ORIGINAL RESEARCH ARTICLE

Comparative description of mitochondrial genomes of the honey bee Apis (Hymenoptera: Apidae): four new genome sequences and Apis phylogeny using whole genomes and individual genes

Ah Rha Wang^{a,†}, Jong Seok Kim^{a,†}, Min Jee Kim^a, Hye-Kyung Kim^b, Yong Soo Choi^b, Iksoo Kim^a*

^aDepartment of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea. ^bDepartment of Agricultural Biology, National Academy of Agricultural Science, RDA, Wanju-gun 565-850, Republic of Korea.

(Received 2 November 2016, accepted 10 October 2017)

*Corresponding author: Email: ikkim81@chonnam.ac.kr

[†]These authors contributed equally to this paper.

Online Supplementary Material

Species	Fragment name	Primer name	Direction ^a	Sequence (5'- 3')	Nucleotide position ^b
A. cera	na				
	Long fragn	nents			
	LF1*	LFI-FI	F	AAATATTTCAGTTTTATGATC	2884-2904
	"	LFI-R2	R	TATTTGACCTCATGGTAGTAC	11319-11339
	LF2*	LF2-F2	F	TTTTAATCTTAATTCAACATCG	3333- 3354
	"	LF2-RI	R	TCTAAADACTTTAATTCCTG	2829-2848
	Short fr	agments			
	SEI		E	GGAGATCCAATTTWTATCAAC	2558-2579
			Г		3302-3321
	"	LI 01-31 01-1(2	ĸ	Corriganianicitie	5502-5521
	SF17	LF02-SF05-F1	F	GAAATTTTGGTTCAATTTTAGG	11017-11038
	"	LF02-SF05-R2	R	TAWGCAAATAAGAAATATCATTC	11736-11758
A. labo	riosa				
	l ong fragn	nents			
		LFI-F2	c	TGGATCAATCTTCTTTATAGC	5603-5623
	<u> </u>	LFI-RI	R	AAGATAGTTCTAGAAAGTGTAC	4462-14483
			IX.		
	LF2*	LF2-F1	F	TAGATAGAAACCAATCTGAC	13055-13074
	"	LF2-RI	R	TTGAAATGTTCTCTCACG	5211-5228
	Short frag	ments			
	SF6	LF01-SF06-F1	F	TTCAAAATATATTATTAACCTTAG	9452-9475
	"	LF01-SF06-R2	R	ATACATGAADTCCATGAAATCC	5628-5649
	5524		_		
	3F2 4	LF03-3F03-F2	F		479 502
A. dorse	ata	EI 05-51 05-1(2	ĸ		470-302
	Long fragn	nents			
	LFI	LFI-FI	F	TTACTATATTATTATTTGATCG	2456-2477
	"	LFI-R2	R	TTGCTCGAAGAATTGAATATGC	11588-11609
	1 52	1 62-61	-		11070 11050
	Lr"Z "	LF2-F1	F	TAGAGAGAATCGTTGATTAGC	9352-9372
	"		ĸ	Manunani ca li an inde	/JJL-/J/L
	Short frag	ments			
	SFI	LF01-SF01-F1	F	GGAGATCCAATTTTWTATCAAC	2515-2536
	"	LF01-SF01-R2	R	CGTTTAGAAATTAATCTTTC	3259-3278
	SF2	LF01-SF02-F1	F	TTATTTYAAGATTTATTCATTG	3005-3026
		LF01-SF02-R2	R	TTAAATATAAAATTTTTAATGATGG	3734-3758
			IX.		
	SF3	LF01-SF03-F1	F	AATCAAATTCATATTATGCTG	3531-3551
	"	LF01-SF03-R1	R	TGAWGGATCAAATATTTC	4496-4513
	SE4	LF01-SF04-F1	F	GGTCAATGTTCAGAAATTTGTGG	4073_4095
	<i>"</i>	LF01-SF04-R2	R	GAAATTAAATTTGCTGATAATCG	4952-4974
	SF5	LF01-SF05-F2	F	AATATTTTTAGATTAATACC	4724-4743
	"	LF01-SF05-R2	R	TCTCGAATAATATCTCGRAATC	5321-5342

Table S1. List of primers used to amplify and sequence the four Apis mitochondrial genomes.

SF6	LF01-SF06-F1	F	TTCAAAATATATTATTAACCTTAG	5049-5072
"	LF01-SF06-R2	R	ATACATGAADTCCATGAAATCC	5755-5776
SE7	LF01-SF07-F1	F	TTTTTRATCCAATAGAAATTCC	5518-5540
"	LF01-SF07-R1	R	GGATTAAATCCACATTCAAATGG	6181-6203
SF8	LF01-SF08-F1	F	TTATGAAWTAGCAATTTGATATTGAC	5853-5878
"	LF01-SF08-R1	R	ATTTGATTATGAADTTTATATTG	6476-6798
SF9	LF01-SF09-F1	F	AATGAATAAATAATTATTTAAATTG	6389-6413
"	LF01-SF09-R2	R	AGATTATGTGGATTTCCATTTTTAG	7322-7346
SF10	LF01-SF10-F2	F	ATAGAAATTGCTATAATTTTATCTTC	7127-7152
"	LF01-SF10-R1	R	TTTTCAACTTGATTACCAATAGC	7771-7793
SFII	LF01-SF11-F1	F	AATTGACTTAAAGTWGAATAAGC	7555-7577
"	LF01-SF11-R2	R	GTGGAATTTTATTATTTAARTTTAG	8326-8350
SF12	LF01-SF12-F1	F	TAAGAAATTAATCCTAAACCATC	7995-8017
"	LFI-R2	R	ATAGGCAAACTAATAGACG	8782-8800
SF13	LF02-SF01-F1	F	ТТБААТАААТАААТСТАААТАААС	8575-8598
"	LF02-SF01-R2	R	TTTTTATATAGTTRIAAAATGAGG	9376-9400
SF14	LF02-SF02-F1	F	GAGCTTTTAATAATCAMCCATG	9143-9164
"	LF02-SF02-R2	R	AATTTTTCTTGTATTTTCTGTTTGTG	9838-9863
SF15	LF02-SF03-F1	F	TAGTTAATATTATTAATCCATATG	9557-9580
"	LF02-SF03-R1	R	TARGAAAATATAATTAATATTCC	10426-10448
SF16	LF02-SF04-F4	F	CAATAAATTCATTATTAATT	10379-10398
"	LF02-SF04-RI	R	TGAATTAAACGGAATAATCATCC	10985-11007
SF17	LF02-SF05-F1	F	GAAATTTTGGTTCAATTTTAGG	10851-10872
"	LF02-SF05-R2	R	TAWGCAAATAAGAAATATCATTC	11570-11592
SF18	LF02-SF06-F1	F	CATTTAACTGGATCATCAAATCC	348- 370
"	LF02-SF06-R2	R	AAGRATATTTGTATTAATTTTTTTATC	12226-12252
SF19	LF02-SF07-F2	F	GAACTTGAATAAGTATATATTTTG	11919-11942
"	LF02-SF07-RI	R	GGTTGAAATAAWCCAAATAAAAAA	3 33- 3 56
SF20	LF03-SF01-F1	F	CCAACAAACAAAACTGGATAAAC	12545-12567
"	LF03-SF01-R2	R	AATTTATGATTAAAAGAATAAATTACC	13226-13252
SF21	LF03-SF02-F1	F	AATTTAAAAATTAAAGTCCTTTCG	13003-13026
"	LF03-SF02-R2	R	TATAATTTTAGGTCGATCTGCTC	3570- 3592
SF22	LF03-SF03-F1	F	ATTAAATAAAATTCTATAGGGTC	3375- 3397
"	LF03-SF03-R2	R	GTACCTTTTGTATCAGGGTTG	14132-14152
SF23	LF03-SF04-F2	F	AAAAAACTAGATATCAATAAGTTCG	13993-14018
"	LF03-SF04-R2	R	AAAAAACTAGGATTAGATACCCTAC	14807-14831
SF24	LF03-SF05-F2	F	CTTATCGTGGATTATCAAATTAATC	4689- 47 3
"	LF03-SF05-R1	R	AATAAATAATTCTGAAACAATG	15041-15062
SF25	LF03-SF06-F1	F	TTTTTATAGTAGGGTATCTAATCC	14799-14822
"	LF03-SF06-RI	R	TTATATAAAAATTTTTAATTTATCGAC	268-294

SF26 ″	LF03-SF07-F1 LF03-SF07-R2	F R	AATAAGCTAAATAAAGCTTACAGG TTTATTATTTCATATGAATAAATTATTC	234-257 873-900
SF27	LF03-SF08-F2	F	ATAGAATTTRGTACAATTATCAGAATT	650-678
"	LF03-SF08-R2	R	AG TGAGACTATTATATWAATTAGATTTC	1277-1303
SE28	LE03-SE09-E1	F	AAAAAAATTATTAGCATGTTCAAC	1051-1074
"	LF03-SF09-R2	R	TGTTACAAYTGTATTATAAATTTGATC	1990-2016
SF29	LF03-SF10-F7	F	CTAGAATAATTATAATCTGAAATTA	37 - 395
"	LF03-SFI0-RI	R	AAGATTGCTGTAATAAAWACTGATC	2396-2420
SF30	LF03-SFII-FI	F	CCAAGACCAGGAACAGGATGAAC	2197-2219
"	LF03-SFII-RI	R	TCGWGTATCAACATCTAATCC	2725-2745
A. mellifera lig	gustica			
Long fra	gments	_		2467 2494
LFI		F		
"	LFI-KI	ĸ	AAAGGTWTAATTAATTTTATACC	8758-8780
LF2	LF2-F2	F	TAAGAAATTAATCCTAAACCATC	8199-8221
"	LF2-RI	R	ATTCAAGATCGAAAAGGTCC	13116-13135
LF3	LF3-F2	F	ATTAAAMCCTGAAACTAATTC	12596-12616
"	LF3-R2	R	TCTAAADACTTTAATTCCTG	2734-2753
Short fr	agments			
SFI	LF01-SF01-F1	F	GGAGATCCAATTTTWTATCAAC	2463-2484
"	LF01-SF01-R2	R	CGTTTAGAAATTAATCTTTC	3207-3226
SF2	LF01-SF02-F1	F	TTATTTYAAGATTTATTCATTG	2953-2974
"	LF01-SF02-R2	R	TTAAATATAAAATTTTTAATGATGG	3852-3876
SF3	LF01-SF03-F1	F	AATCAAATTCATATTATGCTG	3649-3669
"	LF01-SF03-R1	R	TGAWGGATCAAATATTTC	4614-4631
SF4	1 F01-SF04-F1	E	GGTCAATGTTCAGAAATTTGTGG	4191-4213
"	LF01-SF04-R2	R	GAAATTAAATTTGCTGATAATCG	5070-5092
		i,		
SF5	LF01-SF05-F2	F	AATATTTTTAGATTAATACC	4842-4861
"	LF01-SF05-R2	R	TCTCGAATAATATCTCGRAATC	5451-5472
SF6	LF01-SF06-F1	F	TTCAAAATATATTATTAACCTTAG	5167-5190
"	LF01-SF06-R2	R	ATACATGAADTCCATGAAATCC	5885-5906
SF7	Apis_AT_SF7_N_ FI	F	ATTTATTCTTGTATCATCAGG	5683-5703
"	LF01-SF07-R1	R	GGATTAAATCCACATTCAAATGG	6306-6328
CEO		F	TTATCA AVA/TACCA ATTTCATATTCAC	2003 2000
зго ″	LF01-SF08-R1	г D	ATTTGATTATGAADTTTATATTG	6604-6676
"		ĸ		0001-0020
SF9	LF01-SF09-F1	F	AATGAATAAATAATTATTTAAATTG	6514-6538
"	LF01-SF09-R2	R	AGATTATGTGGATTTCCATTTTAG	7522-7546
SF10	LF01-SF10-F2	F	ATAGAAATTGCTATAATTTTATCTTC	7326-7351

