Supporting Information: Density functionals for nondynamical correlation constructed from an upper bound to the exact exchange energy density

Benjamin G. Janesko*

Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76110, USA

> Giovanni Scalmani[†] and Michael J. Frisch[‡] Gaussian, Inc, Wallingford, CT 06492, USA

SI-I. GAUSSIAN CITATION

Gaussian Development Version, Revision I.14+,

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,

M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,

G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich,

J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian,

J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young,

F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone,

T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega,

G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda,

J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,

T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta,

F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin,

V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand,

K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar,

J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi,

J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas,

J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2018.

SI-II. NOMENCLATURE

There is to our knowledge no unique rigorous universally acceptable separation of "dynamical" and "nondynamical" correlation. We will assume here that "nondynamical" correlation is relatively large in stretched covalent bonds and is negligible in atomic cores and in isolated atoms whose exact Kohn-Sham ground-state wavefunction is not nearly degenerate. The ground singlet state of H_2 stretched past the Coulson-Fischer point has significant nondynamical correlation. Isolated beryllium atom may or may not have significant nondynamical correlation. Isolated argon atom should have negligible nondynamical correlation. We will further assume that standard DFT "correlation" functionals model only dynamical correlation. With these assumptions, we may state that the PBE0 global hybrid models dynamical correlation with the PBE correlation functional, and models nondynamical correlation as 75% of the difference between PBE and HF exchange.

We note for completeness that the low-density limit of the uniform electron gas could be regarded as having large "nondynamical" correlation, and that local density approximation correlation functionals effectively describe this form of correlation.

We define "exact" exchange as the exchange energy obtained by substituting the exact Kohn-Sham orbitals, from the exact ground state of the noninteracting Kohn-Sham reference system of a noninteracting-v-representable system, into the Hartree-Fock exchange formula. We define "HF" or "Hartree-Fock" exchange as the exchange energy obtained by substituting **any** approximate orbitals, including those from a generalized Kohn-Sham ground-state density functional theory calculation using a finite basis set and an approximate exchange-correlation functional, into the Hartree-Fock exchange formula.

SI-III. ANALYTIC FORMULA FOR $F_{Hup}(y, x)$

$$\begin{split} F_{Hup}(y,x) &= \frac{1}{9 \log^2\left(\frac{x^3}{8\pi}\right)} 2^{\frac{4\sqrt[3]}{9} \sqrt{6\pi^{2/3} \log\left(\frac{x^3}{8\pi}\right)}{x^2 y^2} - 7\pi^{\frac{1}{3}} \left(-\frac{4\sqrt[3]}{x^2 y^2} \frac{x^{\frac{3}{9} \sqrt{6\pi^{2/3} \log\left(\frac{x^3}{x^2}\right)}}{x^2 y^2} - 1 \right) x^{\frac{4\sqrt[3]}{9} \sqrt{6\pi^{2/3} \log\left(\frac{x^3}{x^2}\right)}}{x^2 y^2} - 5} \\ &\left(8\pi^{7/6} \left(3x^2 y^2 - 8\sqrt[3]{0} \sqrt{6\pi^{2/3} \log\left(\frac{x^3}{8\pi}\right)} + 3x^2 y^2}{4 6^{2/3} \sqrt[3]{\pi} x y} \right) \right) \\ &\left(- \operatorname{erfc} \left(\frac{8\sqrt[3]{6} \pi^{2/3} \log\left(\frac{x^3}{8\pi}\right) + 3x^2 y^2}{4 6^{2/3} \sqrt[3]{\pi} x y} \right) \right) \\ &- \operatorname{erfc} \left(\frac{8\sqrt[3]{6} \pi^{2/3} \log\left(\frac{x^3}{8\pi}\right) + 3x^2 y^2}{4 6^{2/3} \sqrt[3]{\pi} x y} \right) + 2\operatorname{erfc} \left(\frac{\sqrt[3]{\frac{3}{\pi} x y}}{4 2^{2/3}} \right) \right) \\ &\left(x^{\frac{3}{9}} \left(- 8\sqrt[3]{6} \pi^{2/3} \log\left(\frac{x^3}{8\pi}\right) + 3x^2 y^2 \right)^2 \right) \\ &+ \sqrt[6]{\pi} \left(- 8\sqrt[3]{6} \pi^{2/3} \log\left(\frac{x^3}{8\pi}\right) + 3x^2 y^2 \right)^2 \\ &+ \sqrt[6]{\pi} \left(- 8\sqrt[3]{6} \pi^{2/3} \log\left(\frac{x^3}{8\pi}\right) + 3x^2 y^2 \right)^2 \\ &- 3x^2 \left(x^3 - 8\pi \right) y^2 \right) \\ &\operatorname{erfc} \left(\frac{8\sqrt[3]{6} \pi^{2/3} \log\left(\frac{x^3}{8\pi}\right) + 3x^2 y^2}{4 6^{2/3} \sqrt[3]{\pi} x y}} \right) \\ &\operatorname{erfc} \left(\frac{8\sqrt[3]{6} \pi^{2/3} \log\left(\frac{x^3}{8\pi}\right) + 3x^2 y^2}{4 6^{2/3} \sqrt[3]{\pi} x y}} \right) \\ &+ 4 6^{2/3} x \left(x^3 - 8\pi \right) y + 4 6^{2/3} x y \left(x^3 - 2 \frac{2\sqrt[3]{6} \pi^{2/3} \log\left(\frac{8\pi}{3}\right)}{x^2 y^2} + \frac{5}{2}} \\ &\pi^{\frac{1}{6}} \left(\frac{4\sqrt[3]{6} \pi^{2/3} \log\left(\frac{8\pi}{3}\right)}{x^2 y^2} + 3 \right) x^{\frac{2\sqrt[3]{6} \pi^{2/3} \log\left(\frac{\pi}{8\pi}\right)}{x^2 y^2}} + \frac{3}{2}} + 8\pi \right) \right)^2 \end{aligned}$$

Figure SI-1 above shows the ratio of various exchange and correlation energies to HF exchange. Calculations treat atoms He-Xe, and use UHF/3-21G orbitals and densities. PBE exchange almost perfectly captures HF exchange, whereas the upper bounds to HF and PBE exchange both decay as nuclear charge Z increases. Individual energies are tabulated below.

