SUPPLEMENTARY MATERIAL

Design, synthesis and cholinesterase inhibitory activity of α -mangostin derivatives

Xiao-Qian Chi^{*a,b*}, Bo Hou^{*a,b*}, Liu Yang^{*a*}, Cheng-Ting Zi^{*c*}, Yong-Feng Lv^{*a,b*}, Jin-Yu Li^{*a,b*}, Fu-Cai Ren^{*a,b*}, Ming-Yan Yuan^{*a*}, Jiang-Miao Hu^{*a,**} and Jun Zhou^{*a*}

^a State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China

^b University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

^c College of Science, Yunnan Agricultural University, Kunming 650201, People's Republic of China

*Corresponding author. E-Mails: <u>hujiangmiao@mail.kib.ac.cn</u>

 α -mangostin, a polyphenol xanthone derivative, was mainly isolated from pericarps of the mangosteen fruit (*Garcinia mangostana* L.). In present investigation, a series of derivatives were designed, synthesised and evaluated *in vitro* for their inhibitory activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Among the synthesised xanthones, compounds **1**, **9**, **13** and **16** showed AChE selective inhibitory activity, **15** was a BuChE selective inhibitor while **2**, **3**, **5**, **6**, **7**, **12** and **14** were dual inhibitors. The most potent inhibitor of AChE was **16** while **5** was the most potent inhibitor of BuChE with IC₅₀ values of 5.26 μ M and 7.55 μ M respectively.

Key Words: *Garcinia mangostana*; α-Mangostin; Synthesis; Cholinesterase inhibitors; AChE; BuChE

	List of supplementary material	Pages
Experimenta	ı	1-9
Abbreviation	1	10
Figure 1S	¹ H NMR spectrum (CD ₃ OD, 500 MHz) of compound 2	11
Figure 2S	13 C NMR spectrum (CD ₃ OD, 125 MHz) of compound 2	11
Figure 3S	Negative ESI-MS spectrum of compound 2	12
Figure 4S	¹ H NMR spectrum (CD ₃ OD, 500 MHz) of compound 3	12
Figure 5S	13 C NMR spectrum (CD ₃ OD, 125 MHz) of compound 3	13
Figure 6S	HMBC spectrum (CD ₃ OD, 125 MHz) of compound 3	13
Figure 7S	HSQC spectrum (CD ₃ OD, 125 MHz) of compound 3	14
Figure 8S	Negative ESI-MS spectrum of compound 3	14
Figure 9S	¹ H NMR spectrum (CD ₃ OD, 500 MHz) of compound 4	15
Figure 10S	13 C NMR spectrum (CD ₃ OD, 125 MHz) of compound 4	15
Figure 11S	Negative ESI-MS spectrum of compound 4	16
Figure 12S	Negative HR-ESIMS spectrum of compound 4	17
Figure 13S	¹ H NMR spectrum (CD ₃ OD, 500 MHz) of compound 5	18
Figure 14S	13 C NMR spectrum (CD ₃ OD, 125 MHz) of compound 5	18
Figure 15S	Negative ESI-MS spectrum of compound 5	19
Figure 16S	Negative HR-ESIMS spectrum of compound 5	20
Figure 17S	¹ H NMR spectrum (CD ₃ OD, 500 MHz) of compound 6	21
Figure 18S	13 C NMR spectrum (CD ₃ OD, 125 MHz) of compound 6	21
Figure 19S	Negative ESI-MS spectrum of compound 6	22
Figure 20S	Negative HR-ESIMS spectrum of compound 6	23
Figure 21S	¹ H NMR spectrum (CD ₃ OD, 500 MHz) of compound 7	24
Figure 22S	13 C NMR spectrum (CD ₃ OD, 125 MHz) of compound 7	24
Figure 23S	Negative ESI-MS spectrum of compound 7	25
Figure 24S	Negative HR-ESIMS spectrum of compound 7	26
Figure 25S	¹ H NMR spectrum (CD ₃ OD, 500 MHz) of compound 8	27

Figure 26S	¹³ C NMR spectrum (CD ₃ OD, 125 MHz) of compound 8	27
Figure 27S	Negative ESI-MS spectrum of compound 8	28
Figure 28S	Negative HR-ESIMS spectrum of compound 8	29
Figure 29S	¹ H NMR spectrum (CD ₃ OD, 500 MHz) of compound 9	30
Figure 30S	13 C NMR spectrum (CD ₃ OD, 125 MHz) of compound 9	30
Figure 31S	Negative ESI-MS spectrum of compound 9	31
Figure 32S	Negative HR-ESIMS spectrum of compound 9	32
Figure 33S	¹ H NMR spectrum (DMSO- d_6 , 500 MHz) of compound 10	33
Figure 34S	¹³ C NMR spectrum (DMSO- d_6 , 125 MHz) of compound 10	33
Figure 35S	Positive ESI-MS spectrum of compound 10	34
Figure 36S	Positive HR-ESIMS spectrum of compound 10	34
Figure 37S	¹ H NMR spectrum (DMSO- d_6 , 500 MHz) of compound 11	35
Figure 38S	¹³ C NMR spectrum (DMSO- d_6 , 125 MHz) of compound 11	35
Figure 39S	Positive ESI-MS spectrum of compound 11	36
Figure 40S	Positive HR-ESIMS spectrum of compound 11	36
Figure 41S	¹ H NMR spectrum (CD ₃ OD, 500 MHz) of compound 15	37
Figure 42S	13 C NMR spectrum (CD ₃ OD, 125 MHz) of compound 15	37
Figure 43S	Negative ESI-MS spectrum of compound 15	38
Figure 44S	Negative HR-ESIMS spectrum of compound 15	39
Figure 45S	¹ H NMR spectrum (DMSO- d_6 , 500 MHz) of compound 16	40
Figure 46S	¹³ C NMR spectrum (DMSO- d_6 , 125 MHz) of compound 16	40
Figure 47S	Negative ESI-MS spectrum of compound 16	41
Figure 48S	Negative HR-ESIMS spectrum of compound 16	41
Figure 49S	¹ H NMR spectrum (DMSO- d_6 , 500 MHz) of compound 17	42
Figure 50S	¹³ C NMR spectrum (DMSO- d_6 , 125 MHz) of compound 17	42
Figure 51S	Negative ESI-MS spectrum of compound 17	43
Figure 52S	Negative HR-ESIMS spectrum of compound 17	44

Experimental

1. General procedure

All reagents were purchased from Sigma-Aldrich or Aladdin or Innochem and were of commercial quality. They were used as received without further purification. Solvents were dried by standard methods prior to use. The other reagents were of analytical grade. Air and moisture sensitive reactions were performed under nitrogen atmosphere.