"	LF01-SF10-R1	R	TTTTCAACTTGATTACCAATAGC	7968-7990
SFII	LF01-SF11-F1	F	AATTGACTTAAAGTWGAATAAGC	7752-7774
"	LF01-SF11-R2	R	GTGGAATTTTATTATTTAARTTTAG	8523-8547
SF12	LF01-SF12-F1	F	ΤΑΑGΑΑΑΤΤΑΑΤCCΤΑΑΑCCATC	8199-8221
"	LFI-R2	R	ATAGGCAAACTAATAGACG	8997-9015
SF13	LF02-SF01-F1	F	ТТБААТАААТАААТСТАААТАААС	8794-8817
"	LF02-SF01-R2	R	TTTTTATATAGTTRTAAAATGAGG	9591-9614
SF14	LF02-SF02-FI	F	GAGCTTTTAATAATCAMCCATG	9358-9379
"	LF02-SF02-R2	R	AATTTTTCTTGTATTTTCTGTTTGTG	10087-10112
SF15	LF02-SF03-FI	F	TAGTTAATATTATTAATCCATATG	9769-9792
"	LF02-SF03-RI	R	TARGAAAATATAATTAATATTCC	10661-10683
SF16	LF02-SF04-F4	F	CAATAAATTCATTATTAATT	10614-10633
"	LF02-SF04-RI	R	TGAATTAAACGGAATAATCATCC	11244-11266
SF17	LF02-SF05-FI	F	GAAATTTTGGTTCAATTTTAGG	1- 32
"	LF02-SF05-R2	R	TAWGCAAATAAGAAATATCATTC	829- 85
SF18	LF02-SF06-FI	F	CATTTAACTGGATCATCAAATCC	6 9- 64
"	LF02-SF06-R2	R	AAGRATATTTGTATTAATTTTTTATC	12555-12581
SF19	LF02-SF07-F2	F	GAACTTGAATAAGTATATATTTTG	12217-12240
"	LF02-SF07-RI	R	GGTTGAAATAAWCCAAATAAAAAA	13087-13106
SF20	LF03-SF01-F2	F	ATCTAATTCAAGGATATAAAATTC	12953-12976
"	LF03-SF01-R1	R	TAAATTACCTTAGGGATAACAGCG	3540- 3563
SF21	LF03-SF02-FI	F	AATTTAAAAATTAAAGTCCTTTCG	333 - 3354
"	LF03-SF02-R2	R	TATAATTTTAGGTCGATCTGCTC	3899- 392
SF22	LF03-SF03-FI	F	ATTAAATAAAATTCTATAGGGTC	13704-13726
"	LF03-SF03-R2	R	GTACCTTTTGTATCAGGGTTG	14432-14452
SF23	LF03-SF04-F2	F	AAAAAACTAGATATCAATAAGTTCG	14294-14319
"	LF03-SF04-R2	R	AAAAAACTAGGATTAGATACCCTAC	15171-15195
SF24	LF03-SF05-F2	F	CTTATCGTGGATTATCAAATTAATC	15049-15073
"	LF03-SF05-R I	R	AATAAATAATTCTGAAACAATG	15402-15423
SF25	Apis_AT_F1	F	TAACCGCTATTGCTGGC	15336-15352
"	Apis-m-E-R I	R	ΑΤΑΑΤGTTTTTTAAACTA	8-26
SF26	Apis-m-AT2-F1	F	AACATATATGAATAAATAAGC	16137-16157
"	Apis-m-Q-R I	R	TAAAATTCAAAATTTTATGTGC	314-335
SF27	LF03-SF07-FI	F	AATAAGCTAAATAAAGCTTACAGG	226-249
"	LF03-SF07-R2	R	TTTATTATTTCATATGAATAAATTATTC	827-854
SF28	LF03-SF08-F2	F	ATAGAATTTRGTACAATTATCAGAATT	604-632

			AG	
"	LF03-SF08-R2	R	TGAGACTATTATATWAATTAGATTTC	1259-1284
SF29	LF03-SF09-F1	F	AAAAAAATTATTAGCATGTTCAAC	1005-1028
"	LF03-SF09-R2	R	TGTTACAAYTGTATTATAAATTTGATC	1938-1964
SF30	LF03-SF10-F7	F	CTAGAATAATTATAATCTGA	1325-1344
"	LF03-SF10-R1	R	AAGATTGCTGTAATAAAWACTGATC	2344-2368
SF3 I	LF03-SFII-FI	F	CCAAGACCAGGAACAGGATGAAC	2145-2167
"	LF03-SFII-RI	R	TCGWGTATCAACATCTAATCC	2673-2693

^aF and R, forward and reverse direction of transcription. ^bNucleotide positions are with respect to each fragment of *A. cerana, A. dorsata, A. laboriosa*, and *A. mellifera ligustica* mitochondrial genomes. *Sequencing was completed by the shotgun method.

Table S2. Frequency of four most frequently used codons in Apis mitochondrial genomes.

Species		Tatal			
species –	TTA (L)	ATT (I)	TTT (F)	ATA (M)	TOLAI
Apis andreniformis (KF736157)	13.54	12.92	10.48	8.54	45.47
Apis andreniformis (KC294228)	13.55	12.87	10.51	8.47	45.40
Apis cerana (GQ162109)	13.15	12.31	9.15	8.50	43.11
Apis cerana (KM244704)	13.18	12.37	9.18	8.53	43.26
Apis cerana japonica	13.08	12.43	9.19	8.51	43.21
Apis cerana	13.08	12.32	9.24	8.50	43.15
Apis dorsata (KC294229)	12.70	12.92	9.87	9.36	44.85
Apis dorsata	12.68	12.84	10.01	9.38	44.90
Apis florea (JX982136)	14.02	12.68	9.81	8.39	44.89
Apis florea (KC170303)	14.07	12.79	9.79	8.40	45.05
Apis koschevnikovi (AP017643)	13.35	12.45	9.88	8.54	44.22
Apis koschevnikovi (KY348372)	13.30	12.48	9.80	8.49	44.07
Apis laboriosa	12.68	12.93	9.87	9.27	44.75
Apis nigrocincta	13.28	12.66	9.55	8.27	43.76
Apis mellifera capensis	12.53	12.83	9.58	8.62	43.56
Apis mellifera intermissa	12.47	12.80	9.58	8.58	43.42
Apis mellifera lamarckii	12.64	12.69	9.58	8.57	43.48
Apis mellifera ligustica (L06178)	12.84	12.95	9.66	8.49	43.93
Apis mellifera ligustica	12.74	12.96	9.69	8.46	43.85
Apis mellifera meda	12.85	12.96	9.69	8.46	43.96
Apis mellifera mellifera	12.84	12.70	9.58	8.60	43.72
Apis mellifera scutellata (KJ601784)	12.53	12.77	9.61	8.60	43.50
Apis mellifera scutellata (KY614238)	12.75	12.77	9.61	8.60	43.73
Apis mellifera syriaca	12.66	12.64	9.61	8.54	43.45
Average	13.02	12.71	9.69	8.61	44.03

Letter within parenthesis indicates corresponding amino acid. Bold-faced font indicates species sequenced in this study.

		Dataset no.						
- Relationships		2	3	4	5	6	7	8
Monophyly of each species								
A. mellifera	I	I	Ι	I	100	100	100	100
A. cerana	I	Ι	I	I	100	100	100	100
A. nigrocincta	I	I	I	I	100	100	100	100
A. koschevnikovi	I	I	I	I	100	100	100	100
A. dorsata	I	I	I	I	100	100	100	100
A. laboriosa	I	I	I	I	100	100	100	100
A. andreniformis	I	I	I	I	100	100	100	100
A. florea	I	I	I	I	100	100	100	100
Relationships among Apis								
(A. cerana + A. nigrocincta)	I	I	I	I	100	100	100	100
((A. cerana + A. nigrocincta) + A. koschevnikovi)	I	I	I	I	100	100	100	100
(((A. cerana + A. nigrocincta) + A. koschevnikovi) + A. mellifera)	I.	I	I.	I.	80	88	99	90
(A. dorsata + A. laboriosa)	I	I	I	I	100	100	100	100
((((A. cerana + A. nigrocincta) + A. koschevnikovi) + A. mellifera) + (A. dorsata + A. laboriosa))	I	I	I	I	100	100	100	100
(A. andreniformis + A. florea)	I	I	I	I	100	100	100	100
(((((A. cerana + A. nigrocincta) + A. koschevnikovi) + A. mellifera) + (A. dorsata + A. laboriosa)) + (A. andreniformis + A. florea))	I	Ι	I	I	100	100	100	100

Table S3. Node supports for relationships among species in Apinae identified from partitioning schemes.

I, BI analysis using unpartitioned data: 2, BI analysis using the data partitioned into two groups, PCGs and rRNAs; 3, BI analysis using data partitioned into four groups based on codon positions of PCGs and RNAs; 4, BI analysis using the data partitioned into 14 groups based on PCGs and rRNAs; 5, ML analysis using unpartitioned data: 6, ML analysis using the data partitioned into two groups, PCGs and rRNAs; 7, ML analysis using the data partitioned into four groups based on codon positions of PCGs and RNAs; and 8, ML analysis using the data partitioned into 14 groups based on PCGs and rRNAs; and 8, ML analysis using the data partitioned into 14 groups based on codon positions of PCGs and RNAs; and 8, ML analysis using the data partitioned into 14 groups based on PCGs and rRNAs.

Supplementary Material Figure S1. Continued (1/12)

Supplementary Material Figure S1. Continued (2/12)

Supplementary Material Figure S1. Continued (3/12)

Supplementary Material Figure S1. Continued (4/12)

Supplementary Material Figure S1. Continued (5/12)

Supplementary Material Figure S1. Continued (6/12)

Supplementary Material Figure S1. Continued (7/12)

Supplementary Material Figure S1. Continued (8/12)

Supplementary Material Figure S1. Continued (9/12)

Supplementary Material Figure S1. Continued (10/12)

(D)

Supplementary Material Figure S1. Continued (11/12)

Supplementary Material Figure S1. (12/12)

Figure S1. Predicted secondary cloverleaf structures for the tRNA genes of the four Apis species sequenced in this study. (a) Apis cerana, (b) Apis dorsata, (c) Apis laboriosa, and (d) Apis mellifera ligustica. Dashes (-) indicate Watson-Crick base-pairing, and centered dots (•) indicate G-U base pairing. Arms of tRNAs (clockwise from top) are the amino acid acceptor arm, TΨC arm, anticodon arm, and dihydrouridine (DHU) arm.

(A) Apis and reniformis (KF736157)

Supplementary Material Figure S2. Continued (1/24)

(B) Apis and reniformis (KC294228)

$\underbrace{Q}_{(60 \text{ hn } 83\%)}$	5'-TAATTGGTGGTTGTCGTGTATACTGCTATTAATAATTTTTGAATTAATT
$\begin{bmatrix} 0 & 0 \\ L_1 & \end{bmatrix} \begin{bmatrix} A \end{bmatrix}$	5'-TAATTGGTGGTTGTCGTGTATACTGCTATTAATAATTTTTGAATTAATT
(69 bp, 83%) <u>A</u> – – <u>I</u> (27 bp, 85%)	5'-TTTTCTTCTAATTATATAAAGTAGTT -3'
[ND2 (62 bp. 100%)	5'-AATAATATAATAATTAAATTAAATTTTTAAAAATTTTTAAATTTT
ND2 <u>C</u> (62 bp, 100%)	5'-TAATTATTATATATATATATATATATATATATATATAT
<u>Y</u> — — — <i>W</i> (90 bp, 97%)	5'-АТАТТТТАААААТТААААТТТТТАТТАТТАТААТАТТАGAATATAAAATGATAAAAAAAAAA
$L_2 - COII$ (28 bp, 100%)	5'-TTAATAAATTAAAATTTAATTAAT-3'
ATP6 COUL (118 bp, 99%)	5'-ΑΤΤΑΑΤΑΑΤΤΑΑΤΑΤΤΑΑΤΑΑΤΑΑΤΑΑΤΑΑΤΑΑΑΑΑΤΑΑΤΑΑΤΑΑΤΑΑΤΤΑΤΑ
<i>COIII G</i>	5'-ATTAAAATTAAAAATAAAAATT -3'
$\frac{ND3}{(16 \text{ bp}, 100\%)} = \frac{R}{R}$	5'-AAAATTTAAATTTTAT-3'
<u>R</u> <u>N</u> (30 bp, 97%)	5'-ATTTAAAATTTTATTGTTTTAAAAA-3'
ND4 • ND4L (61 bp, 93%)	5'-CATTTTAATAAATAAAATAAAATAAAATAAAATAAAAT
<u>ND4L</u> – <u>T</u> (18 bp, 100%)	5'-TTTAAATTAAATATTAAA-3''
$\frac{T}{11} = \frac{P}{P}$	5'-ATTATAAAATT-3'
(1255 bp, 100 fd) (255 bp, 92%)	5'-ΤΓΤΤΤΤΑΑΤΤΤΑΑΤΑΑΤΤΙΤΤGΤΤΤΑΑΤΤΑΤΑΤGATGTTACTAAATTTAAATTATTATTAATTATTATTATGTTACAATTGTATAATTATTATT ΤΤΤΤΑΑΑCΤΤΑΑΑΑΤΑΤΤΑΤΤΤΤΤΤΤΤΤΤΑΤΤΤΑΤΤΤΑΑΤΤΑΑΤΤΑΑΤΤΑΤΤGTGTAAATTATACTACTATTATTATCAATATTAATTCAATATTACCAA CATTATTATAAAATATAATTAAT
ND6 CytB	5'-AATAAAATTATTTATTAATTAAA-3'
$C_{ytB} = -S_2$ (20 bp, 95%)	5'-AATAAAATTATTATTA-3'
S ₂ – <u>ND1</u> (27 bp, 100%)	5'-TTTATTAATTATTTAATTTAAAAA-3'