# Atom	Z	HFX	PBEc	PBEx	HFupX,d=2.23a	O HFupX,d=a0	PBEupX,d=2.23a0	PBEupX,d=a0
He	2	-1.028537	-0.042882	-1.013462	-0.578561	-0.655824	-0.521787	-0.662222
Li	3	-1.779299	-0.051689	-1.753557	-0.585231	-1.118882	-0.555510	-1.061155
Be	4	-2.667237	-0.086285	-2.633427	-0.607976	-1.335744	-0.644657	-1.294664
В	5	-3.755723	-0.114136	-3.714897	-0.852455	-1.561477	-0.951176	-1.592580
С	6	-5.061499	-0.146116	-5.010785	-1.204631	-1.982240	-1.401732	-2.101892
N	7	-6.598949	-0.181770	-6.531750	-1.576230	-2.662267	-1.920348	-2.864639
0	8	-8.209740	-0.239120	-8.146048	-1.803774	-3.282980	-2.312684	-3.625025
F	9	-10.048111	-0.297713	-9.981050	-2.022403	-4.074991	-2.729262	-4.578401
Ne	10	-12.132591	-0.357502	-12.053067	-2.223408	-5.014471	-3.146090	-5.702435
Na	11	-13.981449	-0.374919	-13.886277	-2.085961	-5.366732	-3.124222	-6.356268
Mg	12	-15.991944	-0.413598	-15.887680	-1.977108	-5.602172	-3.116978	-6.931784
Al	13	-18.076103	-0.448032	-17.954113	-1.996240	-5.720726	-3.208413	-7.406062
Si	14	-20.283208	-0.486138	-20.142618	-2.160853	-5.833124	-3.418036	-7.870838
Р	15	-22.626618	-0.526838	-22.462388	-2.442753	-6.017386	-3.732931	-8.385393
S	16	-25.004924	-0.585507	-24.827549	-2.652309	-6.183925	-4.019724	-8.861527
Cl	17	-27.513423	-0.645272	-27.319676	-2.924538	-6.468689	-4.382492	-9.417244
Ar	18	-30.163304	-0.706151	-29.946977	-3.242588	-6.909340	-4.801024	-10.078164
K	19	-32.628237	-0.733497	-32.409697	-3.218404	-7.188015	-4.962904	-10.573730
Ca	20	-35.142878	-0.774240	-34.932005	-3.169257	-7.454125	-5.079715	-11.025285
Sc	21	-37.976587	-0.824728	-37.785435	-3.273896	-8.029359	-5.459018	-11.818965
Ti	22	-41.001368	-0.876876	-40.813771	-3.370743	-8.678958	-5.833501	-12.748197
v	23	-44.164794	-0.931585	-43.978224	-3.459273	-9.375036	-6.201590	-13.769049
Cr	24	-47.961942	-1.005753	-47.749459	-3.716664	-10.638721	-6.894794	-15.433873
Mn	25	-50.964103	-1.047582	-50.751062	-3.609236	-10.834247	-6.889120	-16.009098
Fe	26	-54.389455	-1.120529	-54.199099	-3.633780	-11.360532	-7.168611	-17.023225
Co	27	-57.985070	-1.193258	-57.804573	-3.660490	-11.897728	-7.434332	-18.085509
Ni	28	-61.726784	-1.267460	-61.553708	-3.688136	-12.433372	-7.698201	-19.192509
Zn	30	-69.696976	-1.419233	-69.505339	-3.748144	-13.486626	-8.190401	-21.474383
Ga	31	-73.555412	-1.464773	-73.309283	-3.771792	-13.465692	-8.195209	-22.008374

Ge	32	-77.457140	-1.513734	-77.168595	-3.898930	-13.439504	-8.293956	-22.526698
As	33	-81.629027	-1.561394	-81.330051	-4.123912	-13.459230	-8.475445	-23.032579
Se	34	-85.464520	-1.633117	-85.096597	-4.276295	-13.446076	-8.620318	-23.490364
Br	35	-89.700862	-1.702427	-89.289117	-4.493441	-13.493627	-8.828048	-23.926765
Kr	36	-93.753462	-1.771101	-93.310388	-4.773631	-13.662645	-9.131842	-24.497767
Rb	37	-97.830071	-1.801300	-97.363912	-4.741504	-13.655702	-9.146488	-24.826511
Sr	38	-101.854696	-1.849366	-101.385352	-4.702565	-13.673137	-9.188888	-25.142330
Y	39	-105.403090	-1.894358	-105.047865	-4.873571	-14.046393	-9.608255	-25.764607
Zr	40	-109.870125	-1.952591	-109.502725	-4.992900	-14.347698	-9.895157	-26.326795
Nb	41	-114.649896	-2.017855	-114.265660	-5.335744	-15.067897	-10.523504	-27.271697
Mo	42	-119.282940	-2.080898	-118.876234	-5.483334	-15.659810	-10.902506	-28.073730
Tc	43	-123.968977	-2.164673	-123.489837	-5.526799	-16.093086	-11.136412	-28.639520
Ru	44	-128.689374	-2.242795	-128.199153	-5.576085	-16.600217	-11.440153	-29.411163
Rh	45	-133.498169	-2.321101	-132.994515	-5.633105	-17.168982	-11.764193	-30.262761
Pd	46	-138.722233	-2.437425	-138.188909	-5.831617	-18.165460	-12.380110	-31.521903
Ag	47	-143.487087	-2.478719	-142.937266	-5.760817	-18.450767	-12.404366	-32.132545
Cd	48	-148.291262	-2.534621	-147.736391	-5.724876	-18.693693	-12.464521	-32.723274
In	49	-153.537200	-2.591350	-152.867883	-5.702075	-18.801676	-12.479982	-33.175790
Sn	50	-158.481762	-2.647311	-157.784707	-5.772678	-18.973613	-12.609789	-33.726394
Sb	51	-163.544189	-2.704763	-162.809178	-5.924264	-19.139833	-12.786597	-34.279639
Te	52	-168.527218	-2.776688	-167.772355	-6.018061	-19.242497	-12.928051	-34.781580
I	53	-173.593578	-2.848652	-172.822321	-6.181012	-19.366005	-13.124463	-35.301695
Xe	54	-178.739781	-2.921147	-177.944498	-6.409838	-19.527341	-13.382036	-35.855231

