The role of a terminal chain in promoting the twist-bend nematic phase: the synthesis and characterisation of the 1-(4-cyanobiphenyl-4'-yl)-6-(4-alkyloxyanilinebenzylidene-4'- oxy)hexanes

Daniel A Paterson^a, Catriona Crawford^a, Damian Pociecha^b, Rebecca Walker^a, John MD Storey^a, Ewa Gorecka^b and Corrie T Imrie^a

Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, AB24 3UE Scotland, United Kingdom; University of Warsaw, Department of Chemistry, ul. Zwirki i Wigury 101, 02-089 ⁻ Warsaw, Poland

E-mail: <u>c.t.imrie@abdn.ac.uk</u>

Table of Contents

Section 1: Materials/ General methods/ Inst	rumentationS3
Section 2: Synthetic procedures	SError! Bookmark not defined.
Section 3: References	

Section 1: Materials/ General methods/ Instrumentation

All reagents and solvents were available commercially and purchased from Sigma Aldrich, TCI Chemicals or Alfa Aesar and were used as received unless otherwise stated. Anhydrous solvents were purchased as anhydrous (over molecular sieves).

Solvents were evaporated at approximately 20 mm Hg using a water aspirator pump connected to a Buchi rotary evaporator and trace solvents in a Thermo Scientific vacuum oven at 1.0 mm Hg and 50 °C.

Column chromatography, was performing using silica gel grade 60A 40-63 micron, purchased from Flurochem and a small neutral alumina plug was used at the base of the column to remove ionic impurities where stated. Reactions were monitored using Thin Layer Chromatography (TLC) carried out on aluminium-backed plates with a coating of Merck Kieselgel 60 F254 silica and an appropriate solvent system. Silica gel coated aluminium plates were purchased from Merck KGaA. Spots were visualised using UV light (254 nm) or by oxidation with either an aqueous permanganate dip or iodine.

Infrared spectra were recorded on a Thermo Scientific Nicolet IR100 FT-IR spectrometer with an ATR diamond cell.

Mass spectra were recorded on a Waters QTOF Xevo G2 spectrometer.

Proton (¹H) and carbon (¹³C) NMR spectra were recorded on a Varian Unity INOVA 400 MHz NMR spectrometer with pulsed field gradients and waveform generator or a 300 MHz Bruker Ultrashield NMR. The chemical shifts δ are quoted in parts per million (ppm) (SiMe₄, δ = 0), using residual non-deuterated solvent signals as reference. Coupling constants (*J* values) are quoted in Hertz (Hz) and are vicinal ³*J*, unless otherwise indicated. The splitting patterns are reported using the following abbreviations: b (broad), s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), m (multiplet), and combinations thereof. ¹³C Spectra are proton decoupled unless otherwise stated. Ar refers to an aromatic ring.

The purity of final products were verified using C,H,N microanalysis performed by the Micro Analytical Laboratory in the School of Chemistry at the University of Manchester or the Centre for Chemical Instrumental Analysis and Services at the University of Sheffield.

Section 2: Synthetic procedures

The synthetic route used to obtain the 1-(4-cyanobiphenyl-4'-yl)-6-(4-alkyloxyanilinebenzylidene-4'-oxy)hexanes, CB6O.Om, series is shown in scheme S1. The syntheses of 4bromo-4'-(6-bromohexanoyl)biphenyl, **1** [1], 1-bromo-6-(4'-bromobiphenyl-4-yl)hexane, **2** [1], 4-((6-(4'-bromo-[1,1'-biphenyl]-4-yl)hexyl)oxy)benzaldehyde, **3** [2], and 4'-(6-(4formylphenoxy)hexyl)-[1,1'-biphenyl]-4-carbonitrile, **4** [2] have been described in detail elsewhere.

Scheme S1. The synthetic route for the CB6O.Om series; $X=C_mH_{2m+1}$.