All synthesised target compounds were purified by column chromatography (silica gel, petroleum ether/ethyl acetate, 1:1~20:1) and their structures were elucidated by ¹H NMR, ¹³C NMR, electrospray ionization mass spectrometry (ESI-MS) and high-resolution mass spectrometry (HR-ESIMS). Mass spectra were performed on an API QSTAR time-of-flight spectrometer (MDS Sciqaszex, Concord, Ontario, Canada) and LCMS-IT-TOF (Shimadzu, Kyoto, Japan) spectrometer. NMR spectra were recorded on Bruker AM-400 and DRX-500 instruments with TMS as the internal standard (Bruker, Bremerhaven, Germany). The chemical shifts were given in δ (ppm) with reference to the solvent signal. ¹H NMR data were reported in the order of chemical shift, multiplicity (s, singlet; d, doublet; t, triplet; m, multiple resonances), number of protons, and coupling constant (*J*) in hertz (Hz).

Column chromatography was performed on silica gel (200-300 and 300-400 mesh, Qingdao Marine Chemical Inc., Qingdao, China) with the indicated solvents. The fractions were monitored by TLC and the spots were visualized by UV light and sprayed with 10% H_2SO_4 in EtOH, followed by heating.

2. Synthesis

2.1 General procedure for synthesis of compound 2-4

A 1% (w/v) osmium tetroxide solution (100 μl) in t-BuOH was added to a mixture of α -mangostin (1) (41 mg, 0.1 mmol), NMO (17.6 mg, 0.15 mmol), acetone (1 mL) and water (1 mL), and the whole was stirred at room temperature for 24h. Sodium sulfite was added to the resulting mixture and stirring was continued for a further 30min. The mixture was diluted with water, extracted with ethyl acetate (3 × 20 mL). The combined organic layers were dried over sodium sulfate and concentrated *in vacuo* to give a yellow solid. The residue was purified on column chromatograph using petroleum ether/ethyl acetate (1: 1) to afford **2** (4.4 mg, 10%), **3** (5 mg, 12%) and **4** (37 mg, 78%).

1,3,6-trihydroxy-2-(2,3-dihydroxy-3-methylbutyl)-7-methoxy-8-(3-methyl-2-bute nyl)xanthone (2) Yield 10%, ¹H NMR (CD₃OD, 500 MHz) δ 6.70 (s, 1H, H-5), 6.27 (s, 1H, H-4), 5.21 (br t, 1H, J = 6.5 Hz, H-2″), 4.07 (d, 2H, J = 6.5 Hz, H-1″), 3.75 (s, 3H, 7-OC<u>H</u>₃), 3.61 (dd, 1H, J = 2.5, 10.0 Hz, H-2′), 3.04 (dd, 1H, J = 2.5, 14.0 Hz, H-1′), 2.68 (dd, 1H, J = 10.0, 14.0 Hz, H-1′), 1.82, 1.66 (each s, each 3H, H-4″, H-5″), 1.26 (s, 6H, H-4′, H-5′); ¹³C NMR (CD₃OD, 125 MHz) δ 183.2 (C-9), 164.4 (C-3), 162.1 (C-1), 158.1 (C-6), 156.8 (C-4a), 156.6 (C-10a), 144.9 (C-7), 138.5 (C-8), 131.9 (C-3′), 125.1 (C-2″), 112.2 (C-8a), 109.8 (C-2), 103.8 (C-9a), 102.8 (C-5), 93.9 (C-2′), 80.0 (C-4), 74.0 (C-3′), 61.3 (OCH₃), 27.1 (C-1′), 26.0 (C-1″), 25.8, 25.6, 25.2, 18.3; negative ESIMS m/z 443 [M – H]⁻.

1,3,6-trihydroxy-2-(3-methyl-2-butenyl)-7-methoxy-8-(2,3-dihydroxy-3-methylbu tyl)xanthone (3) Yield 12%, ¹H NMR (CD₃OD, 500 MHz) δ 6.77 (s, 1H, H-5), 6.28 (s, 1H, H-4), 5.22 (m, 1H, H-2'), 3.84 (s, 3H, 7-OC<u>H</u>₃), 3.66 (dd, 1H, *J* = 2.8, 10.2 Hz, H-2"), 3.54 (dd, 2H, *J* = 2.8, 12.3 Hz, H-1"), 3.33 (m, 2H, H-1'), 1.77, 1.65 (each s, each 3H, H-4", H-5"), 1.34, 1.33 (each s, each 3H, H-4', H-5'); ¹³C NMR (CD₃OD, 125 MHz) δ 184.0 (C-9), 164.2 (C-3), 161.5 (C-1), 158.3 (C-4a), 156.7 (C-10a), 156.4 (C-6), 145.9 (C-7), 136.5 (C-8), 131.8 (C-3'), 123.7 (C-2'), 112.9 (C-8a), 111.8 (C-2), 103.7 (C-9a), 103.2 (C-5), 93.3 (C-4), 80.7 (C-2"), 74.3 (C-3"), 60.9 (OCH₃), 29.6 (C-1"), 26.0, 25.8, 25.4, 22.2 (C-1'), 17.9; negative ESIMS *m*/*z* 443 [M – H]⁻.

1,3,6-trihydroxy-7-methoxy-2,8-bis(2,3-dihydroxy-3-methylbutyl)-9H-xanthen-9-

one (4) Yield 78%, ¹H NMR (CD₃OD, 500 MHz) δ 6.74 (s, 1H, H-5), 6.29 (s, 1H, H-4), 3.85 (s, 3H, 7-OC<u>H</u>₃), 3.65 (m, 1H, H-2"), 3.61 (m, 1H, H-2'), 3.56 (m, 2H, H-1"), 3.02 (dd, 1H, J = 2.4, 14.0 Hz, H-1'), 2.68 (dd, 1H, J = 10.2, 14.0 Hz, H-1'), 1.33, 1.32, 1.26, 1.25 (each s, each 3H, H-4', H-5', H-4", H-5"); ¹³C NMR (CD₃OD, 125 MHz) δ 183.9 (C-9), 164.9 (C-3), 161.9 (C-1), 158.3 (C-4a), 156.7 (C-10a), 156.7 (C-6), 145.9 (C-7), 136.5 (C-8), 112.8 (C-8a), 110.0 (C-2), 103.7 (C-9a), 103.3 (C-5), 94.0 (C-4), 80.6 (C-2"), 79.8 (C-2'), 74.3 (C-3"), 74.0 (C-3'), 61.0 (OCH₃), 29.6 (C-1"), 25.9, 25.8 (C-1'), 25.6, 25.4, 25.2; negative ESIMS *m*/*z* 477 [M - H]⁻; HRESIMS *m*/*z* 477.1766 [M - H]⁻ (calcd for C₂₄H₂₉O₁₀, 477.1766).

