Supplementary Material

Synthesis of 1,2,5,6- and 1,4,5,8-anthracenetetrone: building blocks

for π -conjugated small molecules and polymers

Florian Glöcklhofer,*^[a] Berthold Stöger,^[b] Johannes Fröhlich^[a]

^[a] Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060

Vienna, Austria

^[b] X-Ray Centre, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria

florian.gloecklhofer@tuwien.ac.at

Table of contents:

1. ¹ H and ¹³ C(APT) NMR spectra	-2-
2. X-ray structure determination	-5-
3. References	-8-

1. ¹H and ¹³C(APT) NMR spectra

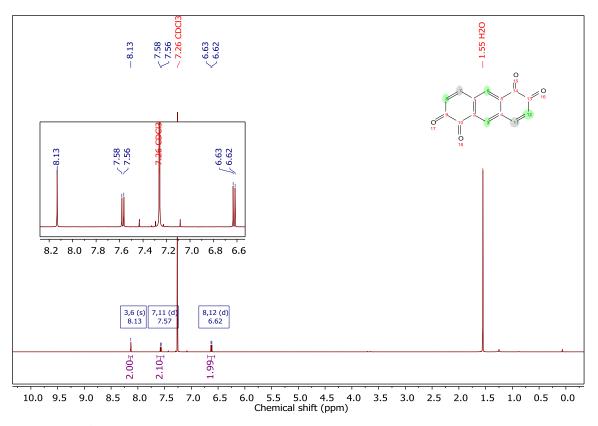


Figure S1: ¹H NMR spectrum (600 MHz, CDCl₃) of 1,2,5,6-anthracenetetrone **3a**.

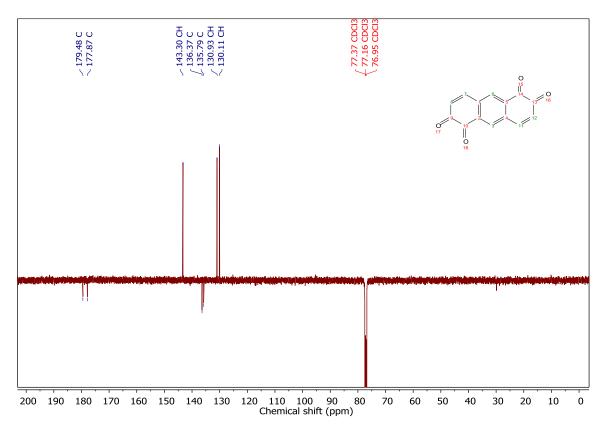


Figure S2: ¹³C NMR spectrum (151 MHz, CDCl₃) of 1,2,5,6-anthracenetetrone **3a**.

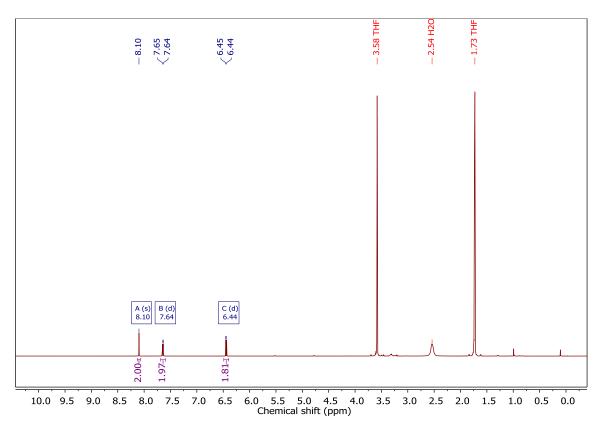


Figure S3: ¹H NMR spectrum (600 MHz, THF-d8) of 1,2,5,6-anthracenetetrone 3a.

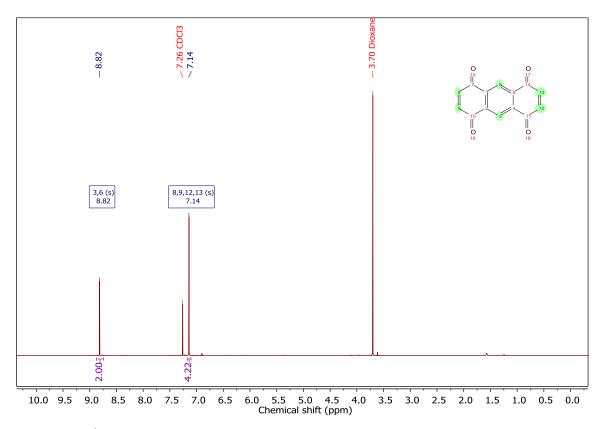


Figure S4: ¹H NMR spectrum (600 MHz, CDCl₃) of 1,4,5,8-anthracenetetrone 3b.