Supplementary Material Figure S2. Continued (2/24)

(C) Apis cerana (GQ162109)

E M (34 bp, 94%)	5'-AAAAATAAATTATAAAAAATCCATTTATATAAT-3'
<u>M</u> Q (231 bp, 91%)	5'-ТТАТАТАААААТТТТАТААТТТАТТТАGGTCTATCATCTATCAATAATTTATTTATTTAATTTAAT
<u>4</u> <u>/</u> (18 bp, 89%)	5'-TTTATGCTAATTTTTAAA-3'
<u>Y</u> – – <i>W</i> (16 bp, 94%)	5'-TTAATCATTATTATAT -3'
L ₂ - COII (89 bp, 85%)	5'-TTTAATAAGCTACAATTGCATTGAATTCTGAATTCAAACTCAAAGTAAAAAACTTTTATTAAAATTAATAATTTAAAATTTAAATTTATTA
ATP6 • COIII (17 bp, 100%)	5'-AAAATTAAATTAATTTA-3'
<i>COIII</i> - <i>G</i> (66 bp, 98%)	5'-ΤΑΤΤΑΑΤΑΑΤΑΤΑΑΑΤΤΑΑΑΤΤΤΑΤΑΤΑΑΑΤΑΤΤΑΤΤΑΤ
ND3 – <u>R</u> (19 bp, 95%)	5'-TAAATTAATATTCTAAATA-3'
<u>R</u> N	5'-AAATTTAAAATTTTAATTA-3'
(19 bp, 100%) $N \underline{F}$ (18 bp, 100%)	5'-ATAATTTTATAATAAATT-3'
<u>Н</u> – <u>ND4</u> (17 bp, 100%)	5'-AAAATTAAATTAAATTTA-3'
<u>ND4L</u> – <u>T</u> (23 bp, 100%)	5'-AAATTTTAATATTTAAATTTCAA-3''
$T = - \frac{P}{P}$ (15 bp, 96%)	5'-AATTTATTTAAAATT-3'
<u>P</u> - <u>ND6</u>	5'-AAAAATAAATCTTAATAAAAATTTTAAACATGAAATTTAAATAAA
(50 Bp, 94%)	5'-ATATTTAACATA-3'
(12 bp, 92%) $C_{ytB} = -\frac{S_2}{S_2}$ (23 bp, 91%)	5'-ATTTAAATTTTACTCTTAATTAA-3'
$S_2 - ND1$ (12 bp, 92%)	5'-TATTTATACTTA-3

Supplementary Material Figure S2. Continued (3/24)

(D) Apis cerana (KM244704)

<i>EM</i>	5'-AAAAATAAATTATATAAAAATCCATTTATATAAT-3'
(34 bp, 94%) <u>M</u> – – <u>Q</u> (231 bp, 91%)	5'ТТАТАТАААААТТТТАТААТТТАТТТGGGTCTATCATCTATCAATAATCTATTTATTAATTTAAATATCCCTGTAAATTTTCTAAAAAA ААААСАААААААААТТТААGAAACTATTGGATAATAATCAATTGTAATAATAATAATAACAATAATAATAATAATAATAATAAT
<u>A</u> <u>I</u> (18 bp, 83%)	5'-TTTATGCCAATTTTTAAA-3'
<u>Y</u> <i>W</i> (16 bp, 94%)	5'-TTAATCATTATTATAT -3'
L ₂ - COII (89 bp, 85%)	5'-TTTAATAAGCTACAATTGCATTGAATTCTGAATTCAAACTCAAAGTAAAAAACTTTTATTAAAATTAATAATTTAAAATTTAATATTAT
ATP6 • COIII	5'- TCTATAATTAAAATAAA-3'
(17 bp, 94 %) <i>COIII</i> - <i>G</i> (66 bp, 98%)	5'-ТАТТААТААТАТАААТТТАААТТТАТАТААТАТТАТТАТ
$\frac{ND3}{19} - \frac{R}{2}$	5'-TAAATTAATATTCTAAATA-3'
<u>R</u> N	5'-AAATTTAAAATTTTAATTA-3'
(19 bp, 100%) $N \underline{F}$ (18 bp, 100%)	5'-ATAATTTTATAATAAATT-3'
<u>H</u> – <u>ND4</u> (17 bp, 100%)	5'-AAAATTAAATTAATTTA-3'
$\frac{ND4L}{23 \text{ bp}, 96\%}$	5'-AAATTTTAATATTTAAATTTCAA-3''
T P (32 bp, 97%)	5'-AATTTATTTAAAAATTTCAAAAAAATTTATAAA-3'
<u>P</u> - ND6	5'-AAAAATAAATCTTAATAAAAATTTTAAACATGAAATTTAAATAAA
ND6 • CytB	5'-ATATTTAACATA-3'
(12 bp, 92%) <i>CytB</i> - S ₂ (23 bp, 91%)	5'-ATTTAAATTTTACTCTTAATTAA-3'
S ₂ – <u>ND1</u> (12 bp, 92%)	5'-TATTTATACTTA-3'

Supplementary Material Figure S2. Continued (4/24)

(E) Apis cerana japonica (AP017314)

<i>E</i> <i>M</i>	5'-AAAAATAAATTATATAAAAAATCCATTTATATAAT-3'
(34 bp, 94%) <u>M</u> – – <u>Q</u> (231 bp, 89%)	5'-TTATATAAAAAATTTTATAATTTAATTTGGGTCTATCAATCA
A I (18 bp, 89%)	5'-TTTATGCTAATTTTTAAA -3'
<u>F</u> <i>W</i> (16 bp, 94%)	5'-TTAATCATTATTATAT-3'
L ₂ - COll (89 bp, 87%)	5'- TTTAATAAGCTACAATTGCATTGAATTCTGAATTCAAACTCAAAGTAAAAAATTTTTATTAAAATTAATAATTTAAAATTTAATTATTATT AAA -3'
ATP6 • COIII	5'-TCTGTAATTAAAATAAA-3'
(17 bp, 00 %)	5'-TATTAATAATATAAATTTAAAATTTATATAATATTATTA
$\frac{ND3}{20} - \frac{R}{R}$	5'-TAAATTAATATTCTAAATAA-3'
$\frac{R}{R} = \frac{N}{N}$	5'-AAATTTAAAATTTTAATTA-3'
$\frac{N}{N} = -\frac{F}{F}$ (18 bp, 100%)	5'-ATAATTTTATAATAAATT-3'
<u>H</u> – <u>ND4</u> (17 bp, 100%)	5'-AAAATTAAATTTA-3'
<u>ND4L</u> – <u>T</u> (23 bp, 96%)	5'-AAATTTTAATATTTAAATTTCAA-3''
<u>Т — _ </u> (32 bp, 97%)	5'-AATTTATTTAAAATT-3'
<u>P</u> – <u>ND6</u> (54 bp, 93%)	5'-AAAAAAAAAAAATAAATAAAAAATTTTCAACATGAAATTTAAATAAA
ND6 • CytB	5'-ATATTTAACATA-3'
(12 bp, 92%) $C_{ytB} = S_2$ (23 bp, 91%)	5'-ATTTAAATTTTACTCTTAATTAA-3'
$S_2 - NDL$ (12 bp, 92%)	5'-TATTTATACTTA-3'

Supplementary Material Figure S2. Continued (5/24)

(F) Apis cerana (This study)

<u>E</u> <u>M</u>	5'-AAAAATAAATTATATAAAAATCTATTTATATAAT-3'
(34 bp, 97%) <u>M</u> – – <u>Q</u> (231 bp, 91%)	5'-TTATATAAAAAATTTTATAAATTTATTTGGGTCTATCATCTATCAATAATCTATTTAATTTAAATATCCCTGTAAACTTTCTA AAAAAAAAAA
A I (18 bp, 83%)	5'-TTTATGCCAATTTTTAAA-3'
<u>Y</u> <i>W</i> (16 bp, 94%)	5'-TTAATCATTATTAT -3'
L ₂ - COll (89 bp, 85%)	5'-TTTAATAAGCTACAATTGCATTGAATTCTGAATTCAAACTCAAAGTAAAAAAACTTTTATTAAAATTAATAATTTAAAATTTAATATTAT
ATP6 • COIII	5'- TCTATAATTAAAATAAA-3'
(68 bp, 99%)	5'-TATTAATAATATAAATTTAAAATATTATATATATATAT
$\frac{ND3}{(19 \text{ pn}, 95\%)}$	5'-TAAATTAATATTCTAAATA-3'
$\frac{R}{R} \frac{N}{N}$	5'-AAATTTAAAATTTTAATTA-3'
(1) bp, $100%(18 bp, 100%)$	5'-ATAATTTTATAATAAATT-3'
<u>H</u> <u>ND4</u> (17 bp, 100%)	5'-AAAATTAAATTAATTTA-3'
<u>ND4L</u> $- T$ (23 bp, 96%)	5'-AAATTTTAATATTTCAA-3''
$\frac{T}{32 \text{ bp}, 97\%}$	5'-AATITATTTAAAATTTCAAAAAAATTTATAAA-3'
<u>P</u> – <u>ND6</u>	5'-AAAAATAAATCTTAATAATAAAAATTTTAAACATGAAATTTAAATAAA
ND6 CytB	5'-ATATTTAACATA-3'
(12 bp, 92%) $C_{ytB} - S_2$ (23 bp, 91%)	5'-ATTTAAATTTTACTCTTAATTAA-3'
(25 bp, 91%) $S_2 - ND1$ (12 bp, 92%)	5'-TATTTATACTTA-3'

Supplementary Material Figure S2. Continued (6/24)

(G) Apis dorsata (KC294229)

Supplementary Material Figure S2. Continued (7/24)

(H) Apis dorsata (This study)

<u>E</u> <u>M</u> (82bp, 99%)	5'-AAAATAATAATTTTTAAAATAATTTATAATTTTTAAAATAATTATTAATTTT
A = - I (12 bp, 92%)	5'-ATATAACTTATT-3'
<u>I</u> _ <u>ND2</u> (32 hp 100%)	5'-AATAATAATAATAATATATTATTTATTA-3'
(32 bp, 100 %) (12 bp, 92%)	5'-TTTATACTTTAT-3'
(12 bp, 92%) $\underline{Y} = -W$ (40 bp, 98%)	5'-TTTAATAATTTTATATATATATATATATATATAATACAT-3'
$\frac{L_2}{25 \text{ hp}} = \frac{COH}{25 \text{ hp}}$	5'- TTAATAAATATTTTTATTTAAA-3'
<i>COIII</i> - <i>G</i> (66 bp, 96%)	5'- AATTATTATATAAAATTAAAAATAAGTATAATAATAATACATAATACATTTATATTTATT
$\frac{ND3}{(36 \text{ bp}, 97\%)}$	5'-TTTATTATTAAATTACATTTATAATATAAA-3'
$\underline{R} = -\underline{N}$	5'- AAAATATTACTCTAATTTT-3'
<u>E</u> <u>ND5</u>	5'-AATTTAAATAAATT-3'
(14 bp, 100%) <u>ND4</u> <u>ND4L</u> (31 bp, 94%)	5'-AATTTAAATAAATT-3'
$\underline{ND4L} - \underline{T}$	5'-AAATTTAATAT-3'
$\frac{T}{13 \text{ bp}, 100\%}$	5'-AATTTATTAAATT-3'
<u>P</u> <u>ND6</u> 40 bp, 93%)	5'-AATTCCATTTATTTAAAAAATCTTAAATATTTAATAAATTA-3'
ND6 • CytB 5 (16 bp, 93%)	5'-TATAATATCCAAAATA-3'
CytB $-S_2$ (12 bp, 100%)	5'-TTTATAAATTTT-3'

Supplementary Material Figure S2. Continued (8/24)

(I) Apis florea (JX982136)