SI-V. MGAE ATOMIZATION ENERGIES AND ERRORS

LH-HF

HCl	107.50	102.45	5.05
C4H8_cyc	1149.37	1193.36	-43.99
P2	117.59	92.35	25.24
SiH2_3B1	131.48	136.65	-5.17
N2	228.48	193.67	34.81
NH2NH2	438.60	435.89	2.71
C4H10_iso	1303.40	1343.04	-39.64
H2S	183.91	178.50	5.41
PH3	242.27	240.56	1.71
C4H6_tra	1012.73	1029.66	-16.93
C4H5N	1071.93	1106.45	-34.52
C3H4_pro	705.06	709.47	-4.41
C4H6_cyc	1001.97	1033.36	-31.39
CH2CH	446.09	452.57	-6.48
SiH3	228.01	230.40	-2.39
C2F4	591.06	609.26	-18.20
SH	87.00	86.27	0.73
CH3	307.88	315.64	-7.76
NH	83.10	80.24	2.86
CF4	477.93	501.85	-23.92
CH2C0	532.73	527.80	4.93
CCH	265.31	257.32	7.99
CH3SH	474.49	478.86	-4.37
C2H40	651.11	665.18	-14.07
C2H50	699.05	717.48	-18.43
CH3N02	601.82	590.30	11.52
S02	260.63	227.76	32.87
C5H8_spi	1284.73	1339.60	-54.87
C5H5N	1238.14	1268.13	-29.99
CH20H	410.08	417.23	-7.15
CH2_1A1	181.46	185.74	-4.28
HCOOCH3	785.90	795.56	-9.66
C4H9_t	1199.70	1242.00	-42.30

CC14	316.19	308.36	7.83
CH3COCH3	978.46	996.93	-18.47
CH3CH2OH	810.77	828.02	-17.25
C4H6_bic	987.56	1026.38	-38.82
ClF	62.79	46.52	16.27
C4H40	994.33	1022.57	-28.24
SiC14	388.73	376.61	12.12
SiH2 1A1	152.22	149.46	2.76
NO	152 75	127 03	25.70
NES	102.70 005 67	101 71	20.12
NF5	205.07	101.71	23.90
F2	39.03	5.00	33.37
CHCI3	345.79	343.20	2.59
CH3COOH	803.68	813.34	-9.66
HCOCOH	633.99	625.31	8.68
C4H4S	963.65	983.84	-20.19
C2H5	603.93	623.72	-19.79
CO	259.74	240.97	18.77
CH30CH3	798.46	818.17	-19.71
CH3NH2	582.31	590.45	-8.14
H20	232.98	223.47	9.51
C10	65.45	50.43	15.02
C3H6	853.68	883.74	-30.06
CH3CH0	677.44	683.18	-5.74
C4H8 iso	1158 97	1188 02	-29.05
CH30H	513 54	518 63	-5.09
CHOUN	171 70	144.46	-3.09
SC	1/1./6	144.46	27.30
SiH4	324.95	324.60	0.35
CH3C1	396.44	400.08	-3.64
C2C14	469.82	469.24	0.58
НСООН	501.53	498.10	3.43
A1F3	430.95	399.22	31.73
C3H4_all	703.47	708.67	-5.20
NH3	298.02	292.26	5.76
C2H4	563.69	569.12	-5.43
C2H50CH3	1095.62	1127.64	-32.02
C4H10_anti	1301.68	1342.11	-40.43
HOC1	166.24	149.60	16.64
Si2	76.38	68.56	7.82
Si2H6	535.89	536.66	-0.77
C3H4_cvc	683.01	697.99	-14.98
- J OH	107.22	101.99	5.23
NH2	182 59	177 62	4.97
CH3C0	581 00	584 21	-2.22
100	070 42	069 07	10.46
nco	219.43	200.97	10.40
CN	101.30	140.00	32.00
C3H8	1007.14	1036.04	-28.90
HCN	313.43	290.01	23.42
CH3CHCH2	860.88	878.47	-17.59
H202	269.03	246.80	22.23
H2	109.49	105.25	4.24
BF3	470.96	473.66	-2.70
CH	84.23	82.14	2.09
C1F3	127.31	87.92	39.39
CH3CN	616.02	607.03	8.99
C12	59.75	47.88	11.87
C2H6	712.98	730.06	-17.08
CH2_3B1	190.75	199.79	-9.04
C2H2	405.53	396.16	9.37
CH4	420.43	425.70	-5.27
CESCN	641 17	640 01	1,16
UDCO UDCO	37/ 67	367 /0	7 25
n2CU	001 00	020 75	1.20 -21.70
CH3CHCH3	901.02	932.15	-31./3
A1C13	312.64	295.27	17.37

SiF4	576.30	564.09	12.21
C02	390.16	373.01	17.15
S2	104.25	90.37	13.88
SiO	193.06	158.55	34.51
PF3	365 01	354 98	10.03
Celle	1269 10	1407.06	-20.06
Соно	1308.10	1407.00	-38.90
C4H6_yne	1004.49	1021.57	-17.08
02	120.83	101.05	19.78
BC13	325.45	322.63	2.82
HF	141.63	133.71	7.92
PH2	153.20	155.57	-2.37
CHF3	458.73	474.46	-15.73
SO	126.48	109.87	16.61
LH-PBE			
HCl	107.50	107.11	0.39
C4H8 cvc	1149.37	1151.79	-2.42
	117 50	117 56	0.03
0:10 201	121 40	124 56	0.00
51H2_3B1	131.40	134.50	-3.08
N2	228.48	229.11	-0.63
NH2NH2	438.60	436.14	2.46
C4H10_iso	1303.40	1302.25	1.15
H2S	183.91	182.56	1.35
PH3	242.27	239.20	3.07
C4H6_tra	1012.73	1019.91	-7.18
C4H5N	1071.93	1079.26	-7.33
C3H4_pro	705.06	710.78	-5.72
C4H6_cyc	1001.97	1006.65	-4.68
CH2CH	446.09	451.48	-5.39
SiH3	228_01	226 55	1 46
COEA	591 06	585 62	5 44
02F4	07.00	07.66	0.66
SH	07.00	07.00	-0.00
CHS	307.66	306.52	-0.64
NH	83.10	86.71	-3.61
CF4	477.93	461.23	16.70
CH2C0	532.73	541.32	-8.59
CCH	265.31	270.34	-5.03
CH3SH	474.49	476.60	-2.11
C2H40	651.11	651.33	-0.22
C2H50	699.05	701.18	-2.13
CH3N02	601.82	603.82	-2.00
S02	260.63	257.13	3.50
C5H8_spi	1284.73	1291.03	-6.30
C5H5N	1238.14	1252.57	-14.43
CH20H	410.08	409.15	0.93
CH2 141	181 46	184 08	-2 62
UC00CH3	795 00	702.00	2.02
CAUC +	1100.70	1004.00	2.00
C4H9_t	1199.70	1204.06	-4.36
CC14	316.19	327.24	-11.05
CH3COCH3	978.46	981.10	-2.64
CH3CH2OH	810.77	806.56	4.21
C4H6_bic	987.56	990.59	-3.03
ClF	62.79	63.64	-0.85
C4H40	994.33	999.51	-5.18
SiCl4	388.73	400.54	-11.81
SiH2_1A1	152.22	149.33	2.89
NO	152.75	155.56	-2.81
NF3	205.67	210.74	-5.07
F2	39.03	41.03	-2.00
CHC13	345.79	354.62	-8.83
СНЗСПОН	803.68	801.25	2.43
нсосон	633 99	636.53	-2.54
САНАЯ	963 65	978 50	-14 94
01145	603.00	606 70	-0 95
∪∠n5	000.93	000.10	2.00

