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1 Experimental details
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Figure S1: Relative intensities of selected mass peak for methyl methacrylate/Ar gas mixture at different
energies of ionizing electrons (12.3-15.4 V).



Table S1: Relative intensities of selected mass peaks, which have relevance to this work, for methyl methacry-
late/Ar gas mixture at different energies of ionizing electrons (12.3-15.4 e¢V). Mass peaks, which are not

tabulated, had not been measured.

| m/z | 12.3 eV | 13.2 eV | 14.35 eV | 15.4 eV |
2 0 0 0 0
18 0 0 0 0
26 0 0 0 0
28 0 0 0 0
30 0 0 0 0
32 0 0 0 0
39 0 7.30507163289619E-05 | 0.000364925 | 0.0034551315
40 0 0.0014144443 0.007188215 | 0.1856791298
41 0.0019730076 0.0153648307 0.165054815 | 0.5628966322
42 0.000081347 0.0030325767 0.011396899 | 0.0351760639
44 0 0 0 0
53 0 0 0.0002260622 | 0.000692059
54 | 0.0037784337 0.0084328275 0.0228618033 | 0.0405711064
95 0.009300896 0.0221043912 0.0769441053 | 0.1611435042
56 | 0.0082763979 0.0168272808 0.0528640086 | 0.112402074
58 | 0.0037472863 0.0075499673 0.0267302065 | 0.0480398657
68 | 0.0004069782 0.0016399752 0.0068468141 | 0.0157129503
69 | 0.0185327292 0.0699527485 0.3763249153 1
70 | 0.0012732212 0.0040268618 0.0198882413 | 0.0490343097
86 | 0.0001795493 0.0002713766 0.0015626282 | 0.0034829807
100 | 0.0201775732 0.0408334938 0.1336613796 | 0.2709813892

Table S2: Variation of burning velocities of MMA for various unburnt temperatures and equivalence ratio

at 1 atm. The uncertainty of all burning velocities in the tabulated experimental data is =1 cm/s.

Burning velocities in cm/s
b T (K) 298 318 338 358
0.7 21.04 24.37 27.63 31.77
0.8 29.25 32.81 36.88 41.63
0.9 35.48 39.55 44.07 49.40
1.0 39.63 44.07 48.81 54.11
1.1 41.33 45.77 50.74 55.82
1.2 40.14 44.59 49.33 54.52
1.3 36.6 40.22 45.03 49.93




2 Comparison of detailed and reduced model
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Figure S2: Ignition delays in a constant volume reactor at P = 1,20 atm; lines - detailed mechanism (solid:
1 atm, dashed: 20 atm), symbols - skeletal mechanism.



Species Mass Fraction Species Mass Fraction Species Mass Fraction Species Mass Fraction

Species Mass Fraction

0.12

0.1

0.08

0.06

0.04

0.02

0 05 1 15 2 25 3 35
Time (ms)

(a) CO

0.07 T T T T T T T
0.06
0.05
0.04
0.03
0.02

0.01

0.0045

0.004
0.0035
0.003
0.0025
0.002
0.0015
0.001
0.0005

Time (ms)

(e) CH4

0.006

0.005

0.004

0.003

0.002

0.001

0 0.5:'1 156 2 25 3 35
Time (ms)

(g) CoHy

0.12

0.1

0.08

0.06

0.04

0.02

0 .

0 05 1 156 2 25 3 35
Time (ms)

(i) Methylmethacrylate

Species Mass Fraction Species Mass Fraction Species Mass Fraction Species Mass Fraction

Species Mass Fraction

0.18

0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

05 1 156 2 25 3 35
Time (ms)

(b) CO2

0.25

0.2

0.15

0.1

0.05

0.006

0.005

0.004

0.003

0.002

0.001

0.004
0.0035
0.003
0.0025
0.002
0.0015
0.001
0.0005

0.0025

0.002

0.0015

0.001

0.0005

05 1 15 2 25 3 35
Time (ms)