The synthesis of 1-(4-cyanobiphenyl-4'-yl)-6-(4-methoxyaniline-benzylidene-4'-oxy)hexane, CB6O.O1 (5, X=CH₃), is described in detail. Thus, a mixture of 4 (0.20 g, 0.5 mmol), panisidine (0.06 g, 0.5 mmol), pTSA (a few crystals) and EtOH (30 ml) was heated at reflux overnight. The reaction mixture was cooled to room temperature; the resulting precipitate was collected via vacuum filtration and washed with EtOH (100 ml). The crude product thus obtained was recrystallised from EtOH to give the title compound as a white solid. Yield: 0.24 g, 98%. Elemental analysis: Calculated for C₃₃H₃₂N₂O₂: C, 81.12%, H, 6.60%, N, 5.73%. Found: C, 81.19%, H, 6.63%, N, 5.63%. Infrared v cm⁻¹: 2925 (C-H), 2852 (C-H), 2223 (C≡N), 1606, 1571, 1510, 1464, 1235, 1163, 842, 831, 803, 546, 535. ¹H NMR (300 MHz CDCl₃)δ: 8.42 (1H, s, ArCHN), 7.84 (2H, d, J 8.6 Hz, Ar), 7.73 (2H, d, J 8.6 Hz, Ar), 7.69 (2H, d, J 8.6 Hz, Ar), 7.53 (2H, d, J 8.6 Hz, Ar), 7.32 (2H, d, J 8.6 Hz, Ar), 7.23 (2H, d, J 8.6 Hz, Ar), 6.98 (2H, d, J 8.6 Hz, Ar), 6.95 (2H, d, J 8.6 Hz, Ar), 4.04 (2H, t, J 6.4 Hz, OCH₂CH₂), 3.85 (3H, s, OCH₃), 2.71 (2H, t, J 7.6 Hz, ArCH2CH2), 1.85 (2H, quin, J 7.3 Hz, OCH2CH2CH2), 1.73 (2H, quin, J 7.4 Hz, ArCH₂CH₂CH₂), 1.56 (2H, m, CH₂CH₂CH₂CH₂), 1.49 (2H, m, CH₂CH₂CH₂CH₂). ¹³C NMR (75 MHz CDCl₃)δ: 161.56, 157.98, 157.89, 145.58, 145.31, 143.50, 136.55, 132.57, 130.24, 129.36, 129.21, 127.49, 127.12, 122.06, 119.04, 114.67, 114.38, 110.58, 68.03, 55.51, 35.49, 31.24, 29.09, 28.93, 25.87. MS (ESI+, m/z): [M+H]⁺ Calculated for C₃₃H₃₃N₂O₂: 489.2542. Found: 489.2538.

The remaining homologues in the CB6O.Om series were prepared using the method described for CB6O.O1.

CB6O.O2 (5, X=C₂H₅)

Elemental analysis: Calculated for $C_{34}H_{34}N_2O_2$: C, 81.24%, H, 6.82%, N, 5.57%. Found: C, 81.48%, H, 6.85%, N, 5.53%. Infrared v cm⁻¹: 2928 (C-H), 2858 (C-H), 2225 (C=N), 1604, 1571, 1508, 1476, 1243, 1170, 1046, 835, 813, 549. ¹H NMR (300 MHz CDCl₃) δ : 8.42 (1H, s, Ar<u>CHN</u>), 7.84 (2H, d, J 8.6 Hz, Ar), 7.73 (2H, d, J 8.6 Hz, Ar), 7.69 (2H, d, J 8.6 Hz, Ar), 7.53 (2H, d, J 8.6 Hz, Ar), 7.32 (2H, d, J 8.6 Hz, Ar), 7.22 (2H, d, J 8.6 Hz, Ar), 6.98 (2H, d, J 8.6 Hz, Ar), 4.09 (2H, t, J 7.0 Hz, O<u>CH₂CH₃</u>), 4.04 (2H, t, J 6.8 Hz, O<u>CH₂CH₂</u>CH₂),

2.71 (2H, t, *J* 7.6 Hz, Ar<u>CH₂CH₂</u>), 1.85 (2H, quin, *J* 7.3 Hz, OCH₂CH₂CH₂), 1.73 (2H, quin, *J* 7.4 Hz, ArCH₂CH₂CH₂), 1.54 (4H, m, CH₂CH₂CH₂CH₂), 1.45 (3H, t, *J* 7.0 Hz, CH₂CH₃). ¹³C NMR (75 MHz CDCl₃)δ: 161.53, 157.76, 157.36, 145.58, 145.16, 143.50, 136.55, 132.57, 130.21, 129.39, 129.20, 127.49, 127.12, 122.06, 119.03, 114.97, 114.66, 110.58, 68.02, 63.70, 35.49, 31.23, 29.09, 28.93, 25.87, 14.90. MS (ESI+, m/z): [M+H]⁺ Calculated for C₃₄H₃₅N₂O₂: 503.2699. Found: 503.2685.

