1 Online Supplemental Material

Proof of Proposition 1 From equation (2) we can write the process for the vector z_{t} as:

$$
z_{t}=\sqrt{\widetilde{T}_{t}} \varepsilon_{t}+\rho \sqrt{\widetilde{T}_{t}} \sqrt{\widetilde{T}_{t-1}} \varepsilon_{t-1}+\rho^{2} \sqrt{\widetilde{T}_{t}} \sqrt{\widetilde{T}_{t-1}} \sqrt{\widetilde{T}_{t-2}} \varepsilon_{t-2}+\rho^{3} \sqrt{\widetilde{T}_{t}} \sqrt{\widetilde{T}_{t-1}} \sqrt{\widetilde{T}_{t-2}} \sqrt{\widetilde{T}_{t-3}} \varepsilon_{t-3}+\ldots
$$

which implies that conditional on \widetilde{T}, z_{t} is the sum of independent normals. Hence, $z_{t} \mid \widetilde{T}$ is also a normal, with mean 0 and variance-covariance $\theta^{2} v_{c, t} I_{n}$, where I_{n} is the identity matrix and $v_{c, t}$ is the scalar defined in Proposition 1. This implies that $k_{t}=z_{t}^{\prime} z_{t}$ conditional on \widetilde{T} is a $G\left(n / 2,2 \theta^{2} v_{c, t}\right)$, and therefore $\left(k_{t} / v_{c, t}\right) \mid \widetilde{T}$ is a $G\left(n / 2,2 \theta^{2}\right)$ (i.e. independent of $\left.\widetilde{T}\right)$. Note that $\left(\varepsilon_{t}^{\prime} \varepsilon_{t}\right)$ is also distributed as a $G\left(n / 2,2 \theta^{2}\right)$, and therefore we can write $E\left(\left(k_{t} / v_{c, t}\right)^{s}\right)=E\left(\left(\varepsilon_{t}^{\prime} \varepsilon_{t}\right)^{s}\right)$. By the law of iterated expectations we can calculate the moments of k_{t} as $E\left(k_{t}^{s}\right)=E\left(E\left(k_{t}^{s} \mid \widetilde{T}\right)\right)=E\left(v_{c, t}^{s} E\left(\left(k_{t} / v_{c, t}\right)^{s} \mid \widetilde{T}\right)\right)=E\left(v_{c, t}^{s}\right) E\left(\left(\varepsilon_{t}^{\prime} \varepsilon_{t}\right)^{s}\right)$. Because $\left(\varepsilon_{t}^{\prime} \varepsilon_{t}\right)$ is distributed as a $G\left(n / 2,2 \theta^{2}\right)$, its moments are given by (e.g. Johnson et al. (1994 p. 339)):

$$
E\left(\left(\varepsilon_{t}^{\prime} \varepsilon_{t}\right)^{s}\right)=\left(\theta^{2}\right)^{s} \prod_{i=0}^{s-1}(n+2 i)
$$

To calculate $E\left(v_{c, t}^{s}\right)$ note that we can write $v_{c, t}$ as $v_{c, t}=\widetilde{T}_{t}+\rho^{2} \widetilde{T}_{t} v_{c,(t-1)}$. so that $E\left(v_{c, t}^{s}\right)=$ $E\left(\left(\widetilde{T}_{t}+\rho^{2} \widetilde{T}_{t} v_{c,(t-1)}\right)^{s}\right)$. Using the binomial theorem we can write:

$$
\begin{equation*}
E\left(\left(\widetilde{T}_{t}+\rho^{2} \widetilde{T}_{t} v_{c,(t-1)}\right)^{s}\right)=E\left(\widetilde{T}_{t}^{s}\right) \sum_{i=0}^{s}\binom{s}{i} \rho^{2 i} E\left(v_{c,(t-1)}^{i}\right) \tag{O.1}
\end{equation*}
$$

Because $E\left(v_{c, t}^{s}\right)=E\left(v_{c,(t-1)}^{s}\right)$, (O.1) implies property (9) and the other unconditional moments stated in Proposition 1. To obtain the conditional moments, note that equation (3) can be written as:

$$
\begin{equation*}
k_{t}=\frac{\widetilde{T}_{t}}{E\left(\widetilde{T}_{t}\right)}\left(\widetilde{\rho}^{2} k_{t-1}+\widetilde{\varepsilon}_{t} \widetilde{\varepsilon}_{t}+2 \widetilde{\rho} \widetilde{\varepsilon}_{t} z_{t-1}\right) \tag{O.2}
\end{equation*}
$$