2.2 General procedure for synthesis of compound 5, 6 and 12

A solution of **1**, **2** or **3** (44 mg, 0.1 mmol) and 10% Pd/C (5 mg) in CH₃OH (2 mL) was placed under an atmosphere of hydrogen. After stirring for 24 h, the reaction mixture was filtered through filter paper and concentrated under reduced pressure. The crude product was purified on column chromatograph using petroleum ether/ethyl acetate (1: 1 ~ 2:1) to afford **12**, **5** or **6** respectively.

1,3,6-trihydroxy-2-(2,3-dihydroxy-3-methylbutyl)-7-methoxy-8-isopentyl-9*H***-xan then-9-one (5)** Yield 78%, ¹H NMR (CD₃OD, 500 MHz) δ 6.62 (s, 1H, H-5), 6.21 (s, 1H, H-4), 3.78 (s, 3H, 7-OC<u>H</u>₃), 3.60 (dd, 1H, *J* = 2.4, 10.1 Hz, H-2'), 3.26 (m, 2H, H-1"), 3.01 (dd, 1H, *J* = 2.4, 14.1 Hz, H-1'), 2.65 (dd, 1H, *J* = 10.1, 14.1 Hz, H-1'), 1.71 (m, 1H, H-3"), 1.41 (m, 2H, H-2"), 1.26 (s, 6H, H-4", H-5"), 1.00, 0.98 (each s, each 3H, H-4', H-5'); ¹³C NMR (CD₃OD, 125 MHz) δ 183.1 (C-9), 164.2 (C-1), 162.1 (C-3), 157.8 (C-4a), 156.7 (C-10a), 156.5 (C-6), 144.6 (C-7), 140.4 (C-8), 112.1 (C-8a), 109.6 (C-2), 103.8 (C-9a), 102.6 (C-5), 93.9 (C-4), 80.0 (C-2"), 74.0 (C-3"), 61.5 (OCH₃), 41.4 (C-2'), 30.1 (C-3'), 26.3 (C-1"), 25.8 (C-1'), 25.7, 25.1, 23.0; negative ESIMS *m*/*z* 445 [M - H]⁻; HRESIMS m/*z* 445.1870 [M - H]⁻ (calcd for C₂₄H₂₉O₈, 445.1868).

1,3,6-trihydroxy-2-isopentyl-7-methoxy-8-(2,3-dihydroxy-3-methylbutyl)-9H-xan then-9-one (6) Yield 78%, ¹H NMR (CD₃OD, 500 MHz) δ 6.66 (d, 1H, J = 1.8 Hz, H-5), 6.18 (d, 1H, J = 1.6 Hz, H-4), 3.84 (s, 3H, 7-OC<u>H</u>₃), 3.63 (dd, 1H, J = 2.7, 10.5 Hz, H-2"), 3.48 (m, 2H, H-1"), 2.56 (m, 2H, H-1'), 1.55 (m, 1H, H-3'), 1.37 (m, 2H, H-2'), 1.32 (s, 6H, H-4", H-5"), 0.95, 0.93 (each s, each 3H, H-4', H-5'); ¹³C NMR (CD₃OD, 125 MHz) δ 183.8 (C-9), 164.2 (C-1), 161.5 (C-3), 158.0 (C-4a), 156.6 (C-10a), 156.1 (C-6), 145.7 (C-7), 136.3 (C-8), 112.8 (C-8a), 112.8 (C-2), 103.6 (C-9a), 103.2 (C-5), 93.3 (C-4), 80.8 (C-2'), 74.3 (C-3'), 60.9 (OCH₃), 39.1 (C-2"), 29.6 (C-1'), 29.5 (C-3"), 25.9, 25.3, 23.1, 21.2 (C-1"); negative ESIMS *m*/*z* 445 [M – H]⁻; HRESIMS *m*/*z* 445.1867 [M – H]⁻ (calcd for C₂₄H₂₉O₈, 445.1868).

Tetrahydro-α-mangostin (12) Yield 95%, ¹H NMR (CD₃OD, 500 MHz) δ 6.60 (s, 1H, H-5), 6.17 (s, 1H, H-4), 3.77 (s, 3H, 7-OC<u>H₃</u>), 3.24 (m, 2H, H-1"), 2.57 (m, 2H, H-1'), 1.70 (m, 1H, J = 6.6, 13.1 Hz, H-3'), 1.56 (m, 1H, J = 6.6, 13.1 Hz, H-3"), 1.39 (m, 4H, H-2', H-2"), 0.99, 0.97, 0.95, 0.94 (each s, each 3H, H-4', H-5', H-4", H-5"); ¹³C NMR (CD₃OD, 125 MHz) δ 183.1 (C-9), 163.6 (C-1), 161.7 (C-3), 157.6 (C-4a), 156.7 (C-6), 156.0 (C-10a), 144.5 (C-7), 140.4 (C-8), 112.5 (C-8a), 112.2 (C-2), 103.7 (C-9a), 102.5 (C-5), 93.0 (C-4), 61.5 (7-OCH₃), 41.5 (C-2'), 39.1 (C-2"), 30.1 (C-3'), 29.5 (C-3"), 26.2 (C-1"), 23.1 (C-4', C-5'), 23.0 (C-4", C-5"), 21.2 (C-1'); negative ESIMS m/z 413 [M – H]⁻.

2.3 General procedure for synthesis of compound 7-9

A solution of **2**, **4** or **5** (0.1 mmol) in mixed reagent (2 mL, THF: $H_2O = 2$: 1) was added NaIO₄ (26 mg, 0.12 mmol) at cool temperature. After the addition was completed, the reaction solution was allowed to warm to room temperature. After stirring for 4 h, the reaction mixture was diluted with water, extracted with ethyl acetate (3 × 10 mL). The organic phase solvent was washed with brine, dried over anhydrous sodium sulfate, and then concentrated *in vacuo* to give a yellow solid. The crude product was purified on column chromatograph using petroleum ether/ethyl acetate (2:1 ~ 4:1) to afford **7**, **8** or **9**.