CB6O.O3 (5, X=C₃H₇)

Elemental analysis: Calculated for C₃₅H₃₆N₂O₂: C, 81.36%, H, 7.02%, N, 5.42%. Found: C, 81.59%, H, 7.06%, N, 5.39%. Infrared v cm⁻¹: 2929 (C-H), 2856 (C-H), 2225 (C=N), 1605, 1569, 1509, 1473, 1247, 1170, 1016, 838, 814, 548. ¹H NMR (300 MHz CDCl₃)δ: 8.42 (1H, s, Ar<u>CHN</u>), 7.84 (2H, d, *J* 8.6 Hz, Ar), 7.74 (2H, d, *J* 8.6 Hz, Ar), 7.69 (2H, d, *J* 8.6 Hz, Ar), 7.53 (2H, d, *J* 8.6 Hz, Ar), 7.32 (2H, d, *J* 8.6 Hz, Ar), 7.22 (2H, d, *J* 8.6 Hz, Ar), 6.98 (2H, d, *J* 8.6 Hz, Ar), 6.95 (2H, d, *J* 8.6 Hz, Ar), 4.04 (2H, t, *J* 6.4Hz, O<u>CH₂CH₂</u>), 3.96 (2H, t, *J* 6.6 Hz, O<u>CH₂CH₃</u>), 2.71 (2H, t, *J* 7.7 Hz, Ar<u>CH₂CH₂</u>), 1.86 (2H, quin, *J* 7.0 Hz, OCH₂<u>CH₂</u>CH₂), 1.83 (2H, quin, *J* 7.0 Hz, OCH₂<u>CH₂CH₃), 1.73 (2H, quin, *J* 7.4 Hz, ArCH₂<u>CH₂CH₂), 1.56 (2H, m, CH₂<u>CH₂CH₂CH₂), 1.49</u> (2H, m, CH₂CH₂<u>CH₂</u>), 1.07 (3H, t, *J* 7.4 Hz, CH₂<u>CH₃</u>). ¹³C NMR (75 MHz CDCl₃)δ: 161.52, 157.75, 157.56, 145.58, 145.10, 143.51, 136.55, 132.58, 130.21, 129.39, 129.21, 127.49, 127.13, 122.04, 119.05, 114.98, 114.65, 110.57, 69.79, 68.01, 35.50, 31.25, 29.09, 28.93, 25.88, 22.66, 10.55. MS (ESI+, m/z): [M+H]⁺ Calculated for C₃₅H₃₇N₂O₂: 517.2855. Found: 517.2845.</u></u>

CB6O.O4 (5, X=C₄H₉)

Elemental analysis: Calculated for C₃₆H₃₈N₂O₂: C, 81.47%, H, 7.22%, N, 5.28%. Found: C, 81.62%, H, 7.24%, N, 5.23%. Infrared *v* cm⁻¹: 2935 (C-H), 2873 (C-H), 2225 (C=N), 1606, 1570, 1509, 1474, 1247, 1167, 1009, 840, 814, 550. ¹H NMR (300 MHz CDCl₃)δ: 8.41 (1H, s, Ar<u>CHN</u>), 7.83 (2H, d, *J* 8.6 Hz, Ar), 7.73 (2H, d, *J* 8.6 Hz, Ar), 7.68 (2H, d, *J* 8.6 Hz, Ar), 7.52 (2H, d, *J* 8.6 Hz, Ar), 7.31 (2H, d, *J* 8.6 Hz, Ar), 7.20 (2H, d, *J* 8.6 Hz, Ar), 6.97 (2H, d, *J* 8.6 Hz, Ar), 4.04 (2H, t, *J* 7.0 Hz, O<u>CH₂CH₃), 3.98 (2H, t, *J* 6.8 Hz, O<u>CH₂CH₂),</u></u>

