figure A.3, which indicate that the Cox’s model fits the data
well under the Weibull setting (first row), shows almost unnoticeable mild mis-specification
under the log-normal setting (second row), and has a little more noticeable misspecification
under the inverse Gaussian setting.

It is seen from Figure A.2 that R2 and L2 estimate their population values well under
all the three data settings under which the Cox model is either correctly specified or only
mildly mis-specified as indicated by the Cox-Snell residual plots in Figure A.3. More
noticeable bias is only observed when there is more evidence of model misspecification
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Figure A.1: Population R2
NP , R2

SPH , and R2
SH for Cox’s models as the regression coefficient

β varies, with the Weibull baseline shape parameter fixed at different values (top panel:
ν = 0.5; middle panel: ν = 1; and bottom panel: ν = 1). For each pair of (β, ν), the
population measures are approximated by the average over 10 Monte-Carlo samples of size
n = 5, 000. 95% confidence intervals are also provided at selected β values.
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(inverse Gaussian setting), smaller sample size(e.g. n = 100) and higher censoring rate
(e.g. CR=50%).

APPENDIX A.2.3. Simulation results for the threshold regression model

Figure A.4 presents the box plots of simulated R2 and L2 for the threshold regression model
(Lee and Whitmore, 2006) based on 1,000 replications under the same nine scenarios as
in Figure 3. Cox-Snell residual plots for the threshold regression model under the nine
scenarios of Figure A.4 with censoring rate CR = 0% are provided in Figure A.5.

Cox-Snell residual plots for the threshold regression model in Figure A.5 indicate that
the threshold regression model fits the data well under the inverse Gaussian setting (third
row), shows almost unnoticeable mild mis-specification under the log-normal setting (sec-
ond row), and shows severe lack-of-fit under the Weibull setting (first row).

It is seen from Figure A.4 that R2 and L2 estimate their population values well under
all the three data settings regardless of whether the threshold regression model is correctly
or incorrectly specified.
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Figure A.2: (Cox’s Model with Independent Censoring; ρ2 = 0.20) Box plots of simulated
R2 (shaded box) and L2 (unshaded box) for the Cox model by censoring rate (0%, 10%, 25%,
50%), sample size (100, 250, 1,000), and data generation setting (upper panel: Weibull;
middle panel: log-normal AFT; bottom panel: inverse Gaussian)
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Figure A.3: (Cox Model with Independent Censoring; ρ2 = 0.20; Censoring Rate CR=0%)
Cox-Snell residual plot for the Cox model for each of the nine scenarios of Figure A.2 based
on the first 10 Monte Carlo replications with censoring rate equal to 0%, varying sample
size (first column: n = 100; second column: n = 250; third column: n = 1, 000), and
varying data generation setting (first row: Weibull; second row: log-normal; third row:
inverse Gaussian)
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Figure A.4: (Threshold Regression Model with Independent Censoring - ρ2 = 0.50) Box
plots of simulated R2 (shaded box) and L2 (unshaded box) for the threshold regression
model by censoring rate (0%, 10%, 25%, 50%), sample size (100, 250, 1,000), and data
generation setting (upper panel: Weibull; middle panel: log-normal; bottom panel: inverse
Gaussian)
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Figure A.5: (Threshold Regression Model with Independent Censoring; ρ2 = 0.50; Censor-
ing Rate CR=0%) Cox-Snell residual plots based on the first 10 Monte Carlo replications
for the fitted threshold regression model for each of the nine scenarios of Figure A.4 with
censoring rate equal to 0%, varying sample size (first column: n = 100; second column:
n = 250; third column: n = 1, 000), and varying data generation setting (first row: Weibull;
second row: log-normal; third row: inverse Gaussian)
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