Because $\widetilde{\varepsilon}_{t}$ is independent of z_{t-1} and $E\left(\widetilde{\varepsilon}_{t}\right)=0$ we obtain that $E\left(\widetilde{\varepsilon}_{t} z_{t-1}\right)=0$. Taking into account that $E\left(\widetilde{\varepsilon}_{t} \widetilde{\varepsilon}_{t}\right)=n \widetilde{\theta}^{2}$ we can take conditional expectations on both sides of (O.2) to get equations (4) and (6).

Let us calculate $\operatorname{cov}\left(k_{t}, k_{t-h}\right)$ as $\operatorname{cov}\left(k_{t}, k_{t-h}\right)=E\left(k_{t} k_{t-h}\right)-\left[E\left(k_{t}\right)\right]^{2}$. To derive $E\left(k_{t} k_{t-h}\right)$ let us use iterative expectations to rewrite equation (4) as:

$$
\begin{equation*}
E\left(k_{t} \mid k_{t-h}\right)=\widetilde{\rho}^{2 h} k_{t-h}+\sum_{i=0}^{h-1} \widetilde{\rho}^{2 i}\left(1-\widetilde{\rho}^{2}\right) E\left(k_{t}\right) \tag{O.3}
\end{equation*}
$$

Multiplying both sides of (O.3) by k_{t-h} and then taking expectations with respect to k_{t-h} we obtain:

$$
E\left(k_{t} k_{t-h}\right)=\widetilde{\rho}^{2 h} E\left(k_{t-h}^{2}\right)+\sum_{i=0}^{h-1} \widetilde{\rho}^{2 i}\left(1-\widetilde{\rho}^{2}\right)\left[E\left(k_{t}\right)\right]^{2}=\widetilde{\rho}^{2 h} E\left(k_{t-h}^{2}\right)+\left(1-\widetilde{\rho}^{2 h}\right)\left[E\left(k_{t}\right)\right]^{2}
$$

where we have used the formula for the sum of a geometric series. Thus $\operatorname{cov}\left(k_{t}, k_{t-h}\right)=E\left(k_{t} k_{t-h}\right)-$ $\left[E\left(k_{t}\right)\right]^{2}=\widetilde{\rho}^{2 h}\left(E\left(k_{t-h}^{2}\right)-\left[E\left(k_{t}\right)\right]^{2}\right)=\widetilde{\rho}^{2 h} \operatorname{var}\left(k_{t}\right)$. Thus, the correlation between k_{t} and k_{t-h} is $\widetilde{\rho}^{2 h}$.

Because the stationary distribution of $\sigma_{t}^{2}=1 / k_{t}$ is that of the product of $\left(v_{c, t}\right)^{-1}$ and $\left(\varepsilon_{t}^{\prime} \varepsilon_{t}\right)^{-1}$, with $\left(v_{c, t}\right)^{-1}$ being independent of $\left(\varepsilon_{t}^{\prime} \varepsilon_{t}\right)^{-1}$, the expectation $E\left(\sigma_{t}^{2 s}\right)$ is finite if and only if both $E\left(\left(v_{c, t}\right)^{-s}\right)$ and $E\left(\left(\varepsilon_{t}^{\prime} \varepsilon_{t}\right)^{-s}\right)$ are finite. Because $\left(\varepsilon_{t}^{\prime} \varepsilon_{t}\right)^{-1}$ is an inverted gamma with n degrees of freedom, $E\left(\left(\varepsilon_{t}^{\prime} \varepsilon_{t}\right)^{-s}\right)$ is finite only if $2 s<n$. In addition, from $v_{c, t}=\widetilde{T}_{t}\left(1+\rho^{2} v_{c,(t-1)}\right)$ it follows that:

$$
\frac{1}{v_{c, t}}=\frac{1}{\widetilde{T}_{t}} \frac{1}{1+\rho^{2} v_{c,(t-1)}}
$$

Because $\left(1+\rho^{2} v_{c,(t-1)}\right)^{-s}<1$, it follows that $E\left(\left(1+\rho^{2} v_{c,(t-1)}\right)^{-s}\right)$ is finite because the density function of $v_{c,(t-1)}$ integrates up to 1 . Because \widetilde{T}_{t} follows a $B(\underline{\alpha}, \underline{\beta}), E\left(\widetilde{T}_{t}^{-s}\right)$ is finite if and only if $\underline{\alpha}>s$. Putting both conditions together, $E\left(\sigma_{t}^{2 s}\right)$ is finite when $\underline{\alpha}>s$ and $n>2 s$.

