Supplemental Data

Fluorescent amphiphilic silica nano-powder for developing latent fingerprint

Scheme S1. Synthetic scheme for Pt-based luminophore.

Scheme S2. Synthetic scheme for six silica nanoparticles SiO₂-1/2/3/4/5/6.

Figure S1. ESI-MS of C-N-N- $C_{12}H_{25}$ ligand.

Figure S2. 400 MHz ¹H-NMR spectrum of C-N-N-C₁₂H₂₅ ligand in CDCl₃.

Figure S3. 100 MHz ¹³C-NMR spectrum of C-N-N-C₁₂H₂₅ ligand in CDCl₃.

*

Figure S4. ESI-MS of Pt complex.

Figure S5. 400 MHz ¹H-NMR spectrum of **Pt** complex in CDCl₃.

Figure S6: 100 MHz ¹³C-NMR spectrum of Pt complex in CDCl₃.

Figure S7. High-resolution optical microscopic images of six different silica nanopowders; SiO_2 -1 (a), SiO_2 -2 (b), SiO_2 -3 (c), SiO_2 -4 (d), SiO_2 -5 (e) and SiO_2 -6 (f). All red scale bar seen with each image is of 50 µm.

Figure S8. DSC profiles of SiO₂-1/2/3/4/5/6.

Figure S9. (a) Optical image of commercial black and grey powder, forensic brushes and adhesive tapes for lifting of developed fingerprints; (b) Black and white paper substrates used for preserving lifted fingerprints.

Figure S10. (a) Latent fingerprint (LFP) on white paper (notebook paper, porous substrate); (b) The LFP is powder dusted with **SiO₂-4** but invisible due to same color of white paper and silica powder; (c) The LFP is powder dusted with **SiO₂-6** and imaged with 365 nm UV light.

Figure S11. (a) Latent fingerprint (LFP) on black paper (painted with black color so non porous); (b) The LFP is powder dusted with SiO_2-4 ; (c) The LFP is powder dusted with SiO_2-6 and imaged with 365 nm UV light.

Figure S12. (a) Latent fingerprint (LFP) on metal surface (steel, nonporous); (b) The LFP is powder dusted with SiO_2 -4 but invisible due to similar color contrast of steel and silica powder; (c) The LFP is powder dusted with SiO_2 -6 and imaged with 365 nm UV light.

Figure S13. (a) Latent fingerprint (LFP) on wodden surface (semi-porous substrate); (b) The LFP is powder dusted with **SiO₂-4** invisible due to similar color contrast of wood and silica powder; (c) The LFP is powder dusted with **SiO₂-6** and imaged with 365 nm UV light.

Figure S14. (a) Developed fingerprint by commercial grey powder on glass; (b) same print after lifting with adhesive tape and pested on a black paper substrate, both images were taken under day light. (c) Developed fingerprint by commercial black powder; (d) same print after lifting with adhesive tape and pested on a white paper substrate, both images were taken under day light. (e) Developed fingerprint by SiO₂-4 powder; (f) same print after lifting with adhesive tape and pested on a black paper substrate, both images were taken under day light. (g) Developed fingerprint by SiO₂-6 powder; (h) same print after lifting with adhesive tape and pested on a black paper substrate, both images were taken under day light. (g) Developed fingerprint by SiO₂-6 powder; (h) same print after lifting with adhesive tape and pested on a black paper substrate, both images were taken under 365 nm UV light.

Figure S15. (a) Developed fingerprint by amphiphilic silica (**SiO**₂-**4**) (a-d) and commercial grey powder (e-h) on glass substrate as a deplition series basis.