2.70 (2H, t, J 7.6 Hz, Ar<u>CH₂CH₂</u>), 1.84 (2H, quin, J 7.3 Hz, OCH₂CH₂CH₂), 1.81 (2H, quin, J 7.4 Hz, ArCH₂CH₂CH₂CH₂), 1.71 (2H, quin, J 7.4 Hz, ArCH₂CH₂CH₂), 1.52 (6H, m, CH₂CH₂CH₂CH₂CH₂), 0.99 (3H, t, J 7.0 Hz, CH₂CH₃). ¹³C NMR (75 MHz CDCl₃) δ : 161.51, 157.77, 157.57, 145.58, 145.07, 143.51, 136.55, 132.59, 130.21, 129.37, 129.21, 127.50, 127.13, 122.04, 119.07, 114.96, 114.64, 110.56, 68.00, 67.97, 35.50, 31.39, 31.27, 29.09, 28.93, 25.88, 19.28, 13.91. MS (ESI+, m/z): [M+H]⁺ Calculated for C₃₆H₃₉N₂O₂: 531.3012. Found: 531.2999.

CB6O.O5 (5, X=C₅H₁₁)

Elemental analysis: Calculated for C₃₇H₄₀N₂O₂: C, 81.58%, H, 7.40%, N, 5.14%. Found: C, 81.80%, H, 7.45%, N, 5.10%. Infrared v cm⁻¹: 2933 (C-H), 2858 (C-H), 2221 (C=N), 1604, 1573, 1511, 1470, 1250, 1162, 1022, 838, 813, 545. ¹H NMR (300 MHz CDCl₃) δ : 8.41 (1H, s, Ar<u>CHN</u>), 7.83 (2H, d, *J* 8.6 Hz, Ar), 7.73 (2H, d, *J* 8.6 Hz, Ar), 7.68 (2H, d, *J* 8.6 Hz, Ar), 7.52 (2H, d, *J* 8.6 Hz, Ar), 7.31 (2H, d, *J* 8.6 Hz, Ar), 7.21 (2H, d, *J* 8.6 Hz, Ar), 6.97 (2H, d, *J* 8.6 Hz, Ar), 6.93 (2H, d, *J* 8.6 Hz, Ar), 4.02 (2H, t, *J* 7.0 Hz, O<u>CH₂CH₃</u>), 3.98 (2H, t, *J* 6.8 Hz, O<u>CH₂CH₂</u>), 2.70 (2H, t, *J* 7.6 Hz, Ar<u>CH₂CH₂</u>), 1.81 (4H, quin, *J* 7.3 Hz, OCH₂<u>CH₂</u>), 1.71 (2H, quin, *J* 7.4 Hz, ArCH₂<u>CH₂</u>CH₂), 1.44 (8H, m, CH₂<u>CH₂CH₂), 0.95 (3H, t, *J* 7.0 Hz, CH₂<u>CH₃</u>). ¹³C NMR (75 MHz CDCl₃) δ : 161.51, 157.77, 157.56, 145.58, 145.05, 143.52, 136.54, 132.59, 130.22, 129.36 129.21, 127.50, 127.13, 122.06, 119.08, 114.95, 114.64, 110.54, 68.27, 68.00, 35.51, 31.28, 29.10, 29.05, 28.95, 28.24, 25.89, 22.52, 14.08. MS (ESI+, m/z): [M+H]⁺ Calculated for C₃₇H₄₂N₂O₂: 545.3168. Found: 545.3150.</u>

CB6O.O6 (5, X=C₆H₁₃)