For the ARG model (i.e. $\widetilde{T}_{t}=1$ for all t), the expressions for the expected value and variance of σ_{t}^{2} are derived from the properties of the inverted gamma distribution (e.g. Bauwens et al. (1999. p.292)). To calculate the correlations between σ_{t}^{2} and σ_{t-s}^{2} in the ARG model, let us first proof the following property:

$$
\begin{equation*}
E\left(\sigma_{t}^{2} \mid \sigma_{t-s}^{2}\right)=\int\left(\prod_{i=2}^{s}\left(u_{i}\right)^{n / 2}\right) \frac{1}{\theta^{2}(n-2)} \exp \left(-\frac{\left(1-u_{s}\right)}{2 \theta^{2}} \rho^{2} \frac{1}{\sigma_{t-s}^{2}}\right) p\left(u_{1}\right) d u_{1} \tag{O.4}
\end{equation*}
$$

where $u_{1} \sim B((n-2) / 2,1), p\left(u_{1}\right)$ is the density function of u_{1} and $u_{s}=1 /\left(1+\rho^{2}\left(1-u_{s-1}\right)\right)$ for $s \geq 2$. To proof this note that the Poisson representation in (10) implies that $k_{t} \mid\left(k_{t-1}, h_{t}\right)$ is a Gamma which in turn implies that $\sigma_{t}^{2} \mid\left(\sigma_{t-1}^{2}, h_{t}\right)$ is an $I G_{2}\left(\theta^{-2}, n+2 h_{t}\right)$, such that $E\left(\sigma_{t}^{2} \mid\left(\sigma_{t-1}^{2}, h_{t}\right)\right)=\theta^{-2} /\left(n+2 h_{t}-2\right)$. We can therefore integrate out h_{t} to obtain $E\left(\sigma_{t}^{2} \mid \sigma_{t-1}^{2}\right)$.as:

$$
\begin{equation*}
E\left(\sigma_{t}^{2} \mid \sigma_{t-1}^{2}\right)=\frac{1}{\theta^{2} \exp \left(\lambda_{t}\right)} \sum_{i=0}^{\infty} \frac{\lambda_{t}^{i}}{i!}\left(\frac{1}{n+2 i-2}\right), \text { where } \lambda_{t}=\frac{\rho^{2}}{2 \sigma_{t-1}^{2} \theta^{2}} \tag{0.5}
\end{equation*}
$$

Note that $1 /(n+2 i-2)=(n-2)^{-1}[n / 2-1]_{i} /[n / 2]_{i}=(n-2)^{-1} E\left(\left(u_{1}\right)^{i}\right)$, where $[n / 2]_{i}$ is the rising
factorial. Therefore (O.5) can be written as:

$$
\begin{align*}
E\left(\sigma_{t}^{2} \mid \sigma_{t-1}^{2}\right) & =\int \frac{1}{\theta^{2} \exp \left(\lambda_{t}\right)} \frac{1}{(n-2)} \sum_{i=0}^{\infty} \frac{\lambda_{t}^{i}}{i!}\left(u_{1}\right)^{i} p\left(u_{1}\right) d u_{1} \tag{0.6}\\
& =\int \frac{1}{\theta^{2} \exp \left(\lambda_{t}\right)} \frac{1}{(n-2)} \exp \left(\lambda_{t} u_{1}\right) p\left(u_{1}\right) d u_{1} \\
& =\int \frac{1}{\theta^{2}} \frac{1}{(n-2)} \exp \left(-\frac{\left(1-u_{1}\right)}{2 \theta^{2}} \rho^{2} \frac{1}{\sigma_{t-1}^{2}}\right) p\left(u_{1}\right) d u_{1}
\end{align*}
$$