CO	259.74	257.25	2.49
CH30CH3	798.46	793.09	5.37
CH3NH2	582.31	580.34	1.97
H20	232.98	228.10	4.88
C10	65.45	72.64	-7.19
C3H6	853.68	855.60	-1.92
CH3CH0	677.44	678.66	-1.22
C4H8 iso	1158.97	1162.29	-3.32
СНЗОН	513 54	508 68	4.86
SC	171 76	177 06	-5.30
Si H4	324 95	319 49	5 46
CH3CI	396 //	308 16	-1 72
C11301	460 00	100 00	_10 00
02014	409.02	400.00	-10.90
HCUUH	501.55	490.11	2.76
AIF3	430.95	432.48	-1.53
C3H4_a11	703.47	713.12	-9.65
NH3	298.02	296.15	1.87
C2H4	563.69	565.27	-1.58
C2H5OCH3	1095.62	1090.89	4.73
C4H10_anti	1301.68	1301.42	0.26
HOC1	166.24	166.20	0.04
Si2	76.38	81.68	-5.30
Si2H6	535.89	532.06	3.83
C3H4_cyc	683.01	686.75	-3.74
OH	107.22	106.68	0.54
NH2	182.59	184.67	-2.08
CH3CO	581.99	588.14	-6.15
HCO	279.43	282.39	-2.96
CN	181.36	187.87	-6.51
C3H8	1007.14	1006.81	0.33
HCN	313.43	316.11	-2.68
CH3CHCH2	860.88	863.91	-3.03
H202	269.03	265 91	3 12
11202	109.49	10/ 18	5 31
DE3	103.43	104.10	0.01
BF3	410.90	400.10	2.10
CH	84.23	83.96	0.27
CIF3	127.31	138.12	-10.81
CH3CN	616.02	622.48	-6.46
C12	59.75	64.55	-4.80
C2H6	712.98	712.14	0.84
CH2_3B1	190.75	193.67	-2.92
C2H2	405.53	407.86	-2.33
CH4	420.43	418.96	1.47
CF3CN	641.17	637.94	3.23
H2C0	374.67	373.39	1.28
CH3CHCH3	901.02	905.45	-4.43
A1C13	312.64	326.12	-13.48
SiF4	576.30	560.47	15.83
C02	390.16	394.03	-3.87
S2	104.25	113.91	-9.66
SiO	193.06	195.42	-2.36
PF3	365.01	353.39	11.62
C6H6	1368.10	1383.42	-15.32
C4H6_yne	1004.49	1012.31	-7.82
	120.83	125.76	-4.93
BC13	325.45	341.90	-16,45
10 10	141 63	137.88	3.75
יווי	153 00	153 51	-0.31
112 CUES	458 79	100.01 440 ne	9.67
001'3	106 /0	121 40	-5.00
	120.46	101.00	5.20
LO-FDE40	107 50	102.00	A 44
HUL	1140.07	100.39	4.11
C4H8 CVC	1149.37	1100.53	-11.16

P2	117.59	107.28	10.31
SiH2_3B1	131.48	131.36	0.12
N2	228.48	221.38	7.10
NH2NH2	438.60	441.21	-2.61
C4H10_iso	1303.40	1313.21	-9.81
H2S	183.91	178.51	5.40
PH3	242.27	237.07	5.20
C4H6_tra	1012.73	1022.10	-9.37
C4H5N	1071.93	1099.08	-27.15
C3H4_pro	705.06	709.20	-4.14
C4H6 cvc	1001.97	1017.69	-15.72
CH2CH	446.09	450.66	-4.57
SiH3	228.01	222.48	5.53
COEA	591 06	612 23	-21 17
921 F	87.00	86 32	0.68
CU2	207 00	200.52	-1 75
СПЗ	307.66	309.63	-1.75
NH	83.10	83.89	-0.79
CF4	477.93	495.64	-17.71
CH2C0	532.73	538.92	-6.19
CCH	265.31	265.08	0.23
CH3SH	474.49	472.92	1.57
C2H40	651.11	660.53	-9.42
C2H50	699.05	706.07	-7.02
CH3N02	601.82	611.51	-9.69
S02	260.63	249.99	10.64
C5H8_spi	1284.73	1313.57	-28.84
C5H5N	1238.14	1265.84	-27.70
CH20H	410.08	414.49	-4.41
CH2_1A1	181.46	183.88	-2.42
HCOOCH3	785.90	794.75	-8.85
C4H9_t	1199.70	1214.75	-15.05
CC14	316.19	314.30	1.89
СНЗСОСНЗ	978.46	988.02	-9.56
CH3CH2OH	810.77	815.26	-4.49
C4H6 bic	987.56	1009.03	-21.47
CIF	62 79	57 69	5 10
C4440	004 22	1017 14	-00.01
8:014	200 72	270 49	10 05
01014	150.00	146 20	10.20
S1H2_IAI	152.22	146.39	5.83
NU	152.75	151.20	1.47
NF3	205.67	210.92	-5.25
F2	39.03	29.44	9.59
CHC13	345.79	345.09	0.70
CH3COOH	803.68	812.02	-8.34
HCOCOH	633.99	639.02	-5.03
C4H4S	963.65	979.95	-16.30
C2H5	603.93	610.85	-6.92
CO	259.74	254.50	5.24
CH30CH3	798.46	804.73	-6.27
CH3NH2	582.31	584.92	-2.61
H20	232.98	226.53	6.45
C10	65.45	63.08	2.37
C3H6	853.68	866.80	-13.12
CH3CH0	677.44	682.08	-4.64
C4H8_iso	1158.97	1169.16	-10.19
СНЗОН	513.54	513.53	0.01
SC		161.66	10.10
	171.76		
SiH4	171.76 324.95	313.71	11.24
SiH4 CH3C1	171.76 324.95 396.44	313.71 395.19	11.24 1.25
SiH4 CH3Cl C2Cl4	171.76 324.95 396.44 469.82	313.71 395.19 477.37	11.24 1.25 -7.55
SiH4 CH3C1 C2C14 HCODH	171.76 324.95 396.44 469.82 501.53	313.71 395.19 477.37 505.18	11.24 1.25 -7.55 -3.65
SiH4 CH3C1 C2C14 HCOOH	171.76 324.95 396.44 469.82 501.53 430.95	313.71 395.19 477.37 505.18 401 22	11.24 1.25 -7.55 -3.65 29.73