1,3,6-trihydroxy-7-methoxy-8-(3-methylbut-2-en-1-yl)-2*H***-furo**[**3,2-***b*]**xanthen-5(3** *H*)**-one (7)** Yield 60%, ¹H NMR (CD₃OD, 500 MHz) δ 6.64 (s, 1H, H-5), 6.21 (s, 1H, H-4), 5.19 (m, 1H, H-2"), 4.83 (t, 1H, *J* = 5.7 Hz, H-2'), 4.02 (t, 2H, *J* = 6.2 Hz, H-1"), 3.74 (s, 3H, 7-OC<u>H</u>₃), 2.91 (m, 2H, H-1'), 1.81, 1.66 (each s, each 3H, H-4", H-5"); ¹³C NMR (CD₃OD, 125 MHz) δ 183.1 (C-9), 164.2 (C-3), 162.4 (C-1), 158.0 (C-6), 156.7 (C-4, C-10a), 144.8 (C-7), 138.5 (C-8), 131.8 (C-3"), 125.1 (C-2"), 112.1 (C-8a), 107.0 (C-2), 103.7 (C-9a), 102.8 (C-5), 99.0 (C-2'), 93.5 (C-4), 61.3 (OCH₃), 30.9 (C-1'), 27.1 (C-1"), 26.0, 18.3; negative ESIMS m/z 383 [M - H]⁻; HRESIMS m/z 383.1134 [M - H]⁻ (calcd for C₂₁H₁₉O₇, 383.1136).

1,3,6-trihydroxy-7-methoxy-8-(2,3-dihydroxy-3-methylbutyl)-2H-furo[3,2-b]xant hen-5(3H)-one (8) Yield 50%, ¹H NMR (CD₃OD, 500 MHz) δ 6.67 (s, 1H, H-5), 6.21 (s, 1H, H-4), 4.83 (t, 1H, J = 5.7 Hz, H-2'), 3.84 (s, 3H, 7-OCH₃), 3.63 (m, 1H, H-2''), 3.48 (m, 2H, H-1''), 2.91 (dd, 2H, J = 5.7, 14.4 Hz, H-1'), 1.32, 1.31 (each s, each 3H, H-4'', H-5''); ¹³C NMR (CD₃OD, 125 MHz) δ 183.8 (C-9), 164.7 (C-3), 162.3 (C-1), 158.2 (C-6), 156.7 (C-4a), 156.6 (C-10a), 145.9 (C-7), 136.4 (C-8), 112.7 (C-8a), 107.3 (C-2), 103.6 (C-9a), 103.3 (C-5), 98.9 (C-2'), 93.7 (C-4), 80.6 (C-2''), 74.3 (C-3''), 60.9 (OCH₃), 30.9 (C-1'), 29.6 (C-1''), 25.9, 25.4; negative ESIMS *m/z* 417 [M – H]⁻; HRESIMS *m/z* 417.1187 [M – H]⁻ (calcd for C₂₁H₂₁O₉, 417.1191).

1,3,6-trihydroxy-7-methoxy-8-isopentyl-2*H*-furo[**3,2-***b*]**xanthone-5**(**3***H*)-one (**9**) Yield 60%, ¹H NMR (CD₃OD, 500 MHz) δ 6.65 (s, 1H, H-5), 6.23 (s, 1H, H-4), 4.84 (t, 1H, *J* = 5.7 Hz, H-2'), 3.79 (s, 3H, 7-OC<u>H</u>₃), 3.29 (m, 2H, H-1"), 2.94 (m, 2H, H-1"), 1.72 (m, 1H, H-3"), 1.42 (m, 2H, H-2"), 1.00, 0.99 (each s, each 3H, H-4", H-5"); ¹³C NMR (CD₃OD, 125 MHz) δ 183.1 (C-9), 164.2 (C-3), 162.5 (C-1), 157.9 (C-6), 156.7 (C-4a), 156.7 (C-10a), 144.7 (C-7), 140.4 (C-8), 112.1 (C-8a), 107.0 (C-2), 103.8 (C-9a), 102.6 (C-5), 99.0 (C-2'), 93.5 (C-4), 61.3 (OCH₃), 41.5 (C-2"), 30.9 (C-1'), 30.1 (C-3"), 26.2 (C-1"), 23.0; negative ESIMS *m*/*z* 385 [M - H]⁻; HRESIMS *m*/*z* 385.1295 [M - H]⁻ (calcd for C₂₁H₂₁O₇, 385.1293).

2.4 General procedure for synthesis of compound 10-11

A solution of **2** or **5** (0.1 mmol) and NaH (80 mg, 2 mM) in DMF (2 mL) was placed under an atmosphere of nitrogen, after stirring for 30 min, the reaction mixture was added CH₃I (0.2 mL, 3 mM). After stirring for 4 h, the reaction mixture was diluted with water, extracted with ethyl acetate (3×10 mL). The organic phase solvent was washed with brine, dried over anhydrous sodium sulfate, and then concentrated *in vacuo* to give a yellow solid. The crude product was purified on column chromatograph using petroleum ether/ethyl acetate (9: 1) to afford **10** or **11**. **2-(2,3-dimethoxy-3-methylbutyl)-1,3,6,7-tetramethoxy-8-(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (10)** Yield 60%, ¹H NMR (DMSO-*d*₆, 500 MHz) δ 6.98 (s, 1H, H-5), 6.82 (s, 1H, H-4), 5.15 (br t, 1H, *J* = 7.0 Hz, H-17), 3.99 (dd, 2H, *J* = 6.6, 15.6 Hz, H-16), 3.92, 3.77, 3.68 (each s, each 3H, 1-OCH₃, 3-OCH₃, 6-OCH₃, 7-OCH₃), 3.39 (dd, 1H, *J* = 3.0, 10.0 Hz, H-11), 3.15 (s, 3H, 12-OCH₃), 2.93 (s, 3H, 13-OCH₃), 2.85 (dd, 1H, *J* = 10.0, 13.4 Hz, H-12), 2.66 (dd, 1H, *J* = 3.0, 13.4 Hz, H-11), 1.76, 1.58, 1.15, 1.11 (each s, each 3H, C-14, C-15, C-19, C-20); ¹³C NMR (DMSO-*d*₆, 125 MHz) δ 175.2 (C-9), 162.5 (C-3), 158.5 (C-1), 157.0 (C-10a), 156.2 (C-4a), 153.7 (C-6), 143.6 (C-7), 135.6 (C-8), 130.3 (C-18), 123.9 (C-17), 118.4 (C-2), 113.7 (C-8a), 110.0 (C-9a), 98.5 (C-5), 94.5 (C-12), 84.6 (C-4), 77.2 (C-13), 61.3 (1-OCH₃), 60.4 (7-OCH₃), 60.1 (12-OCH₃), 56.3 (3-OCH₃, 6-OCH₃), 48.9 (13-OCH₃), 25.6, 25.3 (C-16), 23.8 (C-11), 22.1, 20.6, 18.0; positive ESIMS *m*/*z* 537 [M + Na]⁺; HRESIMS *m*/*z* 537.2472 [M + Na]⁺ (calcd for C₂₉H₃₈NaO₈, 537.2464).