$E = -S_I$	5'-TATATTTAAAATTTATAAACCG-3'
(22 bp, 80%) $S_I = S_I$ (108 bp, 94%)	5'-ТТТААТТТАТАААGTTAATAAAAATTAACATTATATATATATATAAAAATAATTATATATAAAAATTATA
(108 bp, 94%) $S_{l} = -S_{l}$ (108 bp, 94%)	5'-TTTAATTTATAAAGTTAATAAAAATTAACATTATATTAT
$S_1 - M$ (110 bp, 94%)	5'-TTTAATTTATAAAGTTAATAAAAATTAACATTATATTAATATAAAAAATAAAT
<u>M</u> – – <u>Q</u> (24 bp, 100%)	5'-AAATTTTATATTTTAAAATTTTATAAA-3'
<i>Q</i> – – <i>A</i> (58 bp, 97%)	5'-TTTTAAATTTAAAAAAAATTATTAAAATTTTAAAAAATAT
A I (10 bp, 100%)	5'-TAAATAATAA-3'
<i>I</i> – <i>ND2</i> (32 bp, 100%)	5'-AATAATATAAAAAATAAAAATTTTTTAT-3'
<i>ND2</i> - <u>C</u> (22 bp, 96%)	5'-TTCAAATAAAAATAATTTTTT-3'
<u>C</u> – – <u>Y</u> (30 bp, 100%)	5'-TTTATTAAAAAAAATATTTTAAAAATTTTTT-3'
$\underline{Y} = - W$ (41 bp, 95%)	5'-TTAAAAAATTAATTTTAAAAAATTACTAAAATTTTTTCTATA-3'
L ₂ - COII (35 bp, 100%)	5'-TTAATAAATTAAAATTTAATTAAT-3'
<i>сош</i> – <u>G</u> (36 bp, 97%)	5'-TAAATAAATTTCTTAAATATAAATATATATATATAT-3'
ND3 – <u>R</u> (13 bp, 100%)	5'-TATTTTAATTTTA-3'
$\underline{R} N$ (16 bp, 94%)	5'-TAAAAATACTATAAAA-3'
N <u>F</u> (10 bp, 100%)	5'-AATAATTTAAAATCAGAACAATTAAAATTTTTTATATTT 2'
(35 bp, 91%)	
$\frac{ND4L}{(47 \text{ bp}, 87\%)}$	
(10 bp, 100%)	5'-ATLAAAALI-3'
(31 bp, 90%)	
ND6 CytB (18 bp, 100%)	5'-TATAAATTAAATTAATAA-3'
CytB $-S_2$ (18 bp, 100%)	5'-TTAAATAAATAAATTTTA-3'
S ₂ – <u>ND1</u> 5 (79 bp, 94%)	"-TTAAATATCTATCTATTTTAAAAAATTAATTTTGTAATAAAAAATATTAGTATAAAAAA

Supplementary Material Figure S2. Continued (9/24)

(J) Apis florea (KC170303)

$E = -S_1$	5'-TATATTTAAAATTTATAAACCG-3'
(22 bp, 86%) $S_1 = S_1$ (108 bp. 94%)	5'-TTTAATTTATAAAGTTAATAAAATTAACATTATATTTATT
(108 bp, 94%) $S_{I} = -S_{I}$ (108 bp, 94%)	5'-TTTAATTTATAAAGTTAATAAAATTAACATTATATTTATT
$S_1 M$ (110 bp, 95%)	5'- ТТТААТТТАТАААGTTAATAAAATTAACATTATATTAATATAAAAATAAATTATATATAAAATTATAT
M = -Q (23 hp. 100%)	5'-AAATTTTATATTTATAA-3'
<u>Q</u> – – <u>A</u> (58 bp, 98%)	5'-ΤΤΑΑΑΑΑΤΤΤΤΤΑΑΑΤΑΑΑΑΑΑΤΤΑΤΤΑΑΑΑΤΤΤΤΑΑΑΑΑ
A I (10 bp, 100%)	5'-TAAATAATAA-3'
<i>I ND2</i> (32 bp, 100%)	5'-AATAATATAAAAAATAAAAATTTTTTAT-3'
ND2 - <u>C</u> (21 bp, 95%)	5'-TTCAAATAAAATAATTTTTT-3'
$\underbrace{\underline{C}}_{28 \text{ bn}} = -\underbrace{\underline{Y}}_{100\%}$	5'-TTAATTAAAAAAATATTTTAAAAATTTTT-3'
$\frac{Y}{(40 \text{ bp}, 95\%)}$	5'-TTAAAAATTAATTTTAAAAATTACTAAAATTTTTTCTATA-3'
$L_2 - COII$ (35 bp, 100%)	5'-TTAATAAATTTAAATATTAAAAATTT-3'
<u>COIII</u> – <u>G</u> (19 bp, 95%)	5'-TAAATAAATTTTCTTATAT-3'
$\frac{ND3}{13 \text{ bp. } 100\%}$	5'-TTTTTAATTTTA-3'
$\frac{R}{16 \text{ bp}, 94\%}$	5'-AAAAATATTATAAAA-3'
N E (10 bp, 100%)	5'-AATAATTTAT-3'
<u>ND4</u> <u>ND4L</u> (34 hp. 97%)	5'-TTTTTAAATCAAATAATTAAATTTTTTTATATTT-3'
$\frac{ND4L}{1} - \frac{T}{7}$	5'-GAATTTTAAAATTATTACAATCGTTTATAACTTATAAATCTAATAAA-3''
[T] = - [P] (10 bp, 100%)	5'-AATTAAAATT-3'
<u>P</u> – ND6	5'-ATAATTAAAA-3
(10 bp, 100%)	5'-TAAATTTAAATTATTAA-3'
(17 bp, 100%) $C_{ytB} - S_2$ (17 bp, 100%)	5'-TAAATAAATTTTA-3'
(17 pp, 100%) $S_2 - ND1$ (77 pp, 94%)	5'-TTAAATATCTATCTATTTTAAAAAATTAATTTTGTAATAAAAAATATTAGTATAAAAAA

Supplementary Material Figure S2. Continued (10/24)

(K) Apis koschevnikovi (AP017643)

<u>S</u> <u>E</u> (10bp, 100%)	5'-AATTTAATAA-3'
M M (43 bp, 95%)	5'-TATTATAAAATTAACATATTATATATATATATATATATA
<u>М</u> <u>М</u> (55 bp, 96%)	5'-TATTATAATAAATTAACATATTATATATATATATATATA
<u>M</u> Q (18 bp, 94%)	5'-AATCTTTATTAATT-3'
<u>C</u> <u>Y</u> (13 bp, 100%)	5'-AATTATAATTTTT-3'
<u>Y</u> W (13 bp, 100%)	5'-ATTATATATTAAT-3'
L ₂ - COII (90 bp, 90%)	5'-TAATTTAATAAAGCAATTTATGCACTGAATTTAATCAATAAAATAGTTATATAAAACTTTTATTAATAATAATAATTAAT
ATP6 . COIII (13 bp, 100%)	5'-TTTATTAATTTAA-3'
<u>сош</u> – <u>G</u> (45 bp, 100%)	5'-TTATTATTAATAAATAAAATATTTTTTTTTTTATATATAT
R N (41 bp, 100%)	5'-ATATATATATATATATATATATATAAATAAATTTTAAAAT-3'
$\underbrace{H}_{\text{MD4}} = \underbrace{ND4}_{\text{MD4}}$	5'-AATCTAAATAAATAAAATAAATATTT-3'
<u>ND4L</u> – T (20 bp, 100%)	5'-AAATTTTAATTAAATTATTA-3'
T P (15 bp, 93%)	5'-AATTTACTTAAAATT-3'
<u>P</u> – <u>ND6</u> (36 bp, 90%)	5'-AAAATAAAATTTTTATTTTAATTTAAATTA-3'
ND6 • CytB (22 bp, 100%)	5'-ATAATTTTACTTAAATTAATAA-3'
$CytB - S_2$ (23 bp, 96%)	5'-TAATTAATAAATAACTTTTT-3'
S ₂ – <u>NDI</u> (23 bp, 100%)	5'-TAATTTATTTATTTAAATTA-3'

Supplementary Material Figure S2. Continued (11/24)

(L) Apis koschevnikovi (KY348372)

Supplementary Material Figure S2. Continued (12/24)

(M) Apis laboriosa (This study)

E M 5'-TAAATTAAATTATT-3'
(14bp, 100%)
MQ 5'-CATATAAATTATTTATT-3'
(17 pp, 94%) $(17 pp, 94%)$ 5'-AATAATATTTCCAATTTAATATTATTATTATTA-3'
(32 bp, 94%)
(32 bp, 94%) <u> y</u> <u> W</u> 5'-AAATTATTTATAATATTTCAAT-3'
(22 bp, 96%)
(28 bp, 93%)
(54 bp, 94%)
ND3 - R 5'-AAATAATTAAATAACAATAATAATAATAATTAGAAT-3' (36 bp, 94%) - -
<u>R</u> → → → N 5'-ATATATATATATATATATATATTATTATTATTATTATTTATTTCAATTAATAA
<u>ND4</u> 5'-CATTATTATAAATAATAATAATAATAATAATAATAATAAT
ND4 T 5'-TAATTTAATAAT-3'
$\begin{array}{c} (12 \text{ bp}, 100 \%) \\ \hline \\ \hline \\ (13 \text{ bp}, 100 \%) \end{array} 5'-AATTTATTAAATT-3' \\ \hline \\ (13 \text{ bp}, 100 \%) \end{array}$
P - ND6 5'-AAAAACCTAATTATTTTTAACTACAAAATTTAATAAATTA-3' (40 bp, 90%) - - - -
<i>ND6</i> • <i>CytB</i> 5'-ATTATAATTTTATTTTTTATA-3' (23 bp, 100%)
$C_{YHB} = -\frac{S_2}{5' \cdot TTTTTTTTAAAATTTTAA-3'}$ (18 bp. 100%)
$\underbrace{NDI}_{(73 \text{ bp}, 90\%)} = \underbrace{L_2}_{(73 \text{ bp}, 90\%)}$ 5'-TATTATTTACAACATTATATATATATATATATATATATA

Supplementary Material Figure S2. Continued (13/24)

(N) Apis nigrocincta (KY799147)

Supplementary Material Figure S2. Continued (14/24)

(O) Apis mellifera capensis (KX870183)

Supplementary Material Figure S2. Continued (15/24)

(P) Apis mellifera intermissa (KM458618)

<i>E S₁</i> (49bp, 92%)	5'-TAATTAAGTCAAATTTAAATTAACCTAAAAAATTATTTAT
(38 bp, 100%)	5'-ATTATAAATTAAATTAAATTTAAAATAAAAT-3'
<u>C</u> – – <u>Y</u> (20 bp, 80%)	5'-TTATTTACCATGATATAGTA-3'
<u>Y</u> W (66 bp, 92%)	5'-AAGTAAGATTTAAAAAAATCCTTTTTTATTTTTTTTTTT
L ₂ COII (191 bp, 92%)	5'-ТТТССССАСТТААТТСАТАТТААТТТААДААТАААТТААТААСААТТТТААТААААТАААТ
ATP6 COIII (20 bp, 95%)	5'-AATATTAAAAAATAAAAACTAA-3'
COIII G (54 bp, 98%)	5'-ΤΑΑΑΑΑΤΤΤΑΤΑΑΑΤΤΑΑΑΑΑΑΤΑΑΑΑΤΑΑΤΟΑΑΤΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤ
ND3 - <u>R</u> (33 bp, 88%)	5'-AATTTAAATAATTACAATAATTACTACCAAAAT-3'
<u>R</u> <u>N</u> (96 bp, 97%)	5'-ГТТТТАТТТААТАТТААТТААТААТТААТААТТААТАТТТТ
<u>F</u> <u>ND5</u> (12 bp, 100%)	5'-AAATTTAAATAA-3'
<u>H</u> – <u>ND4</u> (19 bp, 90%)	5'-CTAATTTTTAAACTTTAAT-3'
$\underline{ND4L} = \underline{T}$ (12 bp, 92%)	5'-AAATTCTTATAA-3'
T P (19 bp, 90%)	5'-AATTTATCATTCATAAATT-3'
ND6 CytB (59 bp, 93%)	5'-TTAATATTTAAAATCATTATTAAAATTATTATTATTATTA
<i>CytB</i> - <i>S</i> ₂ (44 bp, 98%)	5'-ATTAAATAAAAATTAATTTTTTTAAAATCAATTTTTAAATTTT-3'
S ₂ <u>ND1</u> (34 bp, 94%)	5'-TTTTACTTATTTAATATAAAATTAAAATTAAAACT-3'

Supplementary Material Figure S2. Continued (16/24)
(Q) Apis mellifera lamarckii (KY464958)

Supplementary Material Figure S2. Continued (17/24)

(R) Apis mellifera ligustica (L06178)

<u>E</u> <u>S</u> ₁ (49bp, 93%)	5'-TAATTAAGTCAAATTTAAATTAATCAAAAATTATTTATTAATAA-3'
<u>S₁ – – M</u> (42 bp, 98%)	5'-ATTATATAAATTAAATTAAATATTAAATTTAAAATAAT-3'
<u>C</u> <u>¥</u> (20 bp, 90%)	5'-TTATTTAACATGATATAATA-3'
<u>Y</u> <i>W</i> (62 bp, 92%)	5'-AAATAAGATTTAAAAAAACCCTTTTTTATTTTTTTATTTTTTTAAATTTTTAAAATATAACA-3'
<u>L₂</u> – <i>СОП</i> (193 bp, 92%)	5'-ТТТССССАСТТААТТСАТАТТААТТАААТТААААТАААТ
ATP6 COIII (20 bp, 95%)	5'-AATATTAAAAATAAAACTAA-3'
<i>COIII</i> – <i>G</i> (54 bp, 100%)	5'-TAAAAATTTATAAAATTAAAAAATAAAAATTATAATTATA
ND3 - <u>R</u> (33 bp, 88%)	5'-AATTTAAATAATTACAATAATTACTACCAAAAT-3'
<u>R</u> – – <u>N</u> (95 bp, 98%)	5'-ТТТТАТТТААТТТАТТТАТТААААТААТТААТАТТТТАААА
<u>F</u> – <u>ND5</u> (13 bp, 100%)	5'-AAATTTAAAATAA-3'
<u>H</u> – <u>ND4</u> (19 bp, 90%)	5'-CTAATTTTAAAACTTTAAT-3'
<u>ND4L</u> – <u>T</u> (12 bp, 92%)	5'-AAATTCTTATAA-3'
<u><i>T</i></u> <u><i>P</i></u> (19 bp, 90%)	5'-AATTTATCATTCATAAATT-3'
ND6 • CytB (59 bp, 93%)	5'-TTAATATTTAAAATCATTATTAAAATTATTATTATTATTA
CytB $-S_2$ (45 bp, 98%)	5'-ATTAAAAAAAATTAATTTTTTAAAATCAATTTTTAAATTTTA-3'
<u>S₂ – <u>ND1</u> (34 bp, 94%)</u>	5'-TTTTACTTATTTAATATAAATTAAATTAAACT-3'

