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Anti-β-amyloid Aggregation Activity of Enantiomeric 

Furolactone-type Lignans from Archidendron clypearia (Jack) I.C.N.  

Abstract  

The phytochemical investigation on the twigs and leaves of Archidendron clypearia (Jack) 

I.C.N. led to the isolation of three pairs of furolactone-type lignans enantiomers, including a 

pair of new compounds (1R,5S,6S)-Kachiranol (1a) and (1S,5R,6R)-Kachiranol (1b) and four 

known compounds (2a/2b and 3a/3b). Separation of the furolactone-type lignans 

enantiomeric mixtures was achieved using chiral HPLC for the first time. Their structures 

were determined by spectroscopic analysis and comparison between the experimental and 

calculated electronic circular dichroism (ECD) spectra. All optical pure compounds were 

evaluated for their inhibitory effects on β-amyloid aggregation by ThT assay. Among them, 

the inhibitory activity of the compound 1b (71.1 %) was higher than the positive control 

(61.0 %) and other compounds. In addition, molecular dynamics and molecular docking were 

employed to explore the binding relationship between the ligand and the receptor. 
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Aβ fibrils are also important substrates in β-amyloid aggregation inhibitory 

activity assay. Therefore, we take this type of Aβ42 for the docking study as a 

complement. The 3D docking pose was showed in Fig. R2. The 2D view of ligand 

interaction diagram between Aβ fibrils and the molecules were similar to the single 

Aβ poly-peptide used in our previous study (Fig. R3). In compounds 1a/1b, the C-3′ 

hydroxyl groups were responsible for the main increase observed in potency. These 

interactions will decrease when the hydroxyl groups located in C-4′ (2a/2b) or 

substituted by methoxy groups (3a/3b). The results were also matched well with 

ThT-based fluorometric assay. 
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