SUPPLEMENTARY MATERIAL

A new dimeric alkylresorcinol from the stem barks of *Swintonia* floribunda (Anacardiaceae)

Phu H. Dang, Linh T. T. Nguyen, Hue T. T. Nguyen, Tho H. Le, Truong N. V. Do, Hai X. Nguyen, Nghia D. Le, Mai T. T. Nguyen, and Nhan T. Nguyen, Nguyen,

^aFaculty of Chemistry, VNUHCM–University of Science, Vietnam

^bCancer Research Laboratory, Vietnam National University, Ho Chi Minh City, Vietnam

ABSTRACT

From an EtOAc-soluble fraction of the stem barks of *Swintonia floribunda* (Anacardiaceae), one new dimeric alkylresorcinol named integracin E (1), together with 4 known compounds (2–5) were isolated. Their chemical structures were elucidated based on the spectroscopic data interpretation. The absolute configuration of 1 was determined by the specific rotation analysis of its acid-catalyzed hydrolysis product. Compound 1 showed potent tyrosinase inhibitory activity with an IC₅₀ value of $48.2 \mu M$.

Keywords: Swintonia floribunda, Anacardiaceae, alkylresorcinol, tyrosinase inhibitory.

Table S1. NMR Spectroscopic Data for Compound 1 in $CDCl_3$.

	Integracin E (1)	
Position	$\delta_{\rm C}$, type	$\frac{\delta_{\rm H} (J \text{ in Hz})}{\delta_{\rm H} (J \text{ in Hz})}$
1	105.5, C	OH (J III IIZ)
2	165.4, C	_
3	103.4, C 101.6, CH	- 6 20 d (2 6)
3 4	*	6.29, d (2.6)
	160.4, C	-
5	111.0, CH	6.24, d (2.6)
6	149.1, C	- 2.06 1: (12.0 7.0)
7	37.1, CH ₂	2.86, dt (12.9, 7.9)
	22 4 677	2.81, dt (12.9, 7.9)
8	32.4, CH ₂	1.53, m
9–16	29.0–29.9, CH ₂	1.22–1.45
17	32.1, CH_2	1.26, m
18	22.8, CH_2	1.29, m
19	14.3, CH ₃	0.88, t (6.9)
1'	146.1, C	_
2′/6′	108.2, CH	6.21, d (2.1)
3′/5′	156.8, C	_
4'	100.4, CH	6.18, brs
7'	35.9, CH ₂	2.44, t (7.7)
8′	30.9, CH ₂	1.53, m
9′	$30.2, CH_2$	1.35, m
10′, 11′	29.0–29.9, CH ₂	1.22-1.45
12′	25.5, CH ₂	1.36, m
13′	34.4, CH ₂	1.65, m
14′	76.0, CH	5.26, m
15′	36.8, CH ₂	1.65, m
16′	19.0, CH_2	· · · · · · · · · · · · · · · · · · ·
17'	14.1, CH ₃	0.94, t (7.3)
	171.7, C=O	_
2-OH		12.13, brs

Figure S1. Significant HMBC correlations observed for compound 1.

$$\begin{array}{c} C_{17}H_{27}O_{2}^{+}\\ m/z\ 263.1968\\ HO_{5}^{-} \\ OH_{2}^{-} \\$$

Figure S2. MS fragmentation of 1.

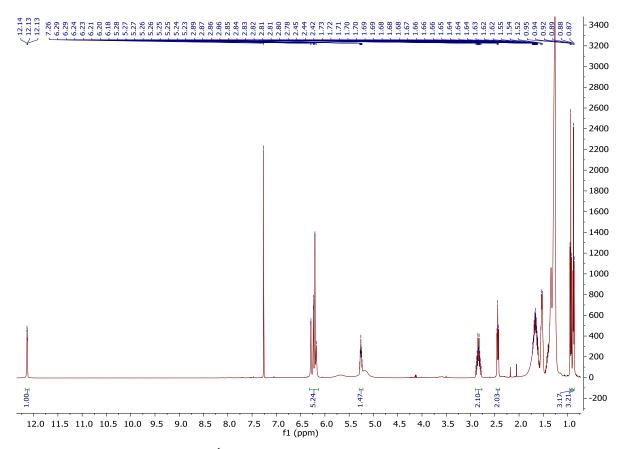


Figure S3. ¹H NMR spectrum of 1 (500 MHz, CDCl₃).