which is the same as (O.4) for the case $s=1$. To proof (O.4) for $s=2$ we need to integrate $E\left(\sigma_{t}^{2} \mid \sigma_{t-1}^{2}\right)$ with respect to $p\left(\sigma_{t-1}^{2} \mid \sigma_{t-2}^{2}\right)$ using expression (O.6). This can be done by first integrating with respect to $p\left(\sigma_{t-1}^{2} \mid h_{t-1}, \sigma_{t-2}^{2}\right)$ (which is a $I G_{2}\left(\theta^{-2}, n+2 h_{t-1}\right)$) and then integrating out h_{t-1} (using a $P\left(\lambda_{t-1}\right)$) as follows:

$$
\begin{align*}
E\left(\sigma_{t}^{2} \mid \sigma_{t-2}^{2}\right) & =\int E\left(\sigma_{t}^{2} \mid \sigma_{t-1}^{2}\right) p\left(\sigma_{t-1}^{2} \mid \sigma_{t-2}^{2}\right) d \sigma_{t-1}^{2} \tag{O.7}\\
& =\int E\left(\sigma_{t}^{2} \mid \sigma_{t-1}^{2}\right) \sum_{h_{t-1}=0}^{\infty} p\left(\sigma_{t-1}^{2} \mid h_{t-1}, \sigma_{t-2}^{2}\right) p\left(h_{t-1}\right) d \sigma_{t-1}^{2} \\
& =\sum_{h_{t-1}=0}^{\infty} \int E\left(\sigma_{t}^{2} \mid \sigma_{t-1}^{2}\right) p\left(\sigma_{t-1}^{2} \mid h_{t-1}, \sigma_{t-2}^{2}\right) p\left(h_{t-1}\right) d \sigma_{t-1}^{2}
\end{align*}
$$

Using the properties of the inverse Gamma distribution, we can obtain that:

$$
\int E\left(\sigma_{t}^{2} \mid \sigma_{t-1}^{2}\right) p\left(\sigma_{t-1}^{2} \mid h_{t-1}, \sigma_{t-2}^{2}\right) d \sigma_{t-1}^{2}=\int\left(u_{2}\right)^{\frac{n+2 h_{t-1}}{2}} \frac{1}{\theta^{2}} \frac{1}{(n-2)} p\left(u_{1}\right) d u_{1}
$$

Therefore, (O.7) can be written as:

$$
E\left(\sigma_{t}^{2} \mid \sigma_{t-2}^{2}\right)=\sum_{h_{t-1}=0}^{\infty} \int\left(u_{2}\right)^{\frac{n+2 h_{t-1}}{2}} \frac{1}{\theta^{2}} \frac{1}{(n-2)} p\left(u_{1}\right) d u_{1} p\left(h_{t-1}\right)
$$

Using the properties of the Poisson distribution, we can obtain that:

$$
\sum_{h_{t-1}=0}^{\infty} \int\left(u_{2}\right)^{\frac{n+2 h_{t-1}}{2}} \frac{1}{\theta^{2}} \frac{1}{(n-2)} p\left(u_{1}\right) d u_{1} p\left(h_{t-1}\right)=\int\left(u_{2}\right)^{\frac{n}{2}} \frac{1}{\theta^{2}(n-2)} \exp \left(-\frac{\left(1-u_{2}\right)}{2 \theta^{2}} \rho^{2} \frac{1}{\sigma_{t-2}^{2}}\right) p\left(u_{1}\right) d u_{1}
$$

The proof for $s>2$ can be obtained by repeating the same process, that is, integrate out with respect to $p\left(\sigma_{t-s+1}^{2} \mid h_{t-s+1}, \sigma_{t-s}^{2}\right)$ and then integrate out h_{t-s+1} (using a $P\left(\lambda_{t-s+1}\right)$).
$E\left(\sigma_{t}^{2} \sigma_{t-s}^{2}\right)$ can be obtained by using expression (O.4) to calculate $E\left(\sigma_{t}^{2} \sigma_{t-s}^{2} \mid \sigma_{t-s}^{2}\right)$ and then integrate out σ_{t-s}^{2} using the stationary distribution $I G_{2}\left(\left(1-\rho^{2}\right) / \theta^{2}, n\right)$. This gives:

$$
E\left(\sigma_{t}^{2} \sigma_{t-s}^{2}\right)=E\left(\sigma_{t-s}^{2} E\left(\sigma_{t}^{2} \mid \sigma_{t-s}^{2}\right)\right)=\sigma_{t-s}^{2} E\left(\sigma_{t}^{2} \mid \sigma_{t-s}^{2}\right) p\left(\sigma_{t-s}^{2}\right) d \sigma_{t-s}^{2}
$$