Supplementary Material Figure S2. Continued (18/24)

(S) Apis mellifera ligustica (This study)

Supplementary Material Figure S2. Continued (19/24)

(T) Apis mellifera meda (KY464957)

Supplementary Material Figure S2. Continued (20/24)

(U) Apis mellifera mellifera (KJ396191)

Supplementary Material Figure S2. Continued (21/24)

(V) Apis mellifera scutellata (KJ601784)

<u>E</u> <u>S_1</u> (60 bp, 92%)	5'-TAATTAAGTCAAATTTAAATTAAATAACAAATAAAATAA
$S_1 - M$ (39 bp, 100%)	5'-ATTATAAATTAAATAAAATAATATTTAAAAATAAAAT
<u>C</u> – – <u>Y</u> (20 bp, 85%)	5'-TTATTTACCATGATATAATA-3'
<u>Y</u> W (59 bp, 90%)	5'-AAGTAAGATTTAAAAAAACCCTTTTTTATTTTTTATTTTTTAAAATTTTTAAAATATACA-3'
L ₂ <i>COll</i> (211 bp, 93%	5'-ТТААТАААТТААТАТААААТААААСААААТАТААСААGААТАТАТТТАТТ
ATP6 . COIII (20 bp, 95%)	5'-AATATTATAAAAACTAA-3'
COIII G (95 bp, 99%)	5'-ТАААААТТТАТАААТТАААААТААААТТААТААТСАААТААААТТАТААТТАТААТА
ND3 <u>R</u> (33 bp, 88%)	5'-AATTTAAATAATTACAATAATTACTACCAAAAT-3'
<u>R</u> – – <u>N</u> (96 bp, 97%)	5'-ТТТТТАТТТААТТТАТТААТААТААТТААТАТТТТААААА
<u>E</u> <u>ND5</u> (12 bp, 100%)	5'-AAATTTAAATAA-3'
<u>H</u> – <u>ND4</u> (19 bp, 90%)	5'-ATAATTTTTAAAACTTTAAT-3'
<u>ND4</u> ND4L (28 bp, 96%)	5'-TCAATATAATAATAATAATATATAA-3'
<u>ND4L</u> – <u>T</u> (12 bp, 92%)	5'-AAATTCTTATAA-3'
$\frac{T}{20 \text{ bp}, 90\%}$	5'-AATTTATCATTCATAAATTT-3'
ND6 • CytB (59 bp, 93%)	5'-TTAATATTTAAATTTAAAATCATTATTAAAATTATTATTA
$C_{ytB} = S_2$ (49 hp. 9%)	5'-ATTAAATAAAAAAATTAATTTTTTTTAAAAATCAATTTTTAAATTTTA-3'
$S_2 - ND1$ (34 bp, 94%)	5'-TTTTACTTATTTAATATAAAATTAAAATTAAAACT-3'

Supplementary Material Figure S2. Continued (22/24)

(W) Apis mellifera scutellata (KY614238)

$E = -S_1$ (60 bp, 92%)	5'-TAATTAAGTCAAATTTAAATTAACAAATAAAATAACCTAAAAATTATT
$S_1 - M$ (39 bp, 100%)	5'-ATTATATAATTAAATAAATATTAAATTTAAAATAAAA
<u>C</u> – – <u>Y</u> (20 bp, 80%)	5'-TTATTTACCATGATATAGTA-3'
<u>Y</u> W (60 bp, 90%)	5'-AAGTAAGATTTAAAAAAACCCTTTTTTATTTTTTATTTTTTTAAAATTTTTAAAATATACA-3'
L ₂ – <i>COII</i> (259bp, 93%)	5'-ТТААТАААТТААТАТААААТААААСААААТАТААСАGAATATATTTATTAAAATTTAATTTAATATTAAAATTCCCCACTTAATTCA ТАТТААТТТАААААТААААТТААТААСААТТТТААТААААТАААТАААТААТ
ATP6 COIII (21 bp, 91%)	5'-AATATTCATAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
<i>COIII</i> - <u><i>G</i></u> (93 bp, 99%)	5'-ТААААААТТТАТАААТТААААААТААААТТААТААТСАААТААААТТАТААТТАТААТА
ND3 - <u>R</u> (33 bp, 88%)	5'-AATTTAAATAATTACAATAATTACTACCAAAAT-3'
<u>R</u> – – <u>N</u> (96 bp, 98%)	5'-ТТТТТАТТТААТТТАТТТАТТААААТААТТААТАТТТТАААА
<u>E</u> – <u>ND5</u> (12 bp, 100%)	5'-AAATTTAAATAA-3'
<u>H</u> – <u>ND4</u> (19 bp, 90%)	5'-CTAATTTTTAAACTTTAAT-3'
ND4 • ND4L (28 bp, 96%)	5'-TCAATATAATAATAAATATATATAA-3'
<u>ND4L</u> – <u>T</u> (12 bp, 92%)	5'-AAATTCTTATAA-3'
T P (20 bp, 90%)	5'-AATTTATCATTCATAAATTT-3'
ND6 • CytB (59 bp, 93%)	5'-TTAATATTTAAATTTAAAATCATTATTAAAATTATTATTA
CytB $-S_2$ (48 bp, 98%)	5'-ATTAAATAAAAAATTAATTTTTTTTAAAAATCAATTTTTAAATTTTA-3'
S ₂ – <u>NDI</u> (34 bp, 94%)	5'-TTTTACTTATTTAATATAAAATTAATATTAAACT-3'

Supplementary Material Figure S2. Continued (23/24)

(X) Apis mellifera syriaca (KP163643)

5'-TAATTAAGTCAAATTTAAATTAACAAATAAACAAATAACCTAAAAAATTATT
5'-TATTATAATAATTTAAATATTAAATATTAAAATAAAA
5'-TTATTTAACATGATA-3'
5'-AAATAAGATTTAAAAAAACCCTTTTTTTATTTTTTTTTT
5'-TTAATAAATTAAAATAAAAATAAAATATAAACAGAATATATTATTAAAAACTTAATTTATTAAAA-3'
5'-AATATTAAAAATAAAACTAA-3'
5'-ТАААААТТТАТАААТТААААААТААААТТААТААТТАААТАААА
5'-AATTTAAATAATTACAATAATTACTACCAAAAT-3'
5'-AAATTTAAATAA-3'
5'-ATAATTTTTAAAACTTTAAT-3'
5'-TCAATATAATAAATAAATAAATAAATAAATAA-3'
5'-AAATTCTTATAA-3'
5'-AATTTATCATTCATAAATT-3'
5'-ΤΤΑΑΤΑΤΤΤΑΑΤΤΤΑΑΑΑΤCΑΤΤΑΤΤΑΑΑΤΤΑΤΑΑΤΑΤΤΑΤ
5'-ΑCTAAATTAAAAATTAATTTTTTAAAATCAATTTTTAAATTTTA-3'
5'-TTTTACTTATTTAATATAAAATTAAATTAAAACT-3'

Supplementary Material Figure S2. (24/24)

Figure S2. The intergenic space sequences of (a) Apis andreniformis (KF736157), (b) Apis andreniformis (KC294228), (c) Apis cerana (GQ162109), (d) Apis cerana (KM244704), (e) Apis cerana japonica (AP017314), (f) Apis cerana (This study), (g) Apis dorsata (KC294229), (h) Apis dorsata (This study), (i) Apis florea (JX982136), (j) Apis florea (KC170303), (k) Apis koschevnikovi (AP017643), (l) Apis koschevnikovi (KY348372), (m) Apis laboriosa (This study), (n) Apis nigrocincta (KY799147), (o) Apis mellifera capensis (KX870183), (p) Apis mellifera intermissa (KM458618), (q) Apis mellifera lamarckii (KY464958), (r) Apis mellifera ligustica (L06178), (s) Apis mellifera ligustica (This study), (t) Apis mellifera meda (KY464957), (u) Apis mellifera mellifera (KJ396191), (v) Apis mellifera scutellata (KJ601784), (w) Apis mellifera scutellata (KY614238), and (x) Apis mellifera syriaca (KP163643). Numbers within parentheses are lengths and A/T percentages of intergenic spacer sequences.

(A) Apis and reniform is

$trnQ - trnL_1(97.1\%)$

A. andreniformis (KF736157) A. andreniformis (KC294228)	TAATTGGTGGTTGTCGTGTATACTGCTATTAATAATTTTTGAATTAATT
A. andreniformis (KF736157) A. andreniformis (KC294228)	TTAATTTA- TTAATTTAT ******
$trnL_1 - trnA$ (100%)	
A. andreniformis (KF736157) A. andreniformis (KC294228)	TAATTGGTGGTTGTCGTGTATACTGCTATTAATAATTTTTGAATTAATT
A. andreniformis (KF736157) A. andreniformis (KC294228)	TTAATTTAT TTAATTTAT *******
trnI - ND2 (94.5%)	
A. andreniformis (KF736157) A. andreniformis (KC294228)	AATAATATAATAATTAATTAAATTAAATTTTTAAAAAA
ND2 – trnC (69.1%)	
A. andreniformis (KF736157) A. andreniformis (KC294228)	TAATTATTATATATATATATATATATATATATAT
A. andreniformis (KF736157) A. andreniformis (KC294228)	TATATATATATGTATAAATAAATAAATTAGTAAAATATTAAATTAGAAGGTAAGATAAAA TATATATA
A. andreniformis (KF736157) A. andreniformis (KC294228)	TTAGAAAAAAAATTAATATTTTATAATGATTTAAAATTAATAA
trnY-trnW(100%)	
A. andreniformis (KF736157) A. andreniformis (KC294228)	ATATTTAAAAATTAAAATTTTTATTTTATAATATTAGAATATAAAATGATAAAAAA
A. andreniformis (KF736157) A. andreniformis (KC294228)	ΑΑΑΤΑΑΤΑΑΑΑΑΤΤΤΑΑΤΤΑΑΤΤΑΤΤΤΤΓ

Supplementary Material Figure S3. Continued (1/11)

ND4L – trnT (32.9%) A. andreniformis (KF736157)	
A. andreniformis (KC294228)	ΤΑΑΤΤΤΤΑΑΑΑΤΤΑGTTAATGTGATTAATAAGTAAGTATTTTAATAAAATAA
A. andreniformis (KF736157)	ТТТАЛАТТАЛАТАТАЛА
A. andreniformis (KC294228)	ATAAATTTTGAAATCACAACTTTTAATTAAATTTTAAATTTTAAATTAAATTAAA
<i>trnR – trnN</i> (100%)	
A. andreniformis (KF736157)	ΑΤΤΤΑΑΑΑΤΤΤΤΑΤΤΤΤΑΤΤGTTTΤΑΑΑΑΑ
A. andreniformis (KC294228)	ΑΤΤΤΑΑΑΑΤΤΤΤΑΤΤΤΑΤΤGTTTΤΑΑΑΑΑ
Amon ND((99 20/)	*****************
trnp - ND0 (88.2%)	
A. andreniformis (KF736157)	TTTTTTAATTAATAATTTTGTTTAATTATATGATGTTACTAAATTTAAATTATTTAT
A. andreniformis (KC294228)	

A. andreniformis (KF736157)	TTAATTTTTATGTTACAATTGTATTATTTTTTAAACTTAAAATTATTATTTTTTTT
A. andreniformis (KC294228)	TTAATTTTTATGTTACAATTGTATTATTTTTTAAACTTAAAATTATTATTTTTTATTTA