NH3	298.02	294.87	3.15
C2H4	563.69	565.27	-1.58
C2H5OCH3	1095.62	1106.46	-10.84
C4H10_anti	1301.68	1312.39	-10.71
HOC1	166.24	160.13	6.11
Si2	76.38	72.58	3.80
Si2H6	535.89	518.68	17.21
C3H4_cyc	683.01	693.91	-10.90
OH	107.22	104.90	2.32
NH2	182.59	181.88	0.71
CH3CO	581.99	588.33	-6.34
HCO	279.43	280.41	-0.98
CN	181.36	171.84	9.52
C3H8	1007.14	1013.96	-6.82
HCN	313.43	308.09	5.34
CH3CHCH2	860.88	867.23	-6.35
H202	269.03	262.17	6.86
H2	109.49	104.65	4.84
BF3	470.96	469.03	1.93
CH	84.23	82.71	1.52
C1F3	127.31	120.93	6.38
CH3CN	616.02	617.34	-1.32
C12	59.75	55.15	4.60
C2H6	712.98	715.55	-2.57
CH2_3B1	190.75	194.65	-3.90
C2H2	405.53	403.32	2.21
CH4	420.43	418.67	1.76
CF3CN	641.17	654.82	-13.65
H2CO	374.67	373.75	0.92
CH3CHCH3	901.02	912.79	-11.77
AlC13	312.64	292.04	20.60
SiF4	576.30	554.71	21.59
C02	390.16	392.40	-2.24
S2	104.25	101.60	2.65
SiO	193.06	174.67	18.39
PF3	365.01	356.18	8.83
C6H6	1368.10	1395.24	-27.14
C4H6_yne	1004.49	1013.80	-9.31
02	120.83	123.58	-2.75
BC13	325.45	321.74	3.71
HF	141.63	136.27	5.36
PH2	153.20	153.37	-0.17
CHF3	458.73	469.98	-11.25
SO	126.48	123.84	2.64

SI-VI. HTBH REACTION BARRIERS AND ERRORS

TS7	1.70	3.65
TS2	4.90	9.94
TS11	3.10	4.11
TS19	38.40	47.02
TS9	1.42	6.23
TS12	10.50	14.88
TS13	16.76	18.60
TS12	12.87	17.91
TS15	8.00	14.16
TS2	21.20	26.26
TS8	3.20	11.91
TS14	9.57	19.49
TS18	14.50	19.67

TS13	3.50	5.19
TS5	9.60	8.25
TS4	6.50	36.90
TS10	7.90	48.53
TS16	7.50	15.64
TS3	15.30	16.73
TS16	18.30	24.80
TS17	10.40	17 47
790	33 40	3/ 07
155	22.40	27.00
1313	22.40	27.00
154	19.60	48.32
1519	38.40	47.02
TS11	23.20	24.64
TS10	13.47	56.46
TS6	12.70	23.71
TS3	12.10	11.82
TS14	9.36	19.22
TS7	7.06	11.32
TS18	17.80	24.02
TS1	5.70	5.70
TS1	7.86	8.45
TS17	17.40	25.50
TS6	3.00	16.65
TS5	9.60	8.25
TS8	19.90	27.01
# Method LH-PBE	HTBH e	rrors
TS7	1 70	-6 34
157	1.70	-4 60
152	4.90	-4.09
1511	3.10	-0.52
TS19	38.40	32.99
TS9	1.42	-11.37
TS12	10.50	3.65
TS13	16.76	9.18
TS12	12.87	1.05
TS15	8.00	0.12
TS2	21.20	12.86
TS8	3.20	-7.28
TS14	9.57	-6.82
TS18	14.50	5.88
TS13	3.50	-0.07
TS5	9.60	5.41
TS4	6.50	-3.66
TS10	7.90	-1.45
TS16	7.50	2.03
TS3	15.30	10.70
TS16	18.30	9.77
TS17	10.40	2.86
TS9	33.40	22.72
TS15	22 40	12 85
TS4	19.60	7.47
TC10	38 /0	32 99
1010	23 20	17 00
1011	13 47	0 27
1510	10 70	2.31
TS6	12.70	0.35
TS3	12.10	4.29
TS14	9.36	-7.52
TS7	7.06	-3.24
TS18	17.80	6.92
TS1	5.70	1.06
TS1	7 00	
TG17	1.00	-2.25
1517	17.40	-2.25 8.88
TS6	7.86 17.40 3.00	-2.25 8.88 -9.75

TS8	19.90	8.84
LH-PBE45		
TS7	1.70	-0.36
TS2	4.90	3.37
TS11	3.10	1.23
TS19	38.40	38.05
TS9	1.42	-0.53
TS12	10.50	9.50
TS13	16.76	14.84
TS12	12.87	9.04
TS15	8.00	8.29
TS2	21.20	20.56
TS8	3.20	3.27
TS14	9.57	7.61
TS18	14.50	12.79
TS13	3.50	2.15
TS5	9.60	5.91
TS4	6.50	5.84
TS10	7.90	7.55
TS16	7.50	10.08
TS3	15.30	13.03
TS16	18.30	17.04
TS17	10.40	10.40
TS9	33.40	31.42
TS15	22.40	19.53
TS4	19.60	18.46
TS19	38.40	38.05
TS11	23.20	22.28
TS10	13.47	11.66
TS6	12.70	12.34
TS3	12.10	8.46
TS14	9.36	9.15
TS7	7.06	5.30
TS18	17.80	16.60
TS1	5.70	3.36
TS1	7.86	4.45
TS17	17.40	18.49
TS6	3.00	3.53
TS5	9.60	5.91
TS8	19.90	20.17

SI-VII. TOTAL ATOMIC ENERGIES AND ERRORS

Results are tablulated as reference and computed values in kcal/mol per electron.