Using the properties of the gamma function we have that $\Gamma(n / 2-1) / \Gamma(n / 2)=(n / 2-1)^{-1}$ and therefore $E\left(\sigma_{t}^{2} \sigma_{t-s}^{2}\right)$ can be written as:

$$
\begin{equation*}
E\left(\sigma_{t}^{2} \sigma_{t-s}^{2}\right)=\frac{\left(1-\rho^{2}\right)^{n / 2}}{\left(2 \theta^{2}\right)^{2}(n / 2-1)^{2}} \int\left(\prod_{i=2}^{s}\left(u_{i}\right)^{n / 2}\right)\left(\frac{1}{1-\rho^{2} u_{s}}\right)^{n / 2-1} p\left(u_{1}\right) d u_{1} \tag{O.8}
\end{equation*}
$$

By using the definition of u_{s} it is possible to verify that:

$$
\left(\prod_{i=2}^{s} u_{i}\right) \frac{1}{1-\rho^{2} u_{s}}=\left(\prod_{i=2}^{s-1} u_{i}\right) \frac{u_{s}}{1-\rho^{2} u_{s}}=\left(\prod_{i=2}^{s-1} u_{i}\right) \frac{1}{1-\rho^{2} u_{s-1}}=\frac{1}{1-\rho^{2} u_{1}}
$$

and:

$$
\prod_{i=2}^{s} u_{i}=u_{s} u_{s-1} \prod_{i=2}^{s-2} u_{i}=\frac{1}{1+\left(\rho^{2}+\rho^{4}\right)\left(1-u_{s-2}\right)} \prod_{i=2}^{s-2} u_{i}=\frac{1}{1+\rho_{s}^{2}\left(1-u_{1}\right)}
$$

where $\rho_{s}^{2}=\sum_{g=1}^{s-1} \rho^{2 g}$. Hence, the integral in expression (O.8) can be written as:

$$
\begin{align*}
E\left[\left(\prod_{i=2}^{s}\left(u_{i}\right)^{n / 2}\right)\left(\frac{1}{1-\rho^{2} u_{s}}\right)^{n / 2-1}\right] & =E\left[\frac{\left(1-\rho^{2} u_{1}\right)^{-(n / 2-1)}}{1+\rho_{s}^{2}\left(1-u_{1}\right)}\right] \tag{O.9}\\
& =E\left[\frac{\left(1+\rho_{s}^{2}\right)^{-1}}{1-\widehat{\rho}_{s}^{2} u_{1}}\left(\frac{1}{1-\rho^{2} u_{1}}\right)^{n / 2-1}\right]
\end{align*}
$$

where the expectation is calculated with respect to u_{1} and $\widehat{\rho}_{s}^{2}=\rho_{s}^{2} /\left(1+\rho_{s}^{2}\right)$. By expanding $(1 /(1-$ $\left.\left.\rho^{2} u_{1}\right)\right)^{n / 2-1}$ as a hypergeometric series (e.g. Muirhead (1985, p. 259)) and using basic properties of the beta distribution, it is possible to show that:

$$
E\left[\left(u_{1}^{h}\right)\left(\frac{1}{1-\rho^{2} u_{1}}\right)^{n / 2-1}\right]=\left(\frac{[n / 2-1]_{h}}{[n / 2]_{h}}\right)\left({ }_{2} F_{1}\left(\frac{n}{2}-1, \frac{n}{2}-1+h ; \frac{n}{2}+h ; \rho^{2}\right)\right)
$$

and therefore the expectation in (O.9) can be written as:

