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Proof of Proposition 1 From equation (2) we can write the process for the vector zt as:

zt =

√
T̃tεt + ρ

√
T̃t

√
T̃t−1εt−1 + ρ2

√
T̃t

√
T̃t−1

√
T̃t−2εt−2 + ρ3

√
T̃t

√
T̃t−1

√
T̃t−2

√
T̃t−3εt−3 + ...

which implies that conditional on T̃ , zt is the sum of independent normals. Hence, zt|T̃ is also a normal,

with mean 0 and variance-covariance θ2vc,tIn, where In is the identity matrix and vc,t is the scalar

defined in Proposition 1. This implies that kt = z
′

tzt conditional on T̃ is a G(n/2, 2θ2vc,t), and therefore

(kt/vc,t)|T̃ is a G(n/2, 2θ2) (i.e. independent of T̃ ). Note that (ε′tεt) is also distributed as a G(n/2, 2θ2),

and therefore we can write E((kt/vc,t)
s) = E((ε′tεt)

s). By the law of iterated expectations we can

calculate the moments of kt as E(kst ) = E(E(kst |T̃ )) = E(vsc,tE((kt/vc,t)
s|T̃ )) = E(vsc,t)E((ε′tεt)

s
).

Because (ε′tεt) is distributed as a G(n/2, 2θ2), its moments are given by (e.g. Johnson et al. (1994 p.

339)):

E((ε′tεt)
s
) =

(
θ2
)s s−1∏

i=0

(n+ 2i)

To calculate E(vsc,t) note that we can write vc,t as vc,t = T̃t + ρ2T̃tvc,(t−1). so that E(vsc,t) =

E((T̃t + ρ2T̃tvc,(t−1))
s). Using the binomial theorem we can write:

E((T̃t + ρ2T̃tvc,(t−1))
s) = E(T̃ s

t )

s∑
i=0

(
s

i

)
ρ2iE(vic,(t−1)) (O.1)

Because E(vsc,t) = E(vsc,(t−1)), (O.1) implies property (9) and the other unconditional moments stated

in Proposition 1. To obtain the conditional moments, note that equation (3) can be written as:

kt =
T̃t

E(T̃t)
(ρ̃2kt−1 + ε̃′tε̃t + 2ρ̃ε̃′tzt−1) (O.2)

Because ε̃t is independent of zt−1 and E(ε̃t) = 0 we obtain that E(ε̃′tzt−1) = 0. Taking into account

that E(ε̃′tε̃t) = nθ̃2 we can take conditional expectations on both sides of (O.2) to get equations (4)

and (6).

Let us calculate cov(kt, kt−h) as cov(kt, kt−h) = E(ktkt−h) − [E(kt)]
2
. To derive E(ktkt−h) let us

use iterative expectations to rewrite equation (4) as:

E(kt|kt−h) = ρ̃2hkt−h +

h−1∑
i=0

ρ̃2i(1− ρ̃2)E(kt) (O.3)
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Multiplying both sides of (O.3) by kt−h and then taking expectations with respect to kt−h we obtain:

E(ktkt−h) = ρ̃2hE(k2t−h) +

h−1∑
i=0

ρ̃2i(1− ρ̃2) [E(kt)]
2

= ρ̃2hE(k2t−h) + (1− ρ̃2h) [E(kt)]
2

where we have used the formula for the sum of a geometric series. Thus cov(kt, kt−h) = E(ktkt−h) −

[E(kt)]
2

= ρ̃2h(E(k2t−h)− [E(kt)]
2
) = ρ̃2hvar(kt). Thus, the correlation between kt and kt−h is ρ̃2h.

Because the stationary distribution of σ2
t = 1/kt is that of the product of (vc,t)

−1
and (ε′tεt)

−1
, with

(vc,t)
−1

being independent of (ε′tεt)
−1

, the expectation E(σ2s
t ) is finite if and only if both E((vc,t)

−s
) and

E((ε′tεt)
−s

) are finite. Because (ε′tεt)
−1

is an inverted gamma with n degrees of freedom, E((ε′tεt)
−s

)

is finite only if 2s < n. In addition, from vc,t = T̃t(1 + ρ2vc,(t−1)) it follows that:

1

vc,t
=

1

T̃t

1

1 + ρ2vc,(t−1)

Because (1+ρ2vc,(t−1))
−s < 1, it follows that E((1+ρ2vc,(t−1))

−s) is finite because the density function

of vc,(t−1) integrates up to 1. Because T̃t follows a B(α, β), E(T̃−st ) is finite if and only if α > s. Putting

both conditions together, E(σ2s
t ) is finite when α > s and n > 2s.

For the ARG model (i.e. T̃t = 1 for all t), the expressions for the expected value and variance of σ2
t

are derived from the properties of the inverted gamma distribution (e.g. Bauwens et al. (1999. p.292)).

To calculate the correlations between σ2
t and σ2

t−s in the ARG model, let us first proof the following

property:

E(σ2
t |σ2

t−s) =

∫ ( s∏
i=2

(ui)
n/2

)
1

θ2(n− 2)
exp

(
− (1− us)

2θ2
ρ2

1

σ2
t−s

)
p(u1)du1 (O.4)

where u1 ∼ B((n−2)/2, 1), p(u1) is the density function of u1 and us = 1/(1+ρ2(1−us−1)) for s ≥ 2.

To proof this note that the Poisson representation in (10) implies that kt|(kt−1, ht) is a Gamma which in

turn implies that σ2
t |(σ2

t−1, ht) is an IG2(θ−2, n+ 2ht), such that E(σ2
t |(σ2

t−1, ht)) = θ−2/(n+ 2ht− 2).