2-(2,3-dimethoxy-3-methylbutyl)-8-isopentyl-1,3,6,7-tetramethoxy-9H-xanthen-9one (11) Yield 60%, ¹H NMR (DMSO-*d*₆, 500 MHz) δ 6.93 (s, 1H, H-5), 6.78 (s, 1H, H-4), 3.92, 3.91, 3.76, 3.70 (each s, each 3H, 1-OC<u>H</u>₃, 3-OC<u>H</u>₃, 6-OC<u>H</u>₃, 7-OC<u>H</u>₃), 3.37 (dd, 1H, *J* = 3.0, 10.0 Hz, H-12), 3.24 (m, 2H, H-16), 3.14, 2.92 (each s, each 3H, 12-OC<u>H</u>₃, 13-OC<u>H</u>₃), 2.84 (m, 1H, H-11), 2.64 (dd, 1H, *J* = 3.0, 13.0 Hz, H-11), 1.14, 1.10, 0.95, 0.94 (each s, each 3H, C-14, C-15, C-19, C-20); ¹³C NMR (DMSO-*d*₆, 125 MHz) δ 175.1 (C-9), 162.4 (C-3), 158.6 (C-1), 156.8 (C-4a), 156.2 (C-10a), 153.7 (C-6), 143.4 (C-7), 137.5 (C-8), 118.3 (C-2), 113.7 (C-8a), 110.0 (C-9a), 98.3 (C-12), 94.4 (C-5), 84.6 (C-13), 77.2 (C-4), 61.2, 60.6, 60.1, 56.3, 56.2 (1-OCH₃, 3-OCH₃, 6-OCH₃, 12-OCH₃, 13-OCH₃), 48.9 (C-17), 28.3 (C-18), 24.2 (C-16), 23.7 (C-11), 22.5, 22.5, 22.1, 20.6; positive ESIMS m/z 539 [M + Na]⁺; HRESIMS *m*/z 539.2625 [M + Na]⁺ (calcd for C₂₉H₄₀NaO₈, 539.2621).

2.5 General procedure for synthesis of compound 13-17

A solution of **1** or **12** (0.1 mmol) and NBS or NCS (40 mg, 0.22 mM) in DCM or THF (2 mL) was placed under an atmosphere of nitrogen. After stirring for 24 h, the reaction mixture was diluted with saturated sodium thiosulfate solution, extracted with dichloromethane (3×10 mL). The organic phase solvent was washed with brine,

dried over anhydrous sodium sulfate, and then concentrated *in vacuo* to give a yellow solid. The crude product was purified on column chromatograph using petroleum ether/ethyl acetate (9: 1) to afford **13-17**.

4-chloro-α-mangostin (**13**) Yield 30%, ¹H NMR (CD₃OD, 500 MHz) δ 6.77 (s, 1H, H-5), 5.21 (br t, 2H, H-2', H-2"), 4.05 (d, 2H, J = 6.5 Hz, H-1"), 3.76 (s, 3H, 7-OC<u>H</u>₃), 3.34 (m, 2H, H-1'), 1.82, 1.78, 1.66, 1.65 (each s, each 3H, H-4', H-5', H-4", H-5"); ¹³C NMR (CD₃OD, 125 MHz) δ 182.7 (C-9), 160.5 (C-1), 159.6 (C-3), 158.8 (C-10a), 156.5 (C-6), 151.2 (C-4a), 145.4 (C-7), 138.5 (C-8), 132.1, 131.9 (C-3', C-3"), 125.0, 123.5 (C-2', C-2"), 112.8 (C-8a), 111.6 (C-2), 103.8 (C-9a), 103.0 (C-5), 98.5 (C-4), 61.3 (7-OCH₃), 27.1 (C-1"), 26.0, 26.0 (C-4', C-4"), 22.9 (C-1'), 18.3, 18.0 (C-1', C-1"); negative ESIMS m/z 443 [M – H]⁻.

4-bromo-α-mangostin (14) Yield 12%, ¹H NMR (CDCl₃, 500 MHz) δ 13.69 (s, 1H, 1-OH), 6.97 (s, 1H, H-5), 5.25 (br t, 2H, H-2', H-2''), 4.08 (d, 2H, J = 6.5 Hz, H-1''), 3.82 (s, 3H, 7-OCH₃), 3.46 (m, 2H, H-1'), 1.83, 1.82, 1.71, 1.69 (each s, each 3H, H-4', H-5', H-4'', H-5''); ¹³C NMR (CDCl₃, 125 MHz) δ 181.8 (C-9), 160.0 (C-1), 156.8 (C-3), 155.5 (C-10a), 155.0 (C-6), 150.7 (C-4a), 143.0 (C-7), 137.2 (C-8), 133.4, 132.4 (C-3', C-3''), 122.9, 121.4 (C-2', C-2''), 111.9 (C-8a), 110.6 (C-2), 104.3 (C-9a), 101.9 (C-5), 86.4 (C-4), 62.1 (7-OCH₃), 26.6 (C-1''), 25.9, 25.8 (C-4', C-4''), 22.3 (C-1'), 18.3, 17.9 (C-1', C-1''); negative ESIMS m/z 488 [M – H]⁻.

4,5-dibromo-*a***-mangostin** (**15**) Yield 50%, ¹H NMR (CD₃OD, 500 MHz) δ 5.20 (br t, 2H, H-2', H-2''), 4.03 (d, 2H, J = 6.5 Hz, H-1''), 3.75 (s, 3H, 7-OC<u>H</u>₃), 3.36 (d, 2H, J = 7.0 Hz, H-1'), 1.82, 1.79, 1.66, 1.66 (each s, each 3H, H-4', H-5', H-4'', H-5''); ¹³C NMR (CD₃OD, 125 MHz) δ 182.6 (C-9), 160.4 (C-1), 160.1 (C-3), 156.1 (C-10a), 153.4 (C-6), 152.1 (C-4a), 145.2 (C-7), 137.3 (C-8), 132.5, 132.4 (C-3', C-3''), 124.5, 123.1 (C-2', C-2''), 113.2 (C-8a), 112.4 (C-2), 104.5 (C-9a), 97.6 (C-5), 87.8 (C-4), 62.0 (7-OCH₃), 27.1 (C-1''), 26.0, 26.0 (C-4', C-4''), 23.1 (C-1'), 18.4, 18.0 (C-1', C-1''); negative ESIMS *m*/*z* 567 [M – H][–]; HRESIMS *m*/*z* 564.9863 [M – H][–] (calcd for C₂₄H₂₃Br₂O₆, 564.9867).