A. andreniformis (KF736157)	ΤΤΑΤΤΑΔΑΤΔΑΤΤΑΤΤΩΤΩΤΩΔΑΔΤΤΤΑΤΑΛΤΑΛΤΑΤΤΤΤΤΑΔΤΤΛΔΑΤΑΤΑΛΛΑΔΑ
<i>A. andreniformis</i> (KC294228)	TTATTAAATAATTATTGTGTAAATTTATACTACTATTTTTAATTCAATATTACCAACAT
, , , , , , , , , , , , , , , , , , ,	***************************************
A. andreniformis (KF736157)	ΤΑΤΤΑΤΑΤΑΑΑΤΑΤΑΑΤΤΑΤΑΤΑΤΤΑΤΤGTGTTTTTΑΤΑGTATTΑΤΑΑ
A. andreniformis (KC294228)	ΤΑΤΤΑΤΑΤΑΑΑΤΑΤΑΑΤΤΑΤΑΤΑΤΤGTGTTTTTATAGTATTATAAATAAAATA

A andreniformis (KF736157)	
A. andreniformis (KC294228)	ТАТАТТААТТТААСА

Supplementary Material Figure S3. Continued (2/11)

(B) Apis cerana

trnE – trnM	(97.1	~	100	%)
and and	1		100	/0)

trnE - trnM (97.1 ~ 100%)			
A. cerana (GQ162109)	ΑΑΑΑΑΤΑΑΑΤΤΑΤΑΤΑΑΑΑΑΤCCATTTΑΤΑΤΑΑΤ		
A. cerana (KM244704)	ΑΑΑΑΑΤΑΑΑΤΤΑΤΑΤΑΑΑΑΑΤCCATTTATATAAT		
A. c. japonica (AP017314)	ΑΑΑΑΑΤΑΑΑΤΤΑΤΑΤΑΑΑΑΑΤCCATTTATATAAT		
A. cerana (This study)	ΑΑΑΑΑΤΑΑΑΤΤΑΤΑΤΑΑΑΑΑΤCTATTTATATAAT		

trnM - trnQ (71.0 ~ 97.3%	b)		
A. cerana (GQ162109)	TTATATAAAAATTTTATAATTTATTTGGGTCTATCATCTATCAATAATTTATTAAT		
A. cerana (KM244704)	TTATATAAAAATTTTATAATTTATTTGGGTCTATCATCTATCAATAATCTATTTATT		
A. c. japonica (AP017314)	TTATATAAAAATTTTATAATTTATTTGGGTCTATCATCTATCAATAATCTATTTATT		
A. cerana (This study)	TTATATAAAAAATTTTATAATTTATTTGGGTCTATCATCTATCAATAATCTATTTATT		

A. cerana (GQ162109)	ТТАААТАТСССТДТАААТТТТСТАААААААААААААААА		
A. cerana (KM244704)	TTAAATATCCCTGTAAATTTTCTAAAAAAAAAACAAAAAAAAATTAAGAAACTATTGG		
A. c. japonica (AP017314)	TTAAATATCCCTGTAAATTTTCTAAAAAAAAAACAAAAAAAAATTAAGAAACTATTGG		
A. cerana (This study)	TTAAATATCCCTGTAAACTTTCTAAAAAAAAACAAAAAAAATTAAAAAACTATTGG		

A. cerana (GQ162109)	ΑΤΑΑΤΑΑΤCΑΑΤΤGTAATAATAATAACAATAATAATAATAATAATAATAATAAT		
A. cerana (KM244704)	ΑΤΑΑΤΑΑΤCΑΑΤΤGTAATAATAATAACAATAATAATAATAATAATAATAATAAT		
A. c. japonica (AP017314)	ΑΤΑΑΤΑΑΤCΑΑΤΤGTAATAATAATAACAATAATAATAATAATAATAATAATAAT		
A. cerana (This study)	ΑΤΑΑΤΑΑΤCΑΑΤΤGTAATAATAATAACAATAATAATAATAATAATAATAATAAT		

A. cerana (GQ162109)	ΑΑCTCAATAAAAATAATGAAATAATATATGTTTAATAAATTTATAATA		
A. cerana (KM244704)	ΑΑCTCΑΑΤΑΑΑΑΑΤΑΑΤGAAATAATATATGTTTAATAAATTTATAATAAAA		
A. c. japonica (AP017314)	ΑΑCTCΑΑΤΑΑΑΑΑΤΑΑΤGAAATAATATATGTTTAATAAATTTATAATAAAA		
A. cerana (This study)	ΑΑCTCΑΑΤΑΑΑΑΑΤΑΑΤGAAATAATATATGTTTAATAAATTTATAATAAAA		

$trnL_2 - COII (100\%)$			
A. cerana (GQ162109)	TTTAATAAGCTACAATTGCATTGAATTCTGAATTCAAACTCAAAGTAAAAAACTTTTATT		
A. cerana (KM244704)	TTTAATAAGCTACAATTGCATTGAATTCTGAATTCAAACTCAAAGTAAAAAACTTTTATT		
A. c. japonica (AP017314)	TTTAATAAGCTACAATTGCATTGAATTCTGAATTCAAACTCAAAGTAAAAAATTTTTATT		
A. cerana (This study)	TTTAATAAGCTACAATTGCATTGAATTCTGAATTCAAACTCAAAGTAAAAAACTTTTATT		

A. cerana (GQ162109)	ΑΑΑΑΤΤΑΑΤΤΤΑΑΑΤΤΤΑΤΤΑΤΤΑΑΑ		
A. cerana (KM244704)	ΑΑΑΑΤΤΑΑΤΤΤΑΑΑΤΤΤΑΤΤΑΤΤΑΑΑ		
A. c. japonica (AP017314)	ΑΑΑΑΤΤΑΑΤΤΤΑΑΑΤΤΤΑΤΤΑΤΤΑΑΑ		
A. cerana (This study)	ΑΑΑΑΤΤΑΑΤΤΤΑΑΑΤΤΤΑΤΤΑΤΤΑΑΑ		

Supplementary Material Figure S3. Continued (3/11)

COIII – trnG (94.3 ~ 100%)

A. cerana (GQ162109)	ΤΑΤΤΑΑΤΑΑΤΑΤΑΑΑΤΤΑΑΑΤΤΤΑΤΑΤΑΑΑΤΑΤΤΑΤΤΑΤ
A. cerana (KM244704)	ΤΑΤΤΑΑΤΑΑΤΑΤΑΑΑΤΤΑΑΑΤΤΤΑΤΑΤΑΑΑΤΑΤΤΑΤΤΑΤ
A. c. japonica (AP017314)	ΤΑΤΤΑΑΤΑΑΤΑΤΑΑΑΤΤΑΑΑΤΤΤΑΤΑΤΑΑΑΤΑΤΤΑΤΤΑΤ
A. cerana (This study)	ΤΑΤΤΑΑΤΑΑΤΑΤΑΑΑΤΤΑΑΑΤΤΤΑΤΑΤΑΑΑΤΑΤΤΑΤΤΑΤ

A. cerana (GQ162109)	ATATAT
A. cerana (KM244704)	ATATATAT
A. c. japonica (AP017314)	ATATAT
A. cerana (This study)	ΑΤΑΤΑΤΑΤ

<i>trnT – trnP</i> (46.9 ~ 100%)	
A. cerana (GQ162109)	AATTTATTTAAAATT
A. cerana (KM244704)	ΑΑΤΤΤΑΤΤΤΑΑΑΑΤΤΤΓΟΑΑΑΑΑΑΑΤΤΤΑΤΑΑΑ

A. cerana (KM244704)	ΑΑΤΤΤΑΤΤΤΑΑΑΑΤΤΤΟΑΑΑΑΑΑΤΤΤΑΤΑΑΑ
A. c. japonica (AP017314)	AATTTATTTAAAATT
A. cerana (This study)	AATTTATTTAAAATT

trnP-ND6 (96.1%)

A. cerana (GQ162109)	AAAAATAAATCTTAATAATAAAATTTTAAACATGAAATTTAAATAAA
A. cerana (KM244704)	ΑΑΑΑΑΤΑΑΑΤCTTAATAATAAAATTTTCAACATAAAATTTAAATAAATTA
A. c. japonica (AP017314)	ΑΑΑΑΑΑΑΑΑΤΑΑΑΤCTTAATAATAAAATTTTCAACATGAAATTTAAATAAATTA
A. cerana (This study)	AAAAAATAAATCTTAATAATAAAATTTTCAACATGAAATTTAAATAAA
	······································

Supplementary Material Figure S3. Continued (4/11)

(C) Apis florea

 $trnS_{1} - trnS_{1}(100\%)$

nump nump (Loo , o)	
A. florea (JX982136)	ΤΤΤΑΑΤΤΤΑΤΑΑΑGTTΑΑΤΑΑΑΑΤΤΑΑCΑΤΤΑΤΑΤΤΑΤΤΑΑΤΑΤΑΑΑΑΑΤΑΑΤΤΑΤΑΤΑ
A. florea (KC170303)	TTTAATTTATAAAGTTAATAAAATTAACATTATATTATTAATATAAAAAATAAT

A. florea (JX982136)	CAAAIIIAIAAAIAIAIIIAIAAAIIIAIAIIIAAAAIIIAAAA
A. florea (KC170303)	CAAAIIIAIAAAIAIAIIIAIAAAIIIAIAIIIAAAAIIIAAAA
true C true C (1000/)	***************************************
$I_{1}^{(100\%)}$	****
A. flored (JX982136)	
A. flored (KC1/0303)	

A. florea (JX982136)	CAAATTTATAAATATATTTATAAATTTATATTTAAAATTTATA
A. florea (KC170303)	CAAATTTATAAATATATTTATAAATTTATATTTAAAATTTATA

$trnS_1 - trnM$ (99.1%)	
A. florea (JX982136)	TTTAATTTATAAAGTTAATAAAATTAACATTATATTTATT
A. florea (KC170303)	TTTAATTTATAAAGTTAATAAAATTAACATTATATTTATT

A. florea (IX982136)	CAAATTTATAAATATATATATAAAATTTATATATAAAATTTATA
A florea (KC170303)	CAAATTTATAAATATATTTATAAATTTATATTTAAAAATTTATA

<i>trnQ – trnA</i> (94.8%)	
A. florea (JX982136)	ΤΤΤΤΑΑΑΤΤΤΤΤΑΑΑΤΑΑΑΑΑΑΤΤΑΤΤΑΑΑΤΤΤΤΑΑΑΑΑΤΑΤ
A. florea (KC170303)	ΤΤΑΑΑΑΑΤΤΤΤΤΑΑΑΤΑΑΑΑΑΑΤΤΑΤΤΑΑΑΤΤΤΤΑΑΑΑΑΤΑΤ
	** ************************************
trnI - ND2 (84.4%)	
A. florea (JX982136)	ΑΑΤΑΑΤΑΤΑΤΑΑΑΑΑΤΑΑΑΤΑΑΑΑΤΤΤΤΤΤΤΑΤ
A. florea (KC170303)	ΑΑΤΑΑΤΑΤΑΤΑΑΑΑΑΑΑΑΤΑΑΑΑΤΑΑΑΑΤΤΤΤΑΤ
50 B B	****** ********************************
<i>trnC – trnY</i> (87.1%)	
A. florea (JX982136)	ΤΤΤΑΤΤΑΑΑΑΑΑΑΑΤΑΤΤΤΤΑΑΑΑΤΤΤΤΤΤ
A. florea (KC170303)	-TTAATTAAAAAAATATTTTAAAATTTTT-
	*** * ****
trnY- trnW(95.2%)	
A. florea (JX982136)	ΤΤΑΑΑΑΑΑΤΤΑΑΤΤΤΤΑΑΑΑΑΑΤΤΑCΤΑΑΑΑΤΤΤΤΤΤΤΤ
A. florea (KC170303)	-ΤΤΑΑΑΑΑΤΤΑΑΤΤΤΤΑΑΑΑΑΤΤΑCΤΑΑΑΑΤΤΤΤΤΤΤΤΤΑΤΑ
<i></i>	* *******
<i>trnL</i> ₂ – <i>COII</i> (85.7%)	
A. florea (JX982136)	ΤΔΔΤΔΔΔΤΤΔΔΤΤΔΔΔΔΤΤΔΔΔΔΤΤΤΔΤΔΔ
A. florea (KC170303)	ΤΤΔΔΤΔΔΔΤΤΔΔΤΤΤΔΔΔΤΔΤΤΔΔΔΔΤΤΤ

Supplementary Material Figure S3. Continued (5/11)

COIII – trnG (44.4%)

A. florea (JX982136)	ΤΑΑΑΤΑΑΑΤΤΤΟΤΤΑΑΑΤΑΤΑΑ	ΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑ
A. florea (KC170303)	TAAATAAATTTT	CTTATAT
	*****	****

ND4 - ND4L (80.0%)

A. florea (JX982136)	TTTTTAAATCAGAACAATTAAATTTTTTTATATTT
A. florea (KC170303)	-ΤΤΤΤΤΑΑΑΤCΑΑΑΤΑΑΤΤΑΑΑΤΤΤΤΤΤΤΤΤΑΤΑΤΤΤ
	++++ ++ ++++++++++++++++++++++++++++++++++

ND4L – trnT (100%)