LHup-HF

S -15613.6129403 -15613.7205949 Mg -10461.2631670 -10464.5775555 F -6953.7744136 -6956.6515912 N -4893.6059425 -4895.2050654 Ne -8090.9568907 -8093.8695206 C -3958.0161712 -3957.6669873 Li -1564.1845639 -1561.9705920 Be -2300.9769350 -2298.9047106 Cl -16985.1318474 -16985.3643434 He -911.1437940 -902.0171935 0 -5888.1804862 -5890.4494377 Al -11698.0320990 -11700.2808482 Ar -18390.9089794 -18391.7257540 Si -12969.6801007 -12970.8475133 P -14276.2176307 -14276.4503806

В	-3094.1125474	-3092.5660192
Н	-313.7547500	-313.3656497
Na	-9256.0275381	-9260.4812122
LHup-PBE		
S	-15613.6129403	-15609.3222458
Mg	-10461.2631670	-10455.8103355
F	-6953.7744136	-6951.0304185
N	-4893.6059425	-4892.1273205
Ne	-8090.9568907	-8086.8914457
C	-3958.0161712	-3956.7558598
Li	-1564.1845639	-1566.6969383
Be	-2300.9769350	-2297.9502563
Cl	-16985.1318474	-16980.6909118
He	-911.1437940	-919.9783460
0	-5888.1804862	-5886.4002937
Al	-11698.0320990	-11692.9151314
Ar	-18390.9089794	-18386.2955190
Si	-12969.6801007	-12965.0341597
Р	-14276.2176307	-14271.8805968
В	-3094.1125474	-3092.0967353
Н	-313.7547500	-321.5692061
Na	-9256.0275381	-9250.8835203
LHup-PBE45		
S	-15613.6129403	-15608.0787837
Mg	-10461.2631670	-10457.8102399
F	-6953.7744136	-6948.8610777
N	-4893.6059425	-4888.1048857
Ne	-8090.9568907	-8085.8549957
C	-3958.0161712	-3952.1283330
Li	-1564.1845639	-1558.4486078
Be	-2300.9769350	-2294.8594257
Cl	-16985.1318474	-16979.3302221
He	-911.1437940	-899.7867087
0	-5888.1804862	-5883.0874077
Al	-11698.0320990	-11694.2945350
Ar	-18390.9089794	-18385.0680352
Si	-12969.6801007	-12965.3045140
Р	-14276.2176307	-14270.9992682
В	-3094.1125474	-3088.1096424
Н	-313.7547500	-309.9679636
Na	-9256.0275381	-9252.5184019

SI-VIII. IP21, EA12, PA5 RESULTS

# Method LH-HF	IP errors		
S	238.3	237.0	267.8
PH	234.1	234.7	245.0
Pd	192.2	183.6	234.9
Мо	163.7	146.3	149.4
Ru	169.9	151.4	153.9
Cu	178.2	157.0	157.5
S2	216.0	223.8	248.7
C	259.7	266.3	282.0
OH	298.9	290.7	362.4
SH	238.4	234.2	260.0
Cl	299.3	294.2	321.7
FeC	175.0	169.4	172.8
0	313.7	305.6	394.9
Si	188.1	189.2	195.2
02	278.9	294.8	365.3

	Р	242.8	240.0	248.0
	Cr	156.0	141.8	143.7
	PH2	226.3	227.0	240.6
	Rh	172.1	128.8	154.6
	C12	265 3	264 4	292 7
	75	216 6	102.2	196 0
	2.11	210.0	192.2	190.0
#	Method LH-HF	LA err	ors	
	CI	84.2	69.2	-64.7
	SH	53.8	39.9	-0.0
	S	47.9	37.8	-53.0
	PH	23.2	14.1	-42.4
	0	33.8	5.6	-107.1
	Si	32.3	28.3	16.8
	02	10.8	-13.2	-103.1
	Р	16.9	11.7	-45.5
	PH2	29.4	17.0	-39.9
	S2	38.5	30.8	-37.4
	С	29.2	20.2	0.7
	C12	55 6	44 5	3 1
	012	40.0	10.7	02.1
	UH	42.3	10.7	-83.1
#	Method LH-HF	PA err	ors	
	HC1	143.5		
	SiH4	157.2		
	H2	109.8		
	H20	183.1		
	NH3	225.1		
	H2S	180.7		
	PH3	202.4		
	C2H2	170.2		
#	Method LH-PB	E IP er	rors	
	S	238.3	246.6	173.0
	PH	234.1	245.6	157.1
	Pd	192.2	202 7	100.8
	ru M-	162.7	177 0	110.0
	MO	103.7	101.0	110.9
	Ru	169.9	184.4	118.0
	Cu	178.2	200.6	113.1
	S2	216.0	227.5	147.3
	C	259.7	271.9	153.3
	OH	298.9	312.1	200.8
	SH	238.4	246.8	166.5
	Cl	299.3	308.2	214.6
	FeC	175.0	192.5	124.6
	0	313.7	332.7	218.9
	Si	188.1	195.0	115.9
	02	278.9	293.2	167.3
	Р	242.8	251.4	160.1
	Cr	156.0	174.6	87.3
	PH2	226 3	239 0	153.3
	Rh	172 1	186 3	118 3
	лц (10	265 2	260.3	183.9
	7-	200.0	209.1	140.0
	Zn	210.0	221.0	140.0
#	methoa LH-PB	L LA er	rors	
	Cl	84.2	94.7	-8.1
	SH	53.8	61.3	14.8
	S	47.9	56.3	-0.9
	PH	23.2	28.2	10.2
	0	33.8	47.4	-41.1
	Si	32.3	39.1	103.8
	02	10.8	23.0	-40.9
	Р	16.9	22.8	3.2
	PH2	29.4	33.7	10.5
	S2	38.5	44.1	32.9
	с.	29.2	42.7	131.0
		20.2		101.0

C12	55.6	71.7	106.9
OH	42.3	52.3	-5.5
# Method LH-H	BE PA er	rors	
HCl	136.7		
SiH4	156.9		
H2	104.9		
H20	166.8		
NH3	208.1		
H2S	173.9		
PH3	191.3		
C2H2	157.7		
# Method LH-H	BEhyb IP	errors	
S	238.3	235.4	201.7
PH	234.1	231.6	183.4
Pd	192.2	190.7	150.6
Мо	163.7	157.5	122.9
Ru	169.9	163.5	126.3
Cu	178.2	172.3	130.5
S2	216.0	216.9	179.8
C	259.7	262.0	197.5
OH	298.9	293.1	256.4
SH	238.4	233.4	195.0
Cl	299.3	292.4	246.7
FeC	175.0	172.6	136.2
0	313.7	310.9	281.1
Si	188.1	186.1	142.0
02	278.9	283.4	242.9
Р	242.8	237.2	186.2
Cr	156.0	154.3	118.4
PH2	226.3	225.1	179.7
Rh	172.1	165.0	126.8
C12	265.3	255.8	218.8
Zn	216.6	204.5	160.6
# Method LH-H	BEhyb EA	errors	
Cl	84.2	73.1	-34.4
SH	53.8	44.0	-18.1
S	47.9	41.2	-25.1
PH	23.2	17.4	-16.2
0	33.8	18.2	-71.7
Si	32.3	29.1	59.7
02	10.8	-7.3	-72.2
Р	16.9	14.2	-19.3
PH2	29.4	20.8	-14.6
S2	38.5	30.1	-6.6
C	29.2	25.0	64.7
C12	55.6	49.4	53.5
OH	42.3	22.9	-42.9
# Method LH-H	BEhyb PA	errors	
HCl	140.8		
SiH4	156.6		
H2	107.6		
H20	176.6		
NH3	217.2		
H2S	176.5		
PH3	194.5		
C2H2	163.5		