(f) C2H2

Time (ms)

(h) C2Hsg

05 1 156 2 25 3 35
Time (ms)

(j) C3Hs

Figure S3: Species profiles in a flow reactor at ¢ = 1.0, P = 1 atm, initial temperature 7" = 1100 K, lines -
detailed mechanism, symbols - skeletal mechanism.
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Figure S4: Laminar burning velocities of MMA at an unburnt temperature 7, = 298 K; lines - detailed
mechanism , symbols - skeletal mechanism (at 1 atm pressure)
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Figure S5: Laminar burning velocities of methane and propene at an unburnt temperature 7, = 298 K;
lines - simulation, red(line)- Blanquart ; symbols - experiments (at 1 atm pressure), brown (symbol)-
Booschart [2], blue (symbol)- Joomas [3], black (symbol)- Saeed [4].



3 Main oxidation pathways of MMA

At high temperatures, MMA is consumed via H-abstraction by the attack of H, OH and O radicals at

the allylic, alkylic and vinylic sites, addition of O and OH radicals at C=C of MMA, and unimolecular
decomposition. The fuel radicals CHy = C(CHz) — C(= O) — O — CH; (radical at allyl site), CH =
C(CH3) — C(= O) — O — CH3 (radical at vinyl site) and CHy = C(CH3z) — C(= O) — O — CH2 (radical
at alkyl site), formed via the H-abstraction reactions further undergo S-scission to form allene, propyne,
I-C3H5CO and their corresponding products, respectively. The addition of O and OH radicals at an internal
carbon site (across C=C) produces CH3; — C(= O) — CHj and CH3 — C(= O) — CHj (acetone), respectively,
along with CH30CO. The species CH30CO is also produced via OH addition at terminal carbon through
the formation of intermediate radicals, MP2J and MP3J. Unimolecular decomposition of MMA also yields

CH30CO radicals via breaking of C-C(=0) bond, while produces I-C3H5CO and methoxy (CH30) radicals
via scission of C(=0)-OCHj bond.

The radical, CH30CO, formed from the aforementioned pathways decomposes via two routes to give
(i) methoxy radical and carbon monoxide and (ii) methyl radical and carbon dioxide.
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Figure S6:

Schematic layout of the main pathways in the derived skeletal model for methylmethacrylate
oxidation.



4 Comparison of short MMA model with the detailed model for
sub-atmospheric pressure flat flames
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Figure S7: Comparison of short MMA model with the detailed model for major species profiles of Laminar
flat flame at sub-atmospheric condition ; symbols-experiment, lines-simulation.

The experimental major species profiles are not predicted within the experimental uncertainty range
by the short MMA model or the original detailed model, while the corresponding simulations for the
atmospheric-pressure flame show a good agreement (Fig. 4 in the main article). Flux analysis performed in
the low pressure flame case suggests that the reactions producing/consuming the major species are similar
to those of the atmospheric flames, and there are no pressure-dependent reactions in this list, whose pres-
sure dependence is not accounted for. Nonetheless, since the present work focuses on flames at atmospheric
pressures for fire research applications, resolving this discrepancy is reserved for a future study when the
application demands the validity of the model at lower pressures.
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Figure S8: Comparison of of short MMA model with the detailed model for C;, Cy and Cg species profiles
of laminar flat flame at sub-atmospheric condition; s¥hbols-experiment, lines-simulation.



5 Comparison of short MMA model with the detailed model for
atmospheric pressure flat flames
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Figure S9: Comparison of short MMA model with the detailed model for major species profiles of laminar
flat flame at atmospheric condition ; symbols-experiment, lines-simulation.
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Figure S10: Comparison of of short MMA model with the detailed model for C; and Cs species profiles of
laminar flat flame at atmospheric condition; symbols-experiment, lines-simulation.
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Figure S11: Comparison of short MMA model with the detailed model for C3, and C4 species profiles of
laminar flat flame and burning velocities of MMA at atmospheric condition; symbols-experiment, lines-

simulation.
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