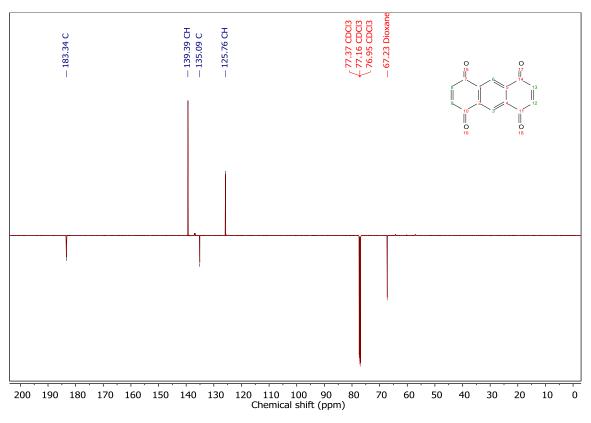
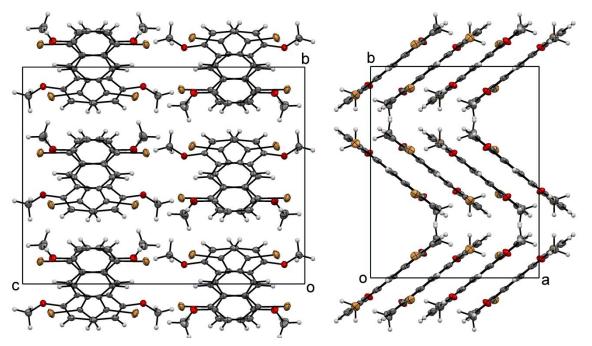


Figure S5: ¹³C NMR spectrum (151 MHz, CDCl₃) of 1,4,5,8-anthracenetetrone **3b**.


2. X-ray structure determination

X-ray diffraction data of 1,8-dibromo-4,5-dimethoxy-anthracene and 1,4,5,8-anthracentetron **3b** mono-dioxane solvate (CCDC 1836455 and 1836456) were collected at T = 100 K in a dry stream of nitrogen on a Bruker Kappa APEX II diffractometer system using graphite-monochromatized Mo- $K\alpha$ radiation ($\lambda = 0.71073$ Å) and fine sliced φ - and ω -scans. Data were reduced to intensity values with SAINT and an absorption correction was applied with the multi-scan approach implemented in SADABS.¹ The structures were solved by the dual-space approach implemented in SHELXT² and refined against F^2 with JANA2006.³ Non-hydrogen atoms were refined anisotropically. The H atoms were placed in calculated positions and thereafter refined as riding on the parent atoms. Molecular graphics were generated with the program MERCURY.⁴ Crystal data and experimental details are given in Table S1.

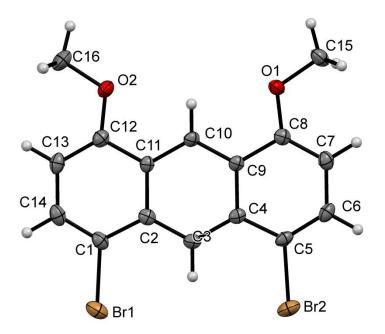

	1,8-Dibromo-4,5- dimethoxyanthracene (crystals grown from toluene)	1,4,5,8-anthracentetron 3b ·1,4- dioxane
formula	$C_{16}H_{12}Br_2O_2$	C ₁₈ H ₁₄ O ₆
fw	396.1	326.3
cryst.size, mm	0.55 x 0.25 x 0.15	0.56 x 0.30 x 0.05
color, shape	yellow, rod	red, plate
crystal system	orthorhombic	triclinic
space group	<i>Pbca</i> (no. 61)	<i>P</i> -1 (no. 2)
a, Å	11.1261(9)	5.9105(5)
b, Å	13.9515(15)	7.4641(6)
<i>c</i> , Å	18.1481(15)	8.5196(7)
α, °	90	80.296(3)
β, °	90	81.290(3)
γ, °	90	78.354(3)
V, Å ³	2817.1(4)	360.16(5)
Т, К	100	100
Z,Z'	8,1	1, 1
$ ho_{ m calc}$, g cm ⁻³	1.8678	1.5045
μ , mm ⁻¹ (MoK α)	5.753	0.114
<i>F</i> (000)	1552	1360
absorption corrections, T_{min} - T_{max}	multi-scan, 0.04–0.42	multi-scan, 0.12–0.32

Table S1. Details for the crystal structure determinations.
--

heta range, deg	2.24–34.59	2.44–32.61
no. of rflns measd	28885	9898
R _{int}	0.0804	0.0241
no. of rflns unique	5968	2612
no. of rfins <i>I</i> >3 <i>o</i> (<i>I</i>)	3336	1989
no. of params / restraints	181 / 0	109 / 0
$R(l > 3\sigma(l))$	0.0463	0.0459
R (all data)	0.1091	0.0608
$wR(I > 3\sigma(I))$	0.0765	0.1364
wR (all data)	0.0923	0.1457
GooF	1.42	1.63
Diff.Four.peaks min/max, eÅ ⁻³	-1.51 / 2.00	-0.22 / 0.50
CCDC no.	1836455	1836456

Figure S6: Crystal structure of 1,8-dibromo-4,5-dimethoxyanthracene viewed down [100] (left) and [001] (right). C (grey), O (red), and Br (orange) atoms are represented by ellipsoids drawn at the 50% probability levels; H atoms by white spheres of arbitrary radius.

Figure S7: Molecular structure of 1,8-dibromo-4,5-dimethoxyanthracene. C (grey), O (red), Br (orange) atoms are represented by ellipsoids drawn at the 50% probability levels; H atoms by white spheres of arbitrary radius.

3. References

(1) Bruker, APEX2, SAINT and SADABS 2015, Bruker AXS Inc., Madison, Wisconsin, USA.

(2) Sheldrick, G. M. Acta Crystallogr., Sect. A 2015, 71, 3-8.

(3) Petříček, V.; Dušek, M.; Palatinus, L. Z. Kristallogr. - Cryst. Mater. 2014, 229, 345-352.

(4) Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; van

de Streek, J. J. Appl. Crystallogr. 2006, 39, 453-457.