SUPPLEMENTARY MATERIAL

Novel dammarane-type saponins from *Gynostemma pentaphyllum* and their neuroprotective effect

Shao-Fang Xing^{a,b}, Man Lin^{a,b}, Yu-Rong Wang^{a,b}, Tuo Chang^{a,b}, Wei-Ye Cui^{a,b}, Xiang-Lan Piao^{a,b,*}

Abstract

Three novel dammarane-type saponins,

 $2\alpha, 3\beta, 12\beta, 20(S), 24(S)$ -pentahydroxydammar-25-ene-3-*O*- β -D-glucopyranosyl- $(1 \rightarrow 2)$ -

 β -D-glucopyranosyl-20-*O*- β -D-glucopyranoside (**1**, namely gypenoside J1),

 $2\alpha, 3\beta, 12\beta, 20(S), 25$ -pentahydroxydammar-23-ene-3-O- β -D-glucopyranosyl- $(1 \rightarrow 2)$ - β -D-glucopyra

nosyl-20-O- β -D-glucopyranoside (2, namely gypenoside J2) and

 2α , 3β , 12β , 20(S)-tetrahydroxydammar-25-en-24-one-3-O- β -D-glucopyranosyl- $(1 \rightarrow 2)$ -

β-D-glucopyranosyl-20-*O*-β-D-xylopyranosyl-(1→6)-β-D-glucopyranoside (**3**, namely gypenoside J3) along with one known gypenoside (gypenoside LVII) were isolated from the aerial parts of *G*. *pentaphyllum* using various chromatographic methods. Their structures were elucidated on the basis of IR, 1D- (¹H and ¹³C), 2D-NMR spectroscopy (HSQC, HMBC and COSY), and mass spectrometry (ESI-MS/MS). Their activity was tested using CCK-8 assay. These four compounds showed little anti-cancer activity with IC₅₀ values more than 100 µM against four types of human cancer lines. The effects of them against H₂O₂-induced oxidative stress in human neuroblastoma SH-SY5Y cells were evaluated and they all showed potential neuroprotective effects with 3.64%-18.16% higher cell viability than the H₂O₂-induced model group.

Fig. S1 Key correlations in HMBC and COSY.

Fig. S2 Neuroprotective effects of dammarane-type saponins against H_2O_2 -induced injury of SH-SY5Y cells. Data were shown as mean \pm SD of three separate experiments and expressed as percentage (%) of control. *p < 0.05 and **p < 0.01 compared with control group; *p < 0.05 and **p < 0.01 compared with control group; *p < 0.05 and **p < 0.01 compared with H₂O₂-induced model group.

Fig. S4 MS/MS data of compound 1

Fig. S5¹H NMR spectrum of compound 1 (CD₃OD, 600 MHz)

Fig. S6 13 C NMR of compound 1 (CD₃OD, 150 MHz)

Fig. S8 DEPT 90 of compound 1 (CD₃OD, 150 MHz)

Fig. S9 HSQC spectrum of compound 1 (CD₃OD, 600 MHz)

Fig. S10 HMBC spectrum of compound 1 (CD₃OD, 600 MHz)

Fig. S13 MS/MS data of compound 2

Fig. S14 ¹H NMR spectrum of compound 2 (CD₃OD, 600 MHz)

Fig. S15¹³C NMR of compound 2 (CD₃OD, 150 MHz)

Fig. S16 DEPT 135 of compound 2 (CD₃OD, 150 MHz)

Fig. S17 DEPT 90 of compound 2 (CD₃OD, 150 MHz)

Fig. S18 HSQC spectrum of compound 2 (CD₃OD, 600 MHz)

Fig. S19 HMBC spectrum of compound 2 (CD₃OD, 600 MHz)

Fig. S22 MS/MS of compound 3

Fig. S24¹³C NMR of compound 3 (CD₃OD, 150 MHz)

Fig. S26 DEPT90 of compound 3 (CD₃OD, 150 MHz)

Fig. S28 HMBC spectrum of compound 3 (CD₃OD, 600 MHz)

Fig. S31¹H NMR spectrum of compound 4 (CD₃OD, 600 MHz)

Fig. S32 ¹³C NMR spectrum of compound 4 (CD₃OD, 600 MHz)