Elemental analysis: Calculated for $C_{38}H_{42}N_2O_2$: C, 81.68%, H, 7.58%, N, 5.01%. Found: C, 81.89%, H, 7.62%, N, 4.97%. Infrared v cm⁻¹: 2934 (C-H), 2858 (C-H), 2224 (C=N), 1605, 1572, 1510, 1473, 1244, 1164, 1027, 835, 814, 543. ¹H NMR (300 MHz CDCl₃) δ : 8.42 (1H, s, Ar<u>CHN</u>), 7.84 (2H, d, J 8.6 Hz, Ar), 7.74 (2H, d, J 8.6 Hz, Ar), 7.69 (2H, d, J 8.6 Hz, Ar), 7.53 (2H, d, J 8.6 Hz, Ar), 7.32 (2H, d, J 8.6 Hz, Ar), 7.22 (2H, d, J 8.6 Hz, Ar), 6.98 (2H, d, J 8.6 Hz, Ar), 6.94 (2H, d, J 8.6 Hz, Ar), 4.05 (2H, t, J 7.0 Hz, O<u>CH₂CH₃</u>), 3.99 (2H, t, J 6.8 Hz, O<u>CH₂CH₂</u>), 2.71 (2H, t, J 7.6 Hz, Ar<u>CH₂CH₂), 1.82 (4H, quin, J 7.3 Hz, OCH₂CH₂), 1.72 (2H, quin, J 7.4</u>

Hz, ArCH₂CH₂CH₂), 1.48 (6H, m, CH₂CH₂CH₂CH₂), 1.36 (4H, m, CH₂CH₂CH₂CH₂CH₂), 0.93 (3H, t, *J* 7.0 Hz, CH₂CH₂CH₃). ¹³C NMR (75 MHz CDCl₃) δ : 161.51, 157.78, 157.56, 145.58, 145.05, 143.52, 136.54, 132.59, 130.22, 129.35, 129.22, 127.50, 127.13, 122.06, 119.09, 114.95, 114.64, 110.54, 68.29, 68.00, 35.51, 31.64, 31.28, 29.31, 29.10, 28.95, 25.89, 25.77, 22.65, 14.10. MS (ESI+, m/z): [M+H]⁺ Calculated for C₃₈H₄₃N₂O₂: 559.3325. Found: 559.3300.

CB6O.O7 (5, X=C7H15)

Elemental analysis: Calculated for $C_{39}H_{44}N_2O_2$: C, 81.78%, H, 7.74%, N, 4.89%. Found: C, 81.97%, H, 7.80%, N, 4.84%. Infrared v cm⁻¹: 2934 (C-H), 2854 (C-H), 2227 (C=N), 1608, 1569, 1510, 1474, 1249, 1163, 1016, 836, 824, 810, 540. ¹H NMR (300 MHz CDCl₃) δ : 8.42 (1H, s, Ar<u>CHN</u>), 7.84 (2H, d, *J* 8.6 Hz, Ar), 7.73 (2H, d, *J* 8.6 Hz, Ar), 7.69 (2H, d, *J* 8.6 Hz, Ar), 7.53 (2H, d, *J* 8.6 Hz, Ar), 7.32 (2H, d, *J* 8.6 Hz, Ar), 7.22 (2H, d, *J* 8.6 Hz, Ar), 6.98 (2H, d, *J* 8.6 Hz, Ar), 6.94 (2H, d, *J* 8.6 Hz, Ar), 4.05 (2H, t, *J* 7.0 Hz, OCH₂CH₃), 3.99 (2H, t, *J* 6.8 Hz, OCH₂CH₂), 2.71 (2H, t, *J* 7.6 Hz, ArCH₂CH₂), 1.82 (4H, quin, *J* 7.3 Hz, OCH₂CH₂CH₂), 1.72 (2H, quin, *J* 7.4 Hz, ArCH₂CH₂CH₂), 1.48 (6H, m, CH₂CH₂CH₂), 1.34 (6H, m, CH₂CH₂CH₂), 0.92 (3H, t, *J* 7.0 Hz, CH₂CH₃). ¹³C NMR (75 MHz CDCl₃) δ : 161.51, 157.74, 157.57, 145.58, 145.06, 143.51, 136.55, 132.59, 130.21, 129.38, 129.21, 127.50, 127.13, 122.04, 119.06, 114.97, 114.65, 110.57, 68.30, 68.01, 35.50, 31.81, 31.26, 29.35, 29.11, 28.94, 26.05, 25.88, 22.63, 14.12. MS (ESI+, m/z): [M+H]⁺ Calculated for C₃₉H₄₅N₂O₂: 573.3481. Found: 573.3469.