A. florea (JX982136)	GAATTTTAAAATTATTACAATCGTTTATAACTTATAAATCTAATAAA
A. florea (KC170303)	GAATTTTAAAATTATTACAATCGTTTATAACTTATAAATCTAATAAA

trnP-ND6 (32.3%)

A. florea (JX982136)	ΑΤΑΑΤΤΑΑΑΑΑΤGΑΑΑΑΤΑΑΤΤCCAATTTAT
A. florea (KC170303)	ΑΤΑΑΤΤΑΑΑΑ

trnS₂-ND1 (97.5%)

A. florea (JX982136) A. florea (KC170303)	TTAAATATCTATCTATTTTAAAAATTAATTTTGTAATAAAAAATATTAGTATAAAAAA
A. florea (JX982136)	TACATATATATATATATAT
A. florea (KC170303)	TACATATATATATATAT

Supplementary Material Figure S3. Continued (6/11)

(D) Apis koschevnikovi

trnM-trnM(77.8%)

```
* ******* ****** * *************
trnL_2 - COII (100%)
A. koschevnikovi (AP017643) TAATTTAATAAAGCAATTTATGCACTGAATTTAATCAATAAAATAGTTATATAAACTTTT
A. koschevnikovi (KY348372) TAATTTAATAAAGCAATTTATGCACTGAATTTAATCAATAAAATAGTTATATAAACTTTT
             A. koschevnikovi (AP017643) ATTAATATTAATAATTAATTAATTAATTAATAAT
A. koschevnikovi (KY348372) ATTAATATTAATAATTAATTAATTAATTAATAAT
             *****
COIII - trnG (89.1%)
A. koschevnikovi (KY348372) TTATTATTATTAATAAATAAAATAATATTATAATAATAT--
             **************************
trnR- trnN (72.4%)
*****
trnP-ND6 (100%)
```

A. koschevnikovi (AP017643) AAAATAAAATTTTTATTTTATTTTAATTAAATTA *A. koschevnikovi* (KY348372) AAAATAAAATTTTTATTTTATTTTAATTAAATTA

Supplementary Material Figure S3. Continued (7/11)

(E) Apis dorsata

trnE - trnM (100%) A. dorsata (KC294229) TTTAAATTTTAAATAAATTATT A. dorsata (This study) TTTAAATTTTAAATAAATTATT ***** trnI – ND2 (100%) A. dorsata (KC294229) AATAATAATAATAATAATATATATTATTTTTATTA A. dorsata (This study) AATAATAATAATAATAATATATATTATTATTATTA ***** trnY-trnW(41.2%) A. dorsata (KC294229) -----TTTAATAAT-----TTTAATAAT-----TTTATATATA-** *** * ******* A. dorsata (KC294229) -TATATATATATATATACAT A. dorsata (This study) ATATATATATATATATACAT ****** COIII – trnG (69.7%) ****** **** ND3 – trnR (100%) A. dorsata (KC294229) TTTATTATTAATTTAAATACATTTATAAATACAATATAAAA A. dorsata (This study) TITATTATTAATTAAAATACATTTATAAATAAA ************************************* ND4 - ND4L (12.9%) A. dorsata (KC294229) ATAAATAAATATTATTATTAAAGTTATCATA A. dorsata (This study) -----CATA **** trnP-ND6 (95.0%) A. dorsata (KC294229) AATTCCATTTATTTAAAAATCTTAAATATTTAATAAATTA A. dorsata (This study) AATTCCATTTATTTTAAAATCTTATATATATATAAAATTA *****

Supplementary Material Figure S3. Continued (8/11)

(F) Apis mellifera

<i>trnE – trnS</i> ₁ (95.9~ 100%)	
A. m. capensis (KX870183)	ΤΑΑΤΤΑΑGTCAAATTTAATTTAAATAACAAATAAATAACCTAAAAATTATT
A. m. intermissa (KM458618)	ΤΑΑΤΤΑΑGTCAAATTTAATTTAAATAACAAATAAATAACCTAAAAATTATT
A. m. lamarckii (KY464958)	ΤΑΑΤΤΑΑGTCAAATTTAATTTAAATAACAAATAAATAACCTAAAAATTATT
A. m. ligustica (L06178)	TAATTAAGTCAAATTTAATTTAAATAATCTAAAAATTATTATTAATAA-
A. m. ligustica (This study)	TAATTAAGTCAAATTTAATTTAAATAATCTAAAAATTATTATTAATAA-
A. m. meda (KY464957)	TAATTAAGTCAAATTTAATTTAAATAATCTAAAAATTATTATTAATAA-
A. m. scutellata (KJ601784)	TAATTAAGTCAAATTTAATTTAAATAATCTAAAAATTATTATTAATAA-
A. m. scutellata (KY614238)	TAATTAAGTCAAATTTAATTTAAATAACAAATAAATAACCTAAAAATTATT
A. m. syriaca (KP163643)	TAATTAAGTCAAATTTAATTTAAATAACAAATAAATAACCTAAAAATTATT

$trnS_1 - trnM$ (64.9 ~ 100%)	ATTATATAAATTTAAATAAATAAATTTAAAAATAAAAT
A. m. capensis (KX8/0183)	
A. m. intermissa (KM458618)	
A. m. lamarckii ($KY464958$)	
A. m. ligustica (L061/8)	ΑΤΤΑΤΑΤΑΛΑΤΤΑΛΑΤΤΑΘΑΤΑΛΑΤΑΤΤΑΛΤΤΤΑΛΑΛΙΑΤΑΤ
A. m. ugusucu (This study)	ΑΤΤΑΤΑΤΑΛΑΤΤΑΛΑΤΤΤΑΘΑΤΑΛΑΤΑΤΤΑΛΑΤΤΤΑΘΑΛΙΑΛΙ
A. m. meda $(K_1 464957)$	ΔΤΤΔΤΔΤΔΑΤΤΤΔΔΔΤΔΔΔΤΔΤΔΔΤΤΤΔΔΔΔΤΔΔΔΔΔΔΔΔ
A. m. sculentala (KS601784)	ΔΤΤΔΤΔΤΔΔΔΤΤΔΔΔΔΔΔΔΤΔΤΤΔΔΔΔΤΔΔΔΔΔΔΔΔ
A. m. sculentia (K1614238)	
<i>A. m. syrucu</i> (KI 105045)	* * ** * ***** * * *** * *
trnY - trnW (47.1 ~ 100%)	
A. m. capensis (KX870183)	AAGTAAGATTTAAAAAACCCCTTTTTTATTTTTTATTTTTTTAAATTTTTAAAATATACA
A. m. intermissa (KM458618)	AAGTAAGATTTAAAAAATCCTTTTTTATTTTTTTTTTTT
A. m. lamarckii (KY464958)	AAGTAAGATTTAAAAAAACCCTTTTTTTATTTTTTATTTTTTAAA-ATTTTTAAAATATACA
A. m. ligustica (L06178)	AAATAAGATTTAAAAAACCCTTTTTTTATTTTTTATTTTTTAA-ATTTTTAAAATATATACA
A. m. ligustica (This study)	AAATAAGATTTAAAAAACCCTTTTTTTATTTTTTATTTTTTAA-ATTTTTAAAATATATACA
A. m. meda (KY464957)	AAATAAGATTTAAAAAACCCCTTTTTTATTTTTTATTTTTTAA-ATTTTTAAAATATATACA
A. m. mellifera (KJ396191)	AAGTAAGATTTAAAAAACCCCTTTTTTATTTTTTATTTTTTAAA-ATTTTTAAAATATATACA
A. m. scutellata (KJ601784)	TTATTTACCATGATATAATA
A. m. scutellata (KY614238)	TTATTTACCATGATATAGTA
A. m. syriaca (KP163643) -	TTATTTAACATGATA
COIII- trnG (82.0 ~ 100%)	*** **
A. m. capensis (KX870183)TA	ΑΑΑΑΤΤΤΑΤΑΑ-ΑΤΤΑΑΑΑΑΑΤΑΑΑΑΤΤΑΑΤΑΑΤΟΑΑΑΤΑΑΑΑΤΤΑΤΑΑΤΤΑΤΑΑΤ
A. m. intermissa (KM458618)TA	ААААТТТАТАААТТААААААТАААТАААТААТААТ
A. m. lamarckii (KY464958)TA	
A. m. ligustica (L06178) A	
A. m. meda (KY464957) $==-TA$	ΔΑΑΑΙΙΙΑΙΑΑΑΙΙΑΑΑΑΑΑΑΙΑΑΑΙΑΑΑΑΙΑΑΑ
A. m. mellifera (KJ396191) TAATA	
A. m. scutellata (KJ601784)TA	ΑΑΑΑΤΤΤΑΤΑΑ-ΑΤΤΑΑΑΑΑΑΤΑΑΑΑΤΤΑΑΤΑΑΤΟΑΑΤΟΑ
A. m. scutellata (KY614238)TA	ΑΑΑΑΤΤΤΑΤΑΑ-ΑΤΤΑΑΑΑΑΑΤΑΑΑΑΤΤΑΑΤΑΑΤΑΑΤΑΑΑΤΑΑΑΑΤΤΑΤΑΑΤΤΑΤΑ
A. m. syriaca (KP163643)TA	ΑΑΑΑΤΤΤΑΤΑΑΑΤΤΑΑΑΑΑΑΑΤΑΑΑΑΤΤΑΑΤΑΑΤΑΑΑΤΑΑΑΤΑΑΑΑ
**	******* * * * * * * * *
4 m. companyis (VX970192) TTATA	TATATATATATATATATATATATA ATATATA
4 m intermissa (KM458618) ATATA	ΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑ
A. m. lamarckii (KY464958) ATATA	TATATATATATATATATAT
A. m. ligustica (L06178) ATATA	TATATATAT
A. m. ligustica (This study) ATATA	ТАТАТАТАТАТАТАТАТАТ
A. m. meda (KY464957) ATATA	ITATA
A. m. mellifera (KJ396191) ATATA	ТАТАТАТАТ
A. m. scutellata (KJ601784) TA-TA	
A. m. scutellata (KY614238) TA-TA	ΠΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙ ΤΑΤΑΤΑΤΑΤ
A. m. syriaca (KP103043) A A	XIAIAIAIAI
Sumplementers Material Figure St	3 Continued $(0/11)$

Supplementary Material Figure S3. Continued (9/11)

ND3- trnR (97.0 ~ 100%)

A. m. capensis (KX870183)	AATTTAAATAATTACAATAATTACTACCAAAAT
A. m. intermissa (KM458618)	AATTTAAATAATTACAATAATTACTACCAAAAT
A. m. lamarckii (KY464958)	AATTTAAATAATTACAATAATTACTACCAAAAT
A. m. ligustica (L06178)	AATTTAAATAATTACAATAATTACTACCAAAAT
A. m. ligustica (This study)	AATTTAAATAATTACAATAATTACTACCAAAAT
A. m. meda (KY464957)	AATTTAAATAATTACAATAATTACTACCAAAAT
A. m. mellifera (KJ396191)	ТААААТТТАААТААТТАСААТААТААСТАССААААТ
A. m. scutellata (KJ601784)	AATTTAAATAATTACAATAATTACTACCAAAAT
A. m. scutellata (KY614238)	AATTTAAATAATTACAATAATTACTACCAAAAT
A. m. syriaca (KP163643)	AATTTAAATAATTACAATAATTACTACCAAAAT

trnR - trnN (80.8 ~ 100%)

A. m. capensis (KX870183)	TTTTT/	TTTAATT	TATTTAT	TAAAATAA	TTAATATTT	ΤΑΑΑΑΑΤΑΑΑΑ	CCTAAAA
A. m. intermissa (KM458618)	TTTTT/	TTTAATT	TATTTAT	TAAAATAA	TTAATATTT	ΤΑΑΑΑΑΤΑΑΑΑ	CCTAAAA
A. m. lamarckii (KY464958)	TTTTTATTT	ATTTAT	TATTTAT	TAAAATAA	TTAATATTT	ТАААААТАААСС	ТСТАААА
A. m. ligustica (L06178)	TTTT/	TTTAATT	TATTTAT	TAAAATAA	TTAATATTT	ΤΑΑΑΑΑΤΑΑΑΑ	CTAAAAT
A. m. ligustica (This study)	TTTT/	TTTAATT	TATTTAT	TAAAATAA	TTAATATTT	ТАААААТААААС	CTAAAAT
A. m. meda (KY464957)	TTTT/	TTTAATT	TATTTAT	TAAAATAA	TTAATATTT	-ΤΑΑΑΑΤΑΑΑΑ	CTAAAAT
A. m. mellifera (KJ396191)	TTTT/	TTTAATT	TATTTAT	TAAAATAA	TTAATATTT	ТАААААТААААС	CTAAAAT
A. m. scutellata (KJ601784)	TTTTT/	TTTAATT	TATTTAT	TAAAATAA	TTAATATTT	ΤΑΑΑΑΑΤΑΑΑΑ	CCTAAAA
A. m. scutellata (KY614238)	TTTTT/	TTTAATT	TATTTAT	TAAAATAA	TTAATATTT	ΤΑΑΑΑΑΤΑΑΑΑ	ACTAAAA
	****	* * * * * *	******	*******	*******	*******	***