Fig. S33 Sugar identification of compounds 1-3 through TLC

	no.	gypenoside J1	gypenoside J2	gypenoside J3
aglycone	1	0.95 m, 2.12 dd	0.97 m, 2.15 dd	0.94 m, 2.14, dd
		(<i>J</i> = 12.6, 4.6)	(<i>J</i> = 12.6, 4.6)	(<i>J</i> = 12.6, 4.6)
	2	3.78 m	3.79 m	3.78 m
	3	3.04 d (<i>J</i> = 9.0)	3.04 d (<i>J</i> = 9.0)	3.03 d (<i>J</i> = 9.0)
	4			
	5	0.91 d (<i>J</i> = 10.2)	0.90 d (<i>J</i> = 10.2)	0.90 d (<i>J</i> = 11.4)
	6	1.54 m, 1.62 m	1.56 m, 1.63 m	1.55 m, 1.62 m
	7	1.35 m, 1.61 m	1.35 m, 1.62 m	1.34 m, 1.61 m
	8			
	9	1.55 m	1.56 m	1.50 m
	10			
	11	1.09 m, 1.02 m	1.06 m, 1.61 m	1.07 m, 1.64 m
	12	3.71 m	3.69 m	3.78 m
	13	1.82 m	1.83 m	1.81 m
	14			
	15	1.31 m, 1.89 m	1.32 m, 1.91 m	1.31 m, 1.87 m
	16	1.42 m, 1.94 m	1.48 m, 1.92 m	1.37 m, 1.93 m
	17	2.32 q (<i>J</i> = 9.3)	2.31 m	2.34 q (<i>J</i> = 9.6)
	18	1.02 s	1.07 s	1.05 s
	19	0.99 s	1.03 s	1.01 s
	20			
	21	1.31 s	1.35 s	1.35 s
	22	1.71 m, 1.79 m	2.50 m, 2.57 m	1.82 m, 2.10 m
	23	1.71 m, 1.79 m	5.74 m	2.82 m
	24	4.01 bt	5.74 m	
	25			
	26	4.81 s, 4.94 s	1.30 s	5.87 s, 6.20 s
	27	1.72 s	1.30 s	1.89 s
	28	1.13 s	1.16 s	1.16 s
	29	0.93 s	0.96 s	0.95 s
	30	0.92 s	0.96 s	0.95 s
3-0-inner	1'	4.46 d (<i>J</i> = 7.7)	4.48 d (<i>J</i> = 7.8)	4.48 d (<i>J</i> = 7.8)
	2'	3.72 m	3.72 m	3.71 m
	3'	3.62 m	3.63 m	3.62 m
	4'	3.39 m	3.39 m	3.38 m
	5'	3.28 m	3.28 m	3.29 m
	6'	3.65 m, 3.86 dd	3.64 m, 3.87 dd	3.65 m, 3.87 m
		(<i>J</i> = 11.8, 2.2)	(<i>J</i> = 11.8, 2.2)	
3-O-term	1"	4.76 d (<i>J</i> = 7.7)	4.78 d (<i>J</i> = 7.7)	4.79 d (<i>J</i> = 7.7)
	2"	3.26 m	3.26 m	3.26 m
	3"	3.39 m	3.39 m	3.30 m

Table S1. ¹H NMR (CD₃OD, 600 MHz) Spectroscopic Data for gypenosides J1-J3.

	4"	3.23 m	3.23 m	3.23 m
	5"	3.39 m	3.39 m	3.38 m
	6"	3.70 m, 3.90	3.70 m, 3.90	3.69 m, 3.88
		d (<i>J</i> = 11.5)	d (<i>J</i> = 11.5)	d (<i>J</i> = 11.5)
20-O-inner	1'''	4.58 d (<i>J</i> = 7.8)	4.63 d (<i>J</i> = 7.8)	4.60 d (<i>J</i> = 7.8)
	2'''	3.11 m	3.11 m	3.16 m
	3'''	3.34 m	3.37 m	3.37 m
	4'''	3.33 m	3.29 m	3.38 m
	5'''	3.21 m	3.28 m	3.43 m
	6'''	3.65 m, 3.81	3.65 m, 3.84	3.73 m, 4.06
		d (<i>J</i> = 12.2)	dd (<i>J</i> = 12.7, 1.9)	d (<i>J</i> = 9.8)
20-0-term	1''''			4.28 d (<i>J</i> = 7.5)
	2""			3.20 m
	3""			3.32 m
	4''''			3.48 m
	5""			3.20 m, 3.85 m