4-bromo-tetrahydro-*α***-mangostin (16)** Yield 12%, ¹H NMR (DMSO- d_6 , 500 MHz) δ 13.86 (s, 1H, 1-OH), 6.79 (s, 1H, H-5), 3.74 (s, 3H, 7-OCH₃), 3.20 (m, 2H, H-1"), 2.61 (m, 2H, H-1'), 1.65 (dt, H, J = 6.5, 13.0 Hz, H-3''), 1.53 (dt, H, J = 6.5, 13.0 Hz, H-3'), 1.33 (dt, 4H, J = 16.5, 7.0 Hz, H-2', H-2''), 0.95, 0.93, 0.91, 0.89 (each s, each 3H, H-4', H-5', H-4'', H-5''); ¹³C NMR (DMSO- d_6 , 125 MHz) δ 181.2 (C-9), 159.0 (C-1), 158.5 (C-3), 157.2 (C-10a), 154.5 (C-6), 150.2 (C-4a), 143.6 (C-7), 138.5 (C-8), 112.4 (C-8a), 109.6 (C-2), 102.9 (C-9a), 101.6 (C-5), 86.7 (C-4), 60.4 (7-OCH₃), 39.0, 37.5 (C-2', C-2''), 28.3, 27.7 (C-3', C-3''), 24.6 (C-1''), 22.5, 22.4 (C-4', C-4'', C-5', C-5''), 20.6 (C-1'); negative ESIMS *m*/*z* 491 [M – H][–]; HRESIMS *m*/*z* 491.1072 [M – H][–] (calcd for C₂₄H₂₈BrO₆, 491.1069).

4,5-dibromo-tetrahydro-α-mangostin (**17**) Yield 60%, ¹H NMR (DMSO-*d*₆, 500 MHz) δ 13.54 (s, 1H, 1-OH), 3.70 (s, 3H, 7-OC<u>H</u>₃), 3.16 (m, 2H, H-1"), 2.59 (m, 2H, H-1"), 1.63 (dt, H, J = 6.5, 13.0 Hz, H-3"), 1.53 (dt, H, J = 6.5, 13.0 Hz, H-3'), 1.32 (m, 4H, H-2', H-2"), 0.93, 0.92, 0.90, 0.89 (each s, each 3H, H-4', H-5', H-4", H-5"); ¹³C NMR (DMSO-*d*₆, 125 MHz) δ 182.7 (C-9), 160.7 (C-1), 160.6 (C-3), 156.3 (C-10a), 153.4 (C-6), 152.0 (C-4a), 145.4 (C-7), 139.2 (C-8), 114.6 (C-8a), 112.3 (C-2), 104.6 (C-9a), 98.1 (C-5), 88.8 (C-4), 63.3 (7-OCH₃), 41.0, 39.3 (C-2', C-2"), 30.1, 29.5 (C-3', C-3"), 26.4 (C-1"), 24.3, 24.2 (C-4', C-4", C-5', C-5"), 22.4 (C-1'); negative ESIMS *m*/*z* 571 [M - H]⁻; HRESIMS *m*/*z* 569.0170 [M - H]⁻ (calcd for C₂₄H₂₇Br₂O₆, 569.0174).

3. Biological assays

Cholinesterase inhibitory activity of the compounds synthesized was assayed by the spectrophotometric method developed by Ellman et al with slightly modification (Ellman et al. 1961). S-Acetylthiocholineiodide, S-butyrylthiocholineiodide, 5,5'-dithio-bis-(2-nitrobenzoic) acid (DTNB, Ellman's reagent), acetylcholinesterase and butyrylcholinesterase derived from human erythrocytes were purchased from Sigma Chemical. Compounds were dissolved in DMSO. The reaction mixture (totally 200 μ L) containing phosphate buffer (pH 8.0), test compound (50 μ M), and acetylcholinesterase (0.02 U/mL) or butyrylcholinesterase (0.016 U/mL), was incubated for 20 min (37 °C). Then the reaction was initiated by the addition of 40µL of solution containing DTNB (0.625 mM) and acetylthiocholine iodide (0.625 mM) or butyrylthiocholine iodide (0.625 mM) for AChE or BuChE inhibitory activity assay, respectively. The hydrolysis of acetylthiocholine or butyrylthiocholine was monitored at 405 nm every 30 seconds for one hour. Tacrine was used as positive control with final concentration of 0.333 μ M. All these actions were performed in triplicate. The percentage inhibition was calculated as follows: % inhibition = $(E - S)/E \times 100$ (E is the activity of the enzyme without test compound and S is the activity of enzyme with test compound).

Reference

Ellman GL, Courtney KD, Andres V, Featherstone RM. 1961. A NEW AND RAPID COLORIMETRIC DETERMINATION OF ACETYLCHOLINESTERASE ACTIVITY. Biochem Pharmacol. 7(2):88-95.

Abbreviation

OsO4	Osmium tetroxide
NMO	4-Methylmorpholine N-oxide
NaIO ₄	Sodium periodate
CH ₃ I	Iodomethane
NaH	Sodium hydride
NBS	N-Bromosuccinimide
NCS	N-Chlorosuccinimide

Figure 2S. ¹³C NMR spectrum (CD₃OD, 125 MHz) of compound 2

Figure 3S. Negative ESI-MS spectrum of compound 2

Figure 4S. ¹H NMR spectrum (CD₃OD, 500 MHz) of compound 3

Figure 6S. HMBC spectrum (CD₃OD, 125 MHz) of compound 3

4.0

0

3.5 f2 (ppm)

3.0

2.5

Ø

-140

- 160

- 180 - 200 - 220

0.0

0.5

1.0

2.0

1.5

11 1 11

¢

ø

7.0

.**0** 0

6.5

6.0

5.5

5.0

4.5

Figure 7S. HSQC spectrum (CD₃OD, 125 MHz) of compound 3

Figure 8S. Negative ESI-MS spectrum of compound 3

Figure 9S. ¹H NMR spectrum (CD₃OD, 500 MHz) of compound 4

Figure 10S. ¹³C NMR spectrum (CD₃OD, 125 MHz) of compound 4

Figure 11S. Negative ESI-MS spectrum of compound 4

Figure 12S. Negative HR-ESIMS spectrum of compound 4

Figure 14S. ¹³C NMR spectrum (CD₃OD, 125 MHz) of compound 5

mple Name j Vol Ita Filename	ZQ-267 0.3 ZQ-267.d	Position InjPosition ACQ Method	P1-C3 SIBU-ESI-i.m	Instrument Name SampleType Comment	Instrument 1 Sample	User Name IRM Calibration Status Acquired Time	Success 6/27/2017 12:49:30
x10 5 -ESI	Scan (0.10-0.12	min, 2 Scans) Frage	170.0V ZQ-267.d S	lubtract			
5.6-							
5.4-							
5.2-							
5-			445				
4.8-							
4.6-							
4.4							
4.2-							
4-							
3.8							
36-							
3.4-							
3.2-							
3-							
2.8-							
2.6-						5	
2.4-							
2.2							
2					1		
1.8-							
1.6-		•					
1.4-							
1.2-							
1-				*			
0.8-							
0.6-							
0.4-							
0.2-				630	122 (215)		1000