SI-IX. MGBL BOND LENGTHS

⁼⁼ Method HFPBE MGBL20 bond lengths

System Reference Computed CH4 1.086 1.0716 N2 1.098 1.059 HCN-2 1.065 1.0514 NH3 1.012 0.9888 H2CO-1 1.203 1.166 CO2 1.160 1.1251 F2 1.412 1.2957 OH 0.970 0.9411 C2H2-1 1.203 1.1711 N20-1 1.128 1.0746 N2O-2 1.184 1.1477 CO 1.128 1.0948 H2 0.741 0.7311 H2O 0.957 0.9309 C2H2-2 1.063 1.0486 H2CO-2 1.102 1.0843 HF 0.917 0.8884 Cl2 1.988 1.9301 HCN-1 1.153 1.116 MgS 2.143 2.091 == Method LH-HF MGBL20 bond lengths System Reference Computed CH4 1.086 1.0613 N2 1.098 1.0439 HCN-2 1.065 1.0475 NH3 1.012 0.9745 H2CO-1 1.203 1.1404 CD2 1.160 1.1048 F2 1.412 1.2439 OH 0.970 0.9267 C2H2-1 1.203 1.1574 N2O-1 1.128 1.0599 N20-2 1.184 1.1173 CO 1.128 1.0762 H2 0.741 0.7411 H2O 0.957 0.916 C2H2-2 1.063 1.0444 H2CO-2 1.102 1.0766 HF 0.917 0.8741 C12 1.988 1.883 HCN-1 1.153 1.0994 MgS 2.143 2.0779 == Method LH-PBE MGBL20 bond lengths System Reference Computed CH4 1.086 1.0964 N2 1.098 1.1138 HCN-2 1.065 1.0735 NH3 1.012 1.0284 H2CO-1 1.203 1.2297 CO2 1.160 1.1862 F2 1.412 1.4583 OH 0.970 0.9917 C2H2-1 1.203 1.2118 N2O-1 1.128 1.1498 N2O-2 1.184 1.2158 CO 1.128 1.1513 H2 0.741 0.7374 H20 0.957 0.978 C2H2-2 1.063 1.0682 H2CO-2 1.102 1.115 HF 0.917 0.9397 Cl2 1.988 2.0401

HCN-1 1.153 1.1681 MgS 2.143 2.1501 == Method LH-PBEhyb MGBL20 bond lengths System Reference Computed CH4 1.086 1.0815 N2 1.098 1.0723 HCN-2 1.065 1.0637 NH3 1.012 0.9983 H2CO-1 1.203 1.1722 CO2 1.160 1.1359 F2 1.412 1.3167 OH 0.970 0.9547 C2H2-1 1.203 1.1839 N2D-1 1.128 1.0963 N2D-2 1.184 1.1488 CO 1.128 1.1043 H2 0.741 0.7505 H2O 0.957 0.9421 C2H2-2 1.063 1.0603 H2CO-2 1.102 1.1 HF 0.917 0.9012 Cl2 1.988 1.9441 HCN-1 1.153 1.1286 MgS 2.143 2.1279 == Method PBE0 MGBL20 bond lengths System Reference Computed CH4 1.086 1.0886 N2 1.098 1.0896 HCN-2 1.065 1.0681 NH3 1.012 1.0115 H2CO-1 1.203 1.1958 CO2 1.160 1.1566 F2 1.412 1.3742 OH 0.970 0.9706 C2H2-1 1.203 1.1964 N2O-1 1.128 1.1179 N20-2 1.184 1.1752 CO 1.128 1.1236 H2 0.741 0.7453 H20 0.957 0.9576 C2H2-2 1.063 1.0642 H2CO-2 1.102 1.1072 HF 0.917 0.9176 Cl2 1.988 1.9863 HCN-1 1.153 1.1454 MgS 2.143 2.1386 == Method PBE45 MGBL20 bond lengths System Reference Computed CH4 1.086 1.0836 N2 1.098 1.0802 HCN-2 1.065 1.063 NH3 1.012 1.0046 H2CO-1 1.203 1.1867 CO2 1.160 1.1468 F2 1.412 1.349 OH 0.970 0.9617 C2H2-1 1.203 1.1888 N2O-1 1.128 1.1044 N20-2 1.184 1.166 CO 1.128 1.1146 H2 0.741 0.7412 H2O 0.957 0.9495

C2H2-2 1.063 1.0596

H2CO-2 1.102 1.1002 HF 0.917 0.9088 Cl2 1.988 1.9686 HCN-1 1.153 1.1365 MgS 2.143 2.125 == Method PBE MGBL20 bond lengths System Reference Computed CH4 1.086 1.0955 N2 1.098 1.103 HCN-2 1.065 1.0752 NH3 1.012 1.0211 H2CO-1 1.203 1.2087 CO2 1.160 1.1712 F2 1.412 1.412 OH 0.970 0.9832 C2H2-1 1.203 1.207 N2D-1 1.128 1.1376 N2O-2 1.184 1.1897 CO 1.128 1.1367 H2 0.741 0.7507 H2D 0.957 0.969 C2H2-2 1.063 1.0705 H2CO-2 1.102 1.1172 HF 0.917 0.9299 Cl2 1.988 2.0126 HCN-1 1.153 1.1583 MgS 2.143 2.1569

SI-X. COMPUTED SINGLET FISSION CHROMOPHORE EXCITED STATES

Results are tablulated as reference and computed values.