CB6O.O8 (5, X=C₈H₁₇)

Elemental analysis: Calculated for C₄₀H₄₆N₂O₂: C, 81.87%, H, 7.90%, N, 4.77%. Found: C, 82.05%, H, 7.96%, N, 4.73%. Infrared v cm⁻¹: 2932 (C-H), 2852 (C-H), 2225 (C=N), 1606, 1572, 1510, 1473, 1250, 1166, 1019, 843, 827, 814, 544. ¹H NMR (300 MHz CDCl₃)δ: 8.42 (1H, s, Ar<u>CHN</u>), 7.83 (2H, d, *J* 8.6 Hz, Ar), 7.74 (2H, d, *J* 8.6 Hz, Ar), 7.69 (2H, d, *J* 8.6 Hz, Ar), 7.53 (2H, d, *J* 8.6 Hz, Ar), 7.32 (2H, d, *J* 8.6 Hz, Ar), 7.22 (2H, d, *J* 8.6 Hz, Ar), 6.98 (2H, d, *J* 8.6 Hz, Ar), 6.94 (2H, d, *J* 8.6 Hz, Ar), 4.04 (2H, t, *J* 7.0 Hz, O<u>CH₂CH₃), 3.98 (2H, t, *J* 6.8 Hz, O<u>CH₂CH₂), 2.71 (2H, t, *J* 7.6 Hz, Ar<u>CH₂CH₂), 1.84 (4H, quin, *J* 7.3 Hz, OCH₂CH₂), 1.72(2H, quin, *J* 7.4 Hz, ArCH₂CH₂CH₂), 1.56 (2H, m, CH₂CH₂CH₂), 1.49 (4H, m, CH₂CH₂CH₂CH₂), 1.33 (8H, m,</u></u></u>

CH₂CH₂CH₂CH₂CH₂), 0.91 (3H, t, *J* 7.0 Hz, CH₂CH₃). ¹³C NMR (75 MHz CDCl₃)δ: 161.51, 157.73, 157.58, 145.58, 145.08, 143.50, 136.55, 132.57, 130.20, 129.39, 129.20, 127.49, 127.12, 122.03, 119.03, 114.98, 114.65, 110.57, 68.32, 68.01, 35.49, 31.83, 31.25, 29.39, 29.35, 29.26, 29.09, 28.93, 26.08, 25.88, 22.68, 14.12. MS (ESI+, m/z): [M+H]⁺ Calculated for C₄₀H₄₇N₂O₂: 587.3638. Found: 587.3621.

CB6O.O9 (5, X=C₉H₁₉)

Elemental analysis: Calculated for $C_{41}H_{48}N_2O_2$: C, 81.96%, H, 8.05%, N, 4.66%. Found: C, 82.10%, H, 8.13%, N, 4.64%. Infrared v cm⁻¹: 2921 (C-H), 2852 (C-H), 2234 (C=N), 1606, 1574, 1510, 1475, 1247, 1170, 1017, 841, 813, 547. ¹H NMR (300 MHz CDCl₃) δ : 8.42 (1H, s, Ar<u>CHN</u>), 7.84 (2H, d, *J* 8.6 Hz, Ar), 7.74 (2H, d, *J* 8.6 Hz, Ar), 7.69 (2H, d, *J* 8.6 Hz, Ar), 7.53 (2H, d, *J* 8.6 Hz, Ar), 7.32 (2H, d, *J* 8.6 Hz, Ar), 7.22 (2H, d, *J* 8.6 Hz, Ar), 6.98 (2H, d, *J* 8.6 Hz, Ar), 6.94 (2H, d, *J* 8.6 Hz, Ar), 4.05 (2H, t, *J* 7.0 Hz, OCH₂CH₃), 3.99 (2H, t, *J* 6.8 Hz, OCH₂CH₂), 2.71 (2H, t, *J* 7.6 Hz, ArCH₂CH₂CH₂), 1.83 (4H, quin, *J* 7.3 Hz, OCH₂CH₂CH₂), 1.73 (2H, quin, *J* 7.4 Hz, ArCH₂CH₂CH₂), 1.51 (6H, m, CH₂CH₂CH₂CH₂), 1.31 (10H, m, CH₂CH₂CH₂CH₂), 0.91 (3H, t, *J* 7.0 Hz, CH₂CH₃). ¹³C NMR (75 MHz CDCl₃) δ : 161.51, 157.74, 157.58, 145.58, 145.07, 143.51, 136.54, 132.58, 130.22, 129.38, 129.21, 127.50, 127.13, 122.04, 119.06, 114.97, 114.65, 110.57, 68.30, 60.01, 35.50, 31.91, 31.26, 29.57, 29.45, 29.35, 29.30, 29.10, 28.94, 26.08, 25.89, 22.70, 14.15. MS (ESI+, m/z): [M+H]⁺ Calculated for C₄₁H₄₉N₂O₂: 601.3794. Found: 601.3787.