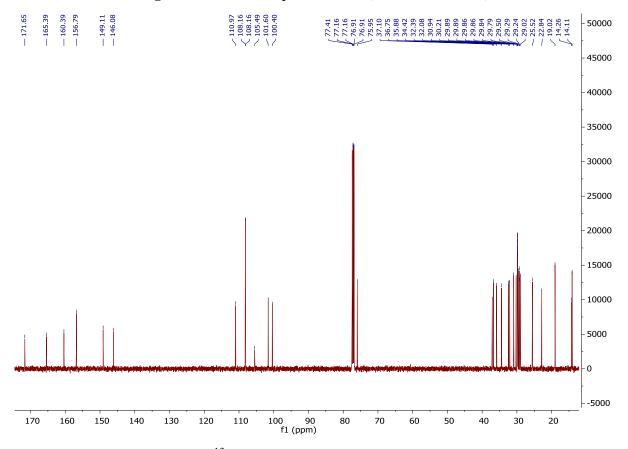


Figure S4. ¹³C NMR spectrum of 1 (125 MHz, CDCl₃).

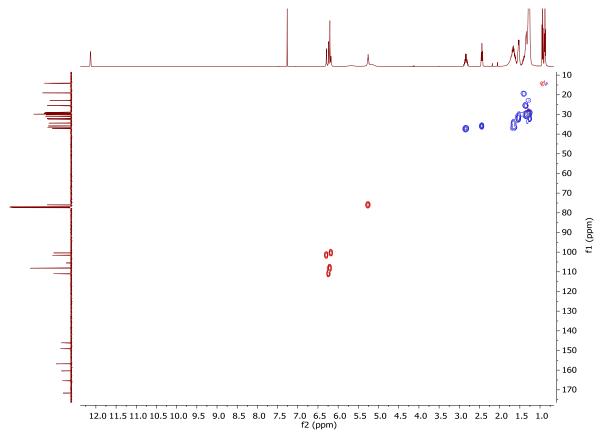
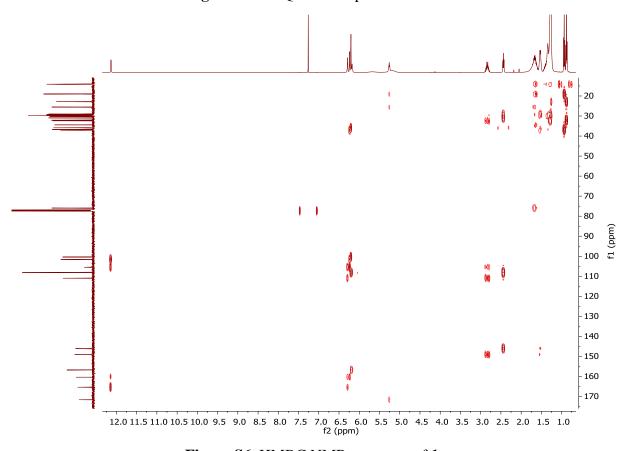



Figure S5. HSQC NMR spectrum of 1.

Figure S6. HMBC NMR spectrum of **1**.

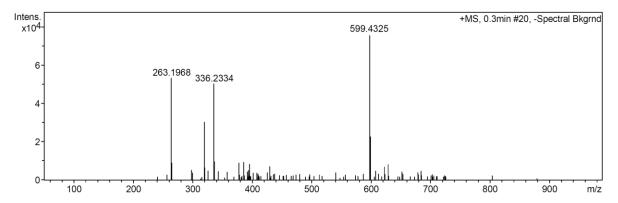


Figure S7. HRESIMS of 1.

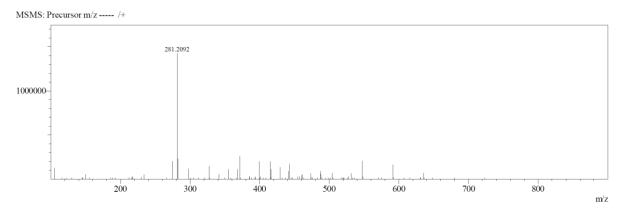


Figure S8. HRESIMS of 1a.

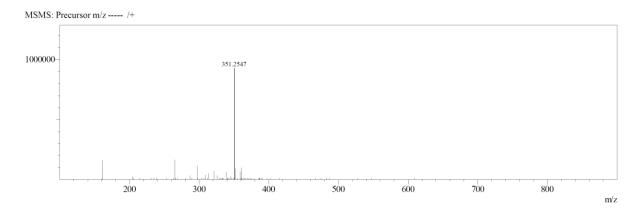


Figure S9. HRESIMS of 1b.