Method LH-HF molecule 1: Singlet 1: 3.73 4.25 Singlet 2: 4.95 5.44 Triplet 1: 2.45 -1.70 Triplet 2: 4.87 3.64 Method LH-HF molecule 2: Singlet 1: 4.47 5.02 Singlet 2: 5.37 5.40 Triplet 1: 2.76 -1.72 Triplet 2: 5.17 3.48 Method LH-HF molecule 3: Singlet 1: 2.72 3.73
 Singlet 2:
 3.01
 3.80

 Triplet 1:
 2.06
 -1.98

 Triplet 2:
 2.72
 0.43
Method LH-HF molecule 4: Singlet 1: 2.86 3.73 Singlet 2: 3.38 4.21 Triplet 1: 2.04 -1.29 Triplet 2: 3.15 3.53 Method LH-HF molecule 5: Singlet 1: 3.25 3.96 Singlet 2: 3.43 4.27 Triplet 1: 2.30 -1.31 Triplet 2: 3.19 3.57

Method LH-HF	molecule	6:
Singlet 1:	1.85	2.79
Singlet 2:	2.93	3.80
Triplet 1:	1.38	-1.93
Triplet 2:	2.67	-0.44
•		
Method LH-HF	molecule	7:
Singlet 1:	2.22	3.27
Singlet 2:	2 93	3 75
Triplet 1:	1 68	=1 96
Triplet 1.	0.66	0.05
TTIPIEC 2.	2.00	-0.25
Mothod I H-HE	moloculo	g.
Method LH-HF	morecure	0.
Singlet 1:	2.13	2.90
Singlet 2:	2.98	3.80
Triplet 1:	1.59	-1.94
Triplet 2:	2.71	-0.45
Method LH-HF	molecule	9:
Singlet 1:	3.02	3.69
Singlet 2:	3.61	4.33
Triplet 1:	2.09	-1.62
Triplet 2:	3.36	3.54
Method LH-HF	molecule	10:
Singlet 1:	1.92	3.03
Singlet 2:	2.99	3.81
Triplet 1:	1.50	-1.82
Triplet 2:	2.73	0.25
Method LH-HF	molecule	11:
Singlet 1:	2.47	3.31
Singlet 2:	3.05	3.91
Triplet 1:	1.88	-1.74
- Triplet 2:	2.78	0.34
•		
Method LH-PBE	molecul	e 1:
Singlet 1:	3.73	3.37
Singlet 2:	4 95	4 25
Triplet 1:	2 45	1 97
Triplet 2:	4 87	1.07
TTIPIEC 2.	4.07	4.07
Mothod IH-DBE	molocul	o 2.
Singlot 1.	1 17	4 04
Singlet 0.	E 27	4.60
Trainlat 1:	0.76	4.09
Triplet 1:	2.70	2.39
Triplet 2:	5.17	4.43
N - I I I I DDD		
Method LH-PBE	molecul	e 3:
Singlet 1:	2.72	1.87
Singlet 2:	3.01	2.50
Triplet 1:	2.06	1.23
Triplet 2:	2.72	2.03
Method LH-PBE	molecul	e 4:
Singlet 1:	2.86	2.52
Singlet 2:	3.38	2.93
Triplet 1:	2.04	1.47
Triplet 2:	3.15	2.58
Method LH-PBE	molecul	e 5:
Singlet 1:	3.25	2.94
Singlet 2:	3.43	3.01

Triplet 1:	2.30	1.81
Triplet 2:	3.19	2.64
Method LH-PBE	molecul	e 6:
Singlet 1.	1 85	1 18
Singlet 1.	0.00	0.47
Singlet 2:	2.95	2.47
Triplet 1:	1.38	0.56
Triplet 2:	2.67	2.04
Method LH-PBE	molecul	.e 7:
Singlet 1:	2.22	1.45
Singlet 2:	2.93	2.40
Triplet 1:	1.68	0.83
Triplet 2:	2.66	1.96
Method LH-PBE	molecul	e 8:
Singlet 1.	2 13	1 31
Singlet 1.	2.15	0.50
Singlet 2:	2.90	2.52
Triplet 1:	1.59	0.69
Triplet 2:	2.71	2.08
Method LH-PBE	molecul	.e 9:
Singlet 1:	3.02	2.67
Singlet 2:	3.61	3.17
Triplet 1:	2.09	1.52
Triplet 2:	3.36	2.82
Method LH-PBE	molecul	.e 10:
Singlet 1:	1.92	1.25
Singlet 2.	2.99	2.48
Triplet 1:	1 50	0.76
Triplet 1.	0.70	0.10
Iripiet 2:	2.75	2.08
N		
Method LH-PBE	molecul	.e 11:
Singlet 1:	2.47	1.71
Singlet 2:	3.05	2.61
Triplet 1:	1.88	1.07
Triplet 2:	2.78	2.18
Method LH-PBE	hyb mole	cule 1:
Singlet 1:	3.73	3.70
Singlet 2:	4.95	4.95
Triplet 1:	2.45	1.45
Triplet 2:	4.87	4.70
Method LH-PBE	hyb mole	cule 2:
Singlet 1:	4.47	4.51
Singlet 2:	5.37	5.35
Triplet 1.	2 76	1.80
Triplet 1.	2.76	1.80
Triplet 2:	5 17	1 80
ilipice 2.	0.17	4.00
Mothod IH-DBF	hub mole	culo 3.
Singlet 1.	0 70	0.76
Singlet 1:	2.12	2.10
Singlet 2:	3.01	3.08
Triplet 1:	2.06	1.23
Triplet 2:	2.72	2.21
Method LH-PBE	hyb mole	cule 4:
Singlet 1:	2.86	3.00
Singlet 2:	3.38	3.59
Triplet 1:	2.04	1.22

Method LH-PB	Ehyb mol	ecule 5:
Singlet 1:	3.25	3.33
Singlet 2:	3.43	3.62
Triplet 1:	2.30	1.41
Triplet 2:	3.19	3.07
Method LH-PB	Ehyb mol	ecule 6:
Singlet 1:	1.85	1.86
Singlet 2:	2.93	3.09
Triplet 1:	1.38	0.31
Triplet 2:	2.67	2.24
Method LH-PB	Ehyb mol	ecule 7:
Singlet 1:	2.22	2.24
Singlet 2:	2.93	3.06
Triplet 1:	1.68	0.78
Triplet 2:	2.66	2.22
Method LH-PB	Ehyb mol	ecule 8:
Singlet 1:	2.13	2.02
Singlet 2:	2.98	3.11
Triplet 1:	1.59	0.52
Triplet 2:	2.71	2.22
Method LH-PB	Ehyb mol	ecule 9:
Singlet 1:	3.02	3.05
Singlet 2:	3.61	3.77
Triplet 1:	2.09	1.07
Iriplet 2:	3.30	3.20
Mathed IU-DD	Shurh mol	ogulo 10
Singlet 1.	1 92	2 05
Singlet 2:	2 99	3 12
Triplet 1:	1.50	0.86
Triplet 2:	2.73	2.25
1119100 21	2110	2120
Method LH-PR	Ehvb mol	ecule 11
Singlet 1:	2.47	2.34
Singlet 2:	3.05	3.20
Triplet 1:	1.88	1.01
Triplet 2:	2.78	2.29
1		