ΤΑΑΤΑΤΑΑΤΑΑΑΤΤΑΑΑΤΤΑΤΤΑCΑΤΤΑΤΤΤΤΑΤΤ
ΤΑΑΤΑΤΑΑΤΑΑΑΤΤΑΑΑΤΤΑΤΤΑCΑΤΤΑΤΤΤΤΑΤΤ
ΤΑΑΤΑΤΑΑΤΑΑΑΤΤΑΑΑΤΤΑΤΤΤΑΤΤΑCΑΤΤΑΤΤΤΑΤΤΑΑΑΤ
ΑΑΤΑΤΑΑΤΑΑΑΤΤΑΤΑΤΤΤΑΤΤΑΤΑΤΤΑΤΤΤΤΑΤΤΤΑΑΑΤ
ΑΑΤΑΤΑΑΤΑΑΑΤΤΑΤΑΤΤΤΑΤΤΑΤΑΤΤΑΤΤΤΤΑΤΤΤΑΑΑΤ
ΑΑΤΑΤΑΑΤΑΑΤΤΑΤΑΤΤΤΤΑΤΤΑΤΑΤΤΑΤΤΤΤΑΤΤΤΑΑΑΤ
ΑΑΤΑΤΑΑΤΑΑΑΤΤΑΤΑΤΤΤΑΤΤΑCΑΤΤΑΤΤΤΤΑΤΤΤ
ΤΑΑΤΑΤΑΑΤΑΑΑΤΤΑΑΑΤΤΑΤΤΑCΑΤΤΑΤΤΤΤΑΤΤΤ
ΤΑΑΤΑΤΑΑΤΑΑΑΤΤΑΑΑΤΤΑΤΤΑCΑΤΤΑΤΤΤΤΑΤΤΤ
* * ** * * ** ****
ΤCAATATAATTAATAAAΤΑΑΤΑΑΑΤΑΤΑΤΑΤΑΑ
ΤCΑΑΤΑΤΑΑΤΤΑΑΤΑΑΤΑΑΑΤΑΑΑΤΑΤΑΤΑΤΑΑ
ΑΤΤCΑΑΤΑΤΑΑΤΤΑΑΤΑΑΤΑΑΤΑΑΤΑΑΤΑΑΤΑΤΑΤΑΤΑΑ
ΤCAATATAATTAAΤΑΑΤΑΑΑΤΑΤΑΤΑΤΑΑ
ΤCAATATAATTAAΤΑΑΤΑΑΑΤΑΤΑΤΑΤΑΑ

A. m. scutellata (KY614238) --TCAATATAATTAATAAT-AAATAAATATATAA

ND6-- CytB (87.9 ~ 100%)

A. m. capensis (KX870183)	TTAATATTTAATTTAAAATCATTATTAAAATTATTATTAT
A. m. intermissa (KM458618)	ТТААТАТТТААТТТААААТСАТТАТТАААТТАТТАТАТТАТ
A. m. lamarckii (KY464958)	TTAATATTTAAATTTAAAATCATTATTAAAATTATAATATTAT
A. m. ligustica (L06178)	TTAATATTTAATTTAAAATCATTATTAAAATTATTATTAT
A. m. ligustica (This study)	ТТААТАТТТААТТТААААТСАТТАТТАААТТАТТАТТАТТ
A. m. meda (KY464957)	TTAATATTTAATTTAAAATCATTATTAAAATTATTATTAT
A. m. mellifera (KJ396191)	TTAATATTTAATTTAAAATCATTATTAAAATTATTATTAT
A. m. scutellata (KJ601784)	ТТААТАТТТААТТТААААТСАТТАТТАААТТАТТАТТАТТ
A. m. scutellata (KY614238)	ТТААТАТТТААТТТААААТСАТТАТТАААТТАТТАТТАТТ
A. m. syriaca (KP163643)	ТТААТАТТТААТТТААААТСАТТАТТАААТТАТААТАТТАТ

Supplementary Material Figure S3. Continued (10/11)

*CytB – trnS*₂ (80.9 ~ 100%)

A. m. capensis (KX870183)	-ΑΤΤΑΑΑΤΑΑΑΑΑΑΤΤΑΑΤΤΤΤΤΤΤΤΤΤΑΑΑΑΤCΑΑΤΤΤΤΤΑΑΑΤΤΤΤΑ
A. m. intermissa (KM458618)	-ΑΤΤΑΑΑΤΑΑ-ΑΑΑΑΤΤΑΑΤΤΤΤΤΤΤΑΑΑΑΤCΑΑΤΤΤΤΤΑΑΑΤΤΤΤ-
A. m. lamarckii (KY464958)	-ΑCTAAATTA-AAAATTAATTTTTTTTTTAAAATCAATTTTTAAATTTTA
A. m. ligustica (L06178)	-ΑΤΤΑΑΑΤΑΑ-ΑΑΑΑΤΤΑΑΤΤΤΤΤΤΤΑΑΑΑΤCΑΑΤΤΤΤΤΑΑΑΤΤΤΤΑ
A. m. ligustica (This study)	-ΑΤΤΑΑΑΤΑΑ-ΑΑΑΑΤΤΑΑΤΤΤΤΤΤΤΑΑΑΑΤCΑΑΤΤΤΤΤΑΑΑΤΤΤΤΑ
A. m. meda (KY464957)	-ΑΤΤΤΑΑΤΑΑ-ΑΑΑΑΤΤΑΑΤΤΤΤΤΤΤΑΑΑΑΤCΑΑΤΤΤΤΤΑΑΑΤΤΤΤΑ
A. m. mellifera (KJ396191)	-ΑΤΤΑΑΑΤΑΑ-ΑΑΑΑΤΤΑΑΤΤΤΤΤΤΤΑΑΑΑΤCΑΑΤΤΤΤΤΑΑΑΤΤΤΤΑ
A. m. scutellata (KJ601784)	ΑΤΤΑΑΑΤΑΑΑΑΑΑΑΤΤΑΑΤΤΤΤΤΤΤΤΤΤΑΑΑΑΤCΑΑΤΤΤΤΤΑΑΑΤΤΤΤΑ
A. m. scutellata (KY614238)	-ΑΤΤΑΑΑΤΑΑΑΑΑΑΤΤΑΑΤΤΤΤΤΤΤΤΤΤΑΑΑΑΤCΑΑΤΤΤΤΤΑΑΑΤΤΤΤΑ
A. m. syriaca (KP163643)	-ΑCTAAATTA-AAAATTAATTTTTTTAAAATCAATTTTTAAATTTTA
	* * *** * * *** *********************
$trnS_2 - NDI(97.6 \sim 100\%)$	
A. m. capensis (KX870183)	ΤΤΤΤΑCΤΤΑΤΤΤΑΑΤΑΤΑΑΑΤΤΑΑΤΑΤΑΑΑCT
A. m. intermissa (KM458618)	ΤΤΤΤΑCΤΤΑΤΤΤΤΑΑΤΑΤΑΑΑΤΤΑΑΤΑΤΤΑΑΑCT
A. m. lamarckii (KY464958)	ΤΤΤΤΑCΤΤΑΤΤΤΤΑΑΤΑΤΑΑΑΤΤΑΑΤΑΤΑΑΑCT
A. m. ligustica (L06178)	ΤΤΤΤΑCΤΤΑΤΤΤΤΑΑΤΑΤΑΑΑΤΤΑΑΤΑΤΤΑΑΑCT
A. m. ligustica (This study)	ΤΤΤΤΑCΤΤΑΤΤΤΤΑΑΤΑΤΑΑΑΤΤΑΑΤΑΤΤΑΑΑCT
A. m. meda (KY464957)	TTTTACTTATTTAACATAAATTAATATTAAACT
A. m. mellifera (KJ396191)	ΤΤΤΤΑCΤΤΑΤΤΤΤΑΑΤΑΤΑΑΑΤΤΑΑΤΑΤΤΑΑΑCT
A. m. scutellata (KJ601784)	ΤΤΤΤΑCΤΤΑΤΤΤΤΑΑΤΑΤΑΑΑΤΤΑΑΤΑΤΤΑΑΑCT
A. m. scutellata (KY614238)	ΤΤΤΤΑCΤΤΑΤΤΤΤΑΑΤΑΤΑΑΑΤΤΑΑΤΑΤΤΑΑΑCT
A. m. syriaca (KP163643)	ΤΤΤΤΑCΤΤΑΤΤΤΤΑΑΤΑΤΑΑΑΤΤΑΑΤΑΤΤΑΑΑCT

Supplementary Material Figure S3. (11/11)

Figure S3. Alignment of intraspecific intergenic spacer sequences for (a) Apis andreniformis, (b) Apis cerana, (c) Apis florea, (d) Apis koschevnikovi, (e) Apis dorsata, and (f) Apis mellifera. Numbers within parentheses are the A/T percentages of intergenic spacer sequences.

Figure S4. Average *p*-distance of mitochondrial genomes in *Apis*. Values within parenthesis are standard deviations of the means.

0.2

Supplementary Material Figure S5. Continued (1/8)

Supplementary Material Figure S5. Continued (2/8)

0.1 Supplementary Material Figure S5. Continued (3/8)

Supplementary Material Figure S5. Continued (4/8)

Supplementary Material Figure S5. Continued (5/8)

0.05

Supplementary Material Figure S5. Continued (6/8)

Supplementary Material Figure S5. Continued (7/8)

Supplementary Material Figure S5. Continued (8/8)

Figure S5. Bayesian inference phylograms of *Apis* using individual mitochondrial genes. (a) *ND1*, (b) *ND2*, (c) *ND3*, (d) *ND4*, (e) *ND4L*, (f) *ND5*, (g) *ND6*, (h) *CO1*, (i) *CO11*, (j) *CO111*, (k) *ATP8*, (l) *ATP6*, (m) *IrRNA*, (n) *srRNA*, and (o) *CytB*. One species of Bombini and Meliponini was used as an outgroup. Numbers at each node specify Bayesian posterior probability. The scale bar indicates the number of substitutions per site.

Supplementary Material Figure S6. Continued (1/8)

Supplementary Material Figure S6. Continued (2/8)

Supplementary Material Figure S6. Continued (3/8)

Supplementary Material Figure S6. Continued (4/8)

Supplementary Material Figure S6. Continued (5/8)

Supplementary Material Figure S6. Continued (6/8)

Supplementary Material Figure S6. Continued (7/8)

Supplementary Material Figure S6. Continued (8/8)

Figure S6. Maximum-likelihood phylograms of *Apis* using individual mitochondrial genes. (a) *ND1*, (b) *ND2*, (c) *ND3*, (d) *ND4*, (e) *ND4L*, (f) *ND5*, (g) *ND6*, (h) *CO1*, (i) *CO11*, (j) *CO111*, (k) *ATP8*, (l) *ATP6*, (m) *IrRNA*, (n) *srRNA*, and (o) *CytB*. One species of Bombini and Meliponini was used as an outgroup. Numbers at each node specify bootstrap percentage of 1,000 replicates. The scale bar indicates the number of substitutions per site.

Supplementary Material Figure S7. Continued (1/5)

0.06

Supplementary Material Figure S7. Continued (2/5)

Supplementary Material Figure S7. Continued (3/5)

Supplementary Material Figure S7. Continued (4/5)

0.05

Supplementary Material Figure S7. Continued (5/5)

Figure S7. Bayesian inference phylograms of Apis using two mitochondrial gene combinations. (a) COII + IrRNA, (b) COIII + ND5, (c) COIII + IrRNA, (d) ND2 + IrRNA, (e) ND4 + IrRNA, (f) ND4L+ ND6, (g) ND4L + IrRNA, (h) ND5+ IrRNA, and (i) srRNA+ IrRNA. One species of Bombini and Meliponini was used as an outgroup. The numbers at each node specify Bayesian posterior probability. The scale bar indicates the number of substitutions per site.

Supplementary Material Figure S8. Continued (1/5)

Supplementary Material Figure S8. Continued (2/5)

0.07

Supplementary Material Figure S8. Continued (3/5)

Supplementary Material Figure S8. Continued (4/5)

Supplementary Material Figure S8. Continued (5/5)

Figure S8. Maximum-likelihood phylograms of *Apis* using two mitochondrial gene combinations (a) *COII + IrRNA*, (b) *COIII + ND5*, (c) *COIII + IrRNA*, (d) *ND2 + IrRNA*, (e) *ND4 + IrRNA*, (f) *ND4L*+ *ND6*, (g) *ND4L + IrRNA*, (h) *ND5+ IrRNA*, and (i) *srRNA+ IrRNA*. One species of Bombini and Meliponini was used as an outgroup. Numbers at each node specify bootstrap percentage of 1,000 replicates. The scale bar indicates the number of substitutions per site.