		gypenoside J1 g		gypeno	gypenoside J2			gypenoside J3		
	no.	δ_{C}	type	HMBC	δ_{C}	type	HMBC	δ_{C}	type	HMBC
aglycone	1	46.5	CH_2	H-19	46.5	CH ₂	H-19	46.5	CH_2	H-19
	2	66.7	CH	H-3	66.7	СН	H-3	66.7	CH	H-3
	3	95.3	CH	H-1',	95.3	СН	H-1',	95.3	CH	H-1',
				28, 29						
	4	40.5	С	Н-3,	40.5	С	H-3, 28	40.5	С	Н-3,
				28, 29						28, 29
	5	55.8	CH	H-19,	55.8	СН	H-19,	55.8	CH	H-19,
				28, 29			28, 29			28, 29
	6	17.9	CH_2		17.9	CH_2		17.9	CH_2	
	7	34.4	CH_2		34.3	CH_2	H-18	34.3	CH_2	H-18
	8	39.6	С		39.7	С		39.6	С	H-18
	9	49.6	CH	H-19	49.6	СН	H-19	49.7	CH	H-19
	10	37.4	С	H-19	37.4	С	H-19	37.4	С	H-19
	11	30.2	CH_2		30.1	CH_2		30.1	CH_2	
	12	70.4	СН		70.6	СН		70.1	CH	
	13	48.3	СН		48.5	СН		48.4	CH	
	14	51.1	С	H-18, 30	51.2	С	H-30	51.1	С	H-18
	15	29.8	CH_2		29.8	CH_2	H-30	29.6	CH_2	
	16	25.9	CH_2		25.6	CH_2		26	CH_2	
	17	52	СН	H-21	51.9	СН	H-21	51.9	CH	H-21, 30
	18	14.8	CH_3	H-30	14.9	CH ₃	H-30	14.9	CH_3	H-30
	19	16.4	CH ₃	H-6, 11	16.4	CH ₃		16.4	CH ₃	
	20	83.5	С	H-1"',	83.2	С	H-1''',	83.2	С	H-1'''
				21, 22			13, 17, 21			
	21	21.5	CH_3		22.2	CH ₃		20.6	CH_3	
	22	31.1	CH_2	H-21	38	CH ₂	H-23, 24	28.9	CH_2	H-21
	23	29.4	CH_2		122.1	СН	H-22	31.7	CH_2	
	24	75.6	СН	H-27	140.6	СН	H-26, 27	203.5	С	H-25, 27
	25	147.6	С	H-27	69.9	С	H-23, 24,	144.1	С	H-27
							26, 27			
	26	109.9	CH_2	H-27	28.8	CH ₃	H-27	125.1	CH_2	H-27
	27	16.6	CH_3	H-26	28.5	CH ₃		16.5	CH ₃	H-26
	28	27.3	CH_3	H-3, 29	27.3	CH ₃	H-29	27.3	CH ₃	H-3, 18, 29
	29	15.8	CH_3	H-28	15.7	CH ₃		16.0	CH ₃	
	30	16.4	CH_3	H-13	16.4	CH ₃		16.4	CH ₃	H-18
3-O-inner	1'	103.4	СН		103.4	СН	H-2', 3	103.4	СН	H-3
	2'	79.3	СН	H-1"	79.3	СН	H-1"	79.3	СН	H-1"
	3'	77.3	СН		77.3	СН		77.3	СН	
	4'	69.9	СН		69.9	СН		69.9	СН	
	5'	76.9	СН		76.9	СН		76.9	СН	
	6'	61.8	CH_2		61.8	CH_2		61.8	CH_2	

Table S2. ¹³C NMR (CD₃OD, 150 MHz) and HMBC for gypenosides J1-J3.

3-O-term	1"	103.0	CH	103.0	CH	H-2'	103.0	CH	H-2'
	2"	74.8	СН	74.8	СН		74.8	СН	
	3"	76.6	СН	76.6	СН		76.6	СН	
	4"	70.7	СН	70.7	СН		70.7	СН	
	5"	76.7	СН	76.7	СН		76.7	СН	
	6"	61.0	CH ₂	61.0	CH_2		61.0	CH_2	
20-0-inner	1'''	96.9	СН	96.8	СН	H-2'''	96.6	СН	
	2'''	74.0	СН	74.0	СН		73.8	СН	
	3'''	76.9	СН	76.7	СН		77.3	CH	
	4'''	69.9	СН	70.0	СН		69.9	СН	
	5'''	76.6	СН	76.6	СН		75.1	СН	
	6'''	61.3	CH ₂	61.3	CH_2		68.9	CH_2	H-1""
20- <i>O</i> -term	1""						104.3	СН	H-2"", 6"
	2""						73.5	СН	
	3""						76.4	СН	
	4""						69.8	СН	
	5""						65.5	CH_2	