Figure 15S. Negative ESI-MS spectrum of compound 5

Figure 16S. Negative HR-ESIMS spectrum of compound 5

Figure 18S. ¹³C NMR spectrum (CD₃OD, 125 MHz) of compound 6

imple Name ij Vol ata Filename	ZQ-270 0.3 ZQ-270.d	Position InjPosition ACQ Method	P1-C4 SIBU-ESI-I.m	Instrument Name SampleType Comment	Instrument 1 Sample	User Name IRM Calibration Status Acquired Time	Success 6/27/2017 12:50:43
x10 5 -LSI	Scan (0.10-0.12)	min, 2 Scans) Frag-	170.0V ZQ-270.d S	ubtract			
6.2							
6-							
5.8-							
5.6			445				
5.4-			100				
5.2-							
5-							
4.8							
4.6-							
4.4-							
4.2-					244		
4							
3.8-							
3.6-							
3.4-							
3.2-							
3-							
2.8-							
2.6							
2.4-							
2.2-							
2-							
1.8		•					
1.6-							
1.4-							
1.2-							
1-							
0.8-							
0.6-							
0.4-						891	
0.2-	19 175 22	2 002 040	000 400 467	E20	1222 1 2223		154 1005

Figure 19S. Negative ESI-MS spectrum of compound 6

Figure 20S. Negative HR-ESIMS spectrum of compound 6

Figure 21S. ¹H NMR spectrum (CD₃OD, 500 MHz) of compound 7

Figure 22S. ¹³C NMR spectrum (CD₃OD, 125 MHz) of compound 7

Figure 23S. Negative ESI-MS spectrum of compound 7

Figure 24S. Negative HR-ESIMS spectrum of compound 7

Figure 26S. ¹³C NMR spectrum (CD₃OD, 125 MHz) of compound 8

Figure 27S. Negative ESI-MS spectrum of compound 8

Figure 28S. Negative HR-ESIMS spectrum of compound 8

Figure 30S. ¹³C NMR spectrum (CD₃OD, 125 MHz) of compound 9

Figure 31S. Negative ESI-MS spectrum of compound 9

Figure 32S. Negative HR-ESIMS spectrum of compound 9

Figure 33S. ¹H NMR spectrum (DMSO-*d*₆, 500 MHz) of compound 10

Figure 34S. ¹³C NMR spectrum (DMSO-*d*₆, 125 MHz) of compound 10

Qualitative Analysis Report

Figure 36S. Positive HR-ESIMS spectrum of compound 10

Figure 37S. ¹H NMR spectrum (DMSO-*d*₆, 500 MHz) of compound 11

Figure 38S. ¹³C NMR spectrum (DMSO- d_6 , 125 MHz) of compound 11

Figure 39S. Positive ESI-MS spectrum of compound 11

Figure 40S. Positive HR-ESIMS spectrum of compound 11

Figure 41S. ¹H NMR spectrum (CD₃OD, 500 MHz) of compound 15

Figure 42S. ¹³C NMR spectrum (CD₃OD, 125 MHz) of compound 15

Figure 43S. Negative ESI-MS spectrum of compound 15

Figure 44S. Negative HR-ESIMS spectrum of compound 15

Figure 46S. ¹³C NMR spectrum (DMSO- d_6 , 125 MHz) of compound 16

Figure 48S. Negative HR-ESIMS spectrum of compound 16

Figure 49S. ¹H NMR spectrum (DMSO- d_6 , 500 MHz) of compound 17

Figure 50S. ¹³C NMR spectrum (DMSO- d_6 , 125 MHz) of compound 17

Sample Name	ZQ-369	Instrument Name	Agilent G6230 TOF MS	User Name	KIB	IRM Calibration Status	Suco
Data Filename	171110ESINA4.d	ACQ Method	ESIN.m	Acquired Time	11/10/2017 11:37:02 AM		
×10-4 - S	can (0.260 min)	171110ESINA4.d	Subtract			671	
9.5						571	
8.5-							
8-							
7.5-							
7-							
6.5-							
6-							
5.5-							
5-							
4.5-							
4 -							
3.5-							
3-							
25-							
2.5							
1.5-							
'1							
0.5-						L.	