$$
\begin{aligned}
& \frac{1}{1+\rho_{s}^{2}} \sum_{h=0}^{\infty}\left[\left(\widehat{\rho}_{s}^{2}\right)^{h}\left(\frac{[n / 2-1]_{h}}{[n / 2]_{h}}\right)\left({ }_{2} F_{1}\left(\frac{n}{2}-1, \frac{n}{2}-1+h ; \frac{n}{2}+h ; \rho^{2}\right)\right)\right] \\
= & \frac{1}{1+\rho_{s}^{2}} \sum_{h=0}^{\infty} \sum_{i=0}^{\infty}\left[\frac{\left(\widehat{\rho}_{s}^{2}\right)^{h}\left(\rho^{2}\right)^{i}}{h!i!}[1]_{h} \frac{[n / 2-1]_{h+i}}{[n / 2]_{h+i}}[n / 2-1]_{i}\right]=\frac{1}{1+\rho_{s}^{2}} F_{1}\left[\frac{n}{2}-1 ; 1, \frac{n}{2}-1 ; \frac{n}{2} ; \hat{\rho}_{s}^{2}, \rho^{2}\right]
\end{aligned}
$$

where $F_{1}[$.$] is an Appell series of the first type (e.g. Slater (1966, p. 210)), which in our case can be$ reduced to a ${ }_{2} F_{1}($.$) series (Slater (1966, p. 219)) :$

$$
\begin{aligned}
F_{1}\left[\frac{n}{2}-1 ; 1, \frac{n}{2}-1 ; \frac{n}{2} ; \widehat{\rho}_{s}^{2}, \rho^{2}\right]= & \left(\frac{1}{1-\rho^{2}}\right)^{n / 2-1}\left[{ }_{2} F_{1}\left(\frac{n}{2}-1,1 ; \frac{n}{2} ; \frac{\widehat{\rho}_{s}^{2}-\rho^{2}}{1-\rho^{2}}\right)\right]= \\
& \left(\frac{1}{1-\rho^{2}}\right)^{n / 2-1}\left[{ }_{2} F_{1}\left(\frac{n}{2}-1,1 ; \frac{n}{2} ; \frac{-\rho^{2 s}}{1-\rho^{2 s}}\right)\right]
\end{aligned}
$$

Using the Euler relationships (e.g. Muirhead (1982, p. 265)), the ${ }_{2} F_{1}($.$) series can be written as:$

$$
{ }_{2} F_{1}\left(\frac{n}{2}-1,1 ; \frac{n}{2} ; \frac{-\rho^{2 s}}{1-\rho^{2 s}}\right)=\left(1-\rho^{2 s}\right)\left[{ }_{2} F_{1}\left(1,1 ; \frac{n}{2} ; \rho^{2 s}\right)\right]
$$

Putting all this together the expectation in (O.9) can be written as:

$$
\begin{aligned}
E\left[\left(\prod_{i=2}^{s}\left(u_{i}\right)^{n / 2}\right)\left(\frac{1}{1-\rho^{2} u_{s}}\right)^{n / 2-1}\right]= & \frac{1-\rho^{2 s}}{1+\rho_{s}^{2}}\left(\frac{1}{1-\rho^{2}}\right)^{n / 2-1}\left[{ }_{2} F_{1}\left(1,1 ; \frac{n}{2} ; \rho^{2 s}\right)\right]= \\
& \left(1-\rho^{2}\right)\left(\frac{1}{1-\rho^{2}}\right)^{n / 2-1}\left[{ }_{2} F_{1}\left(1,1 ; \frac{n}{2} ; \rho^{2 s}\right)\right]
\end{aligned}
$$

where we have used that a geometric series can be written as $1+\rho_{s}^{2}=\left(1-\rho^{2 s}\right) /\left(1-\rho^{2}\right)$. This proves that (O.8) is equal to:

$$
E\left(\sigma_{t}^{2} \sigma_{t-s}^{2}\right)=\frac{\left(1-\rho^{2}\right)^{2}}{\left(2 \theta^{2}\right)^{2}(n / 2-1)^{2}}\left[{ }_{2} F_{1}\left(1,1 ; \frac{n}{2} ; \rho^{2 s}\right)\right]
$$

The correlation $\operatorname{corr}\left(\sigma_{t}^{2}, \sigma_{t-s}^{2}\right)$ can then be calculated as $\left(E\left(\sigma_{t}^{2} \sigma_{t-s}^{2}\right)-E\left(\sigma_{t}^{2}\right)\right) / \operatorname{var}\left(\sigma_{t}^{2}\right)$, where $E\left(\sigma_{t}^{2}\right)$ and $\operatorname{var}\left(\sigma_{t}^{2}\right)$ are obtained from the properties of the inverted gamma distribution (e.g. Bauwens et al. (1999. p.292)).