CB6O.O10 (5, X=C₁₀H₂₁)

Elemental analysis: Calculated for $C_{42}H_{50}N_2O_2$: C, 82.04%, H, 8.20%, N, 4.56%. Found: C, 82.23%, H, 8.24%, N, 4.53%. Infrared v cm⁻¹: 2920 (C-H), 2852 (C-H), 2228 (C=N), 1607, 1574, 1510, 1475, 1248, 1170, 1021, 840, 813, 547. ¹H NMR (300 MHz CDCl₃) δ : 8.41 (1H, s, Ar<u>CHN</u>), 7.83 (2H, d, J 8.6 Hz, Ar), 7.72 (2H, d, J 8.6 Hz, Ar), 7.68 (2H, d, J 8.6 Hz, Ar), 7.52 (2H, d, J 8.6 Hz, Ar), 7.31 (2H, d, J 8.6 Hz, Ar), 7.21 (2H, d, J 8.6 Hz, Ar), 6.97 (2H, d, J 8.6 Hz, Ar), 6.93 (2H, d, J 8.6 Hz, Ar), 4.03 (2H, t, J 7.0 Hz, O<u>CH₂CH₃</u>), 3.98 (2H, t, J 6.8 Hz, O<u>CH₂CH₂</u>), 2.70 (2H, t, J 7.6 Hz, Ar<u>CH₂CH₂), 1.83 (4H, quin, J 7.3 Hz, OCH₂CH₂), 1.71 (2H, quin, J 7.4</u>

Hz, ArCH₂CH₂CH₂), 1.48 (6H, m, CH₂CH₂CH₂CH₂CH₂), 1.32 (12H, m, CH₂CH₂CH₂CH₂CH₂), 0.90 (3H, t, *J* 7.0 Hz, CH₂CH₃). ¹³C NMR (75 MHz CDCl₃)δ: 161.53, 157.70, 157.59, 145.58, 145.08, 143.51, 136.54, 132.57, 130.22, 129.41, 129.21, 127.48, 127.12, 122.04, 119.04, 114.99, 114.66, 110.58, 68.32, 68.02, 35.50, 31.92, 31.25, 29.61, 29.59, 29.44, 29.35, 29.11, 28.94, 26.09, 25.88, 22.71, 14.14. MS (ESI+, m/z): [M+H]⁺ Calculated for C₄₂H₅₁N₂O₂: 615.3951. Found: 615.3933.

Section 3: Reference

- [1] Paterson DA, Gao M, Kim YK, Jamali A, Finley KL, Robles-Hernandez B, Diez-Berart S, Salud J, de la Fuente MR, Timimi BA, Zimmermann H, Greco C, Ferrarini A, Storey JMD, Lopez DO, Lavrentovich OD, Luckhurst GR, Imrie CT. Understanding the twistbend nematic phase: the characterisation of 1-(4-cyanobiphenyl-4 '-yloxy)-6-(4cyanobiphenyl-4 '-yl)hexane (CB6OCB) and comparison with CB7CB. Soft Matter. 2016;12(32):6827-6840.
- [2] Abberley JP, Killah R, Walker R, Storey JMD, Imrie CT, Salamonczyk M, Zhu CH, Gorecka E, Pociecha D. Heliconical smectic phases formed by achiral molecules. Nature Commun. 2018;9:228.