Figure 51S. Negative ESI-MS spectrum of compound 17

Data Filena Sample Tyj Instrumen Acq Metho IRM Calibr Comment	ame pe t Name d ation S	e Status		171110ESINA4 Sample Agilent G6230 ESIN.m Success	.d TOF MS	Sample Name Position User Name Acquired Time DA Method	ZQ-369 KIB 11/10/2017 1 ESI.m	1:37:02 AM
Sample Gro	oup				Info.			
Acquisition	SW	1	5200 ser	ies TOF/6500 se	nies			
version			2-10F B	.05.01 (85125.2				
User Spe	ctra							
Fragme	200 200	ltage		Collision Energy 0	Ionia	ESI ESI		
×10 4 - S 3.5- 3-	Scan (O	.626 m	iin) 171	110ESINA4.d	569.01	70		
4.0								10.0
15								
1.5								
1.5								
1.5 1 0.5								
1.5 1- 0.5 0		56	9.01695	569.0 Cou	7 56 nts vs. Mass-	9.01705 56	59.0171	569.01715
1.5- 1- 0.5- 0		56	9.01695	5 569.0 Cou	17 56 nts vs. Mass-1	9.01705 56 to-Charge (m/z)	59.0171	569.01715
1.5 1.5 0.5 0 Peak List <i>m/z</i>	Z	56	9.01696 1 d	569.0 Cou	17 56 nts vs. Mass-	9.01705 56 to-Charge (m/z)	59.0171	569.01715
2- 1.5- 1- 0.5- 0 Peak List <i>m/z</i> 112.9856	Z	56 Abur 1100.	9.01695 1d	569.0 Cou	17 56 nts vs. Mass-	9.01705 56 to-Charge (m/z)	59.0171	569.01715
2- 1.5- 1- 0.5- 0 Peak List <i>m/z</i> 112.9856 268.9542	2	56 Abur 1100. 2169.	9.01695 nd 16 93	569.0 Cou	7 56 nts vs. Mass-	9.01705 to-Charge (m/2)	39.0171	569.01715
Peak List m/z 112.9856 268.9542 569.017	Z	56 1100. 2169. 3147.	9.01695 nd 16 93 7.38	5 569.0 Cou Formula	7 58 nts vs. Mass-	9.01705 ocCharge (m/2) Ion M-	59.0171	- 569.01715
Peak List m/z 112.9856 268.9542 569.017 570.0199	Z	56 Abur 1100. 2169. 3147. 2968.	9.01695 16 93 7.38 07	569.0 Cou Formula C24 H27 Br2 C C24 H27 Br2 C	17 56 Ints vs. Mass- 6 6	9.01705 56-Charge (m/z) 100 M- M-	99.0171	569.01715
2- 1.5- 1- 0.5- 0- Peak List m/z 112.9856 268.9542 569.017 570.0199 571.0155	2 1 1 1	56 1100. 2169. 3147. 2968. 8298	9.01698 16 93 7.38 07 6.43	5 569.0° Cou Formula C24 H27 Br2 C C24 H27 Br2 C	17 56 Ints vs. Mass- 16 6	9,01705 56 to-Charge (m/z) Ton M- M-	59.0171	569.01715
2 1.5 1 0.5 0 Peak List m/2 112.9856 268.9542 569.017 570.0199 571.0155 572.0181	2 1 1 1 1	56 1100. 2169 3147 2968. 8298 1097	9.01695 16 93 7.38 07 6.43 0.78	5 569 0 Cou Formula C24 H27 Br2 C C24 H27 Br2 C	17 56 Ints vs. Mass- 16	9.01705 to-Charge (m/z) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	39.0171	569.01715
2 1.5 1.5 0.5 0 Peak List <i>m/z</i> 112.9856 268.9542 269.017 570.0199 571.0155 572.0181 573.0136	2 1 1 1 1 1 1	56 1100. 2169. 3147. 2968. 8298. 1097. 3393.	9.01695 16 93 7.38 07 6.43 0.78 5.88 97	5 569 0 Cou Formula (224 H27 Br2 C (224 H27 Br2 C	17 566 mts vs. Mass- 6 6	9.01705 56 to-Charge (m/z)	59.0171	569.01715
2 1.5 1.5 0.5 0 112.9856 268.9542 569.017 570.0199 571.0155 572.0181 573.0136 573.0136 573.0135	2 1 1 1 1 1 1	56 Abur 1100. 2169. 3147. 2968. 8298. 1097. 3393. 2833. 2834.	9.01695 16 93 7.38 07 6.43 0.78 5.88 97 6.97	5 569.0 Cou Formula C24 H27 Br2 C C24 H27 Br2 C	17 56 Ints vs. Mass- 16 6	9,01705 56 to-Charge (m/z)	99.0171	569.01715
Peak List m/z 112.9856 268.9542 569.017 570.0199 571.0155 572.0181 573.0136 574.0155 1033.9881 1034.085	2 1 1 1 1 1 1 1	56 Abur 1100, 2169, 3147 2968, 8298, 8298, 1097, 3393, 2833, 2924,	9.01695 16 93 7.38 07 6.43 0.78 5.88 97 6.97 2	5 569.0 Cou Formula C24 H27 Br2 C C24 H27 Br2 C	17 56 Ints vs. Mass- 16 6	9.01705 6-Charge (m/z) 100 M- M- M-	39.0171	569.01715
Peak List m/z 112.9856 268.9542 569.017 570.0199 571.0155 572.0181 573.0136 574.0155 1033.9881 1034.989	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56 1100, 2169, 3147 2968, 8298, 8298, 1097 3393, 2924 1577, or Ele	9.01698 16 93 7.38 07 6.43 0.78 5.88 97 6.97 2 ment L	5 569.0 Cou Formula C24 H27 Br2 C C24 H27 Br2 C	17 566 Ints vs. Mass- 16 16	9.01705 to-Charge (m/z) 10n M- M-	39.0171	569.01715
Peak List m/z 11.5 0.5 0. 268,9542 268,9542 569,017 570,0199 572,0181 573,0136 572,0181 573,0136 574,0155 1033,9881 1033,9881 1033,9881 264,989 Formula C Element	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56 1100. 2169. 3147 2968. 8298. 1097. 3393. 2833. 2924. 1577. 577.	9.01698 16 93 7.38 0.07 6.43 0.78 5.88 9.7 2. 5.97 2. 2. Max	5 569.0 Cou Formula C24 H27 Br2 C C24 H27 Br2 C C24 H27 Br2 C	17 566 Ints vs. Mass- 6 6	9.01705 50 to-Charge (m/z)	99.0171	569.01715
Peak List m/z 0.5 0 268,9542 268,9542 269,017 570,0199 571,0155 7570,0181 573,0136 574,0155 1033,9881 1034,989 Formula C Element C	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56 11000 2169 3147 2968 8298 1097 3393 2833 2954 1577 or Ele	9.01695 nd 16 93 7.38 0.77 5.43 0.78 5.88 97 2. ment L Max 200	5 569.0 Cou Formula C24 H27 Br2 C C24 H27 Br2 C	17 56 mis vs. Mess- 16 6	9.01705 5-Charge (m/z) 100 M- M-	39,0171	569.01715
2 1.5 0 Peak List m/z 112.9856 268.9542 569.017 571.0155 572.0181 573.0136 1033.9881 1034.989 C Element C H	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56 1100 2169 3147 2968 8298 1097 3393 2833 2954 1577 or Elec 0 0	9.01698 16 93 7.38 0.77 5.88 9.97 5.97 2. ment L Max 200 400	5 569.0 Cou Formula C24 H27 Br2 C C24 H27 Br2 C	17 56 Ints vs. Mass- 16 6	9.01705 56 to-Charge (m/z)	39.0171	569.01715
2 1.5- 1 0.5- 0 Peak List <i>m/z</i> 569.9542 569.9017 570.0199 571.0155 573.0136 573.0136 573.0136 573.0136 573.0137 Formula Ct Element C H O	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56 Abur 11000 21699 3147 2968 8298 1097 3393 2924 1577 or Ele 0 0 0 0 2	9.01698 116 93 7.38 0.7 5.88 9.97 5.97 2 ment L 200 400 10	5 569.0 Cou Formula C24 H27 Br2 C C24 H27 Br2 C	17 56 Ints vs. Mass- 16 16	9.01705 55 to-Charge (m/z)	39.0171	569.01715

Figure 52S. Negative HR-ESIMS spectrum of compound 17