We can therefore integrate out ht to obtain E(σ2
t |σ2

t−1).as:

E(σ2
t |σ2

t−1) =
1

θ2 exp(λt)

∞∑
i=0

λit
i!

(
1

n+ 2i− 2

)
, where λt =

ρ2

2σ2
t−1θ

2
(O.5)

Note that 1/(n+ 2i− 2) = (n− 2)−1[n/2− 1]i/[n/2]i = (n− 2)−1E((u1)i), where [n/2]i is the rising
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factorial. Therefore (O.5) can be written as:

E(σ2
t |σ2

t−1) =

∫
1

θ2 exp(λt)

1

(n− 2)

∞∑
i=0

λit
i!

(u1)
i
p(u1)du1 (O.6)

=

∫
1

θ2 exp(λt)

1

(n− 2)
exp(λtu1)p(u1)du1

=

∫
1

θ2
1

(n− 2)
exp

(
− (1− u1)

2θ2
ρ2

1

σ2
t−1

)
p(u1)du1

which is the same as (O.4) for the case s = 1. To proof (O.4) for s = 2 we need to integrate E(σ2
t |σ2

t−1)

with respect to p(σ2
t−1|σ2

t−2) using expression (O.6). This can be done by first integrating with respect

to p(σ2
t−1|ht−1, σ2

t−2) (which is a IG2(θ−2, n+ 2ht−1)) and then integrating out ht−1 (using a P (λt−1))

as follows:

E(σ2
t |σ2

t−2) =

∫
E(σ2

t |σ2
t−1)p(σ2

t−1|σ2
t−2)dσ2

t−1 (O.7)

=

∫
E(σ2

t |σ2
t−1)

∞∑
ht−1=0

p(σ2
t−1|ht−1, σ2

t−2)p(ht−1)dσ2
t−1

=

∞∑
ht−1=0

∫
E(σ2

t |σ2
t−1)p(σ2

t−1|ht−1, σ2
t−2)p(ht−1)dσ2

t−1

Using the properties of the inverse Gamma distribution, we can obtain that:

∫
E(σ2

t |σ2
t−1)p(σ2

t−1|ht−1, σ2
t−2)dσ2

t−1 =

∫
(u2)

n+2ht−1
2

1

θ2
1

(n− 2)
p(u1)du1

Therefore, (O.7) can be written as:

E(σ2
t |σ2

t−2) =

∞∑
ht−1=0

∫
(u2)

n+2ht−1
2

1

θ2
1

(n− 2)
p(u1)du1p(ht−1)

Using the properties of the Poisson distribution, we can obtain that:

∞∑
ht−1=0

∫
(u2)

n+2ht−1
2

1

θ2
1

(n− 2)
p(u1)du1p(ht−1) =

∫
(u2)

n
2

1

θ2(n− 2)
exp

(
− (1− u2)

2θ2
ρ2

1

σ2
t−2

)
p(u1)du1

The proof for s > 2 can be obtained by repeating the same process, that is, integrate out with

respect to p(σ2
t−s+1|ht−s+1, σ

2
t−s) and then integrate out ht−s+1 (using a P (λt−s+1)).

E(σ2
t σ

2
t−s) can be obtained by using expression (O.4) to calculate E(σ2

t σ
2
t−s|σ2

t−s) and then integrate

out σ2
t−s using the stationary distribution IG2((1− ρ2)/θ2, n). This gives:

E(σ2
t σ

2
t−s) = E(σ2

t−sE(σ2
t |σ2

t−s)) = σ2
t−sE(σ2

t |σ2
t−s)p(σ

2
t−s)dσ

2
t−s
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Using the properties of the gamma function we have that Γ(n/2−1)/Γ(n/2) = (n/2−1)−1 and therefore

E(σ2
t σ

2
t−s) can be written as:

E(σ2
t σ

2
t−s) =

(1− ρ2)n/2

(2θ2)
2

(n/2− 1)2

∫ ( s∏
i=2

(ui)
n/2

)(
1

1− ρ2us

)n/2−1

p(u1)du1 (O.8)

By using the definition of us it is possible to verify that:

(
s∏

i=2

ui

)
1

1− ρ2us
=

(
s−1∏
i=2

ui

)
us

1− ρ2us
=

(
s−1∏
i=2

ui

)
1

1− ρ2us−1
=

1

1− ρ2u1

and:
s∏

i=2

ui = usus−1

s−2∏
i=2

ui =
1

1 + (ρ2 + ρ4)(1− us−2)

s−2∏
i=2

ui =
1

1 + ρ2s(1− u1)

where ρ2s =
∑s−1

g=1 ρ
2g. Hence, the integral in expression (O.8) can be written as:

E

[(
s∏

i=2

(ui)
n/2

)(
1

1− ρ2us

)n/2−1
]

= E

[
(1− ρ2u1)−(n/2−1)

1 + ρ2s(1− u1)

]
(O.9)

= E

[
(1 + ρ2s)−1

1− ρ̂2su1

(
1

1− ρ2u1

)n/2−1
]

where the expectation is calculated with respect to u1 and ρ̂2s = ρ2s/(1 + ρ2s). By expanding (1/(1 −

ρ2u1))n/2−1 as a hypergeometric series (e.g. Muirhead (1985, p. 259)) and using basic properties of the

beta distribution, it is possible to show that:

E

[
(uh1 )

(
1

1− ρ2u1

)n/2−1
]

=

(
[n/2− 1]h

[n/2]h

)(
2F1(

n

2
− 1,

n

2
− 1 + h;

n

2
+ h; ρ2)

)

and therefore the expectation in (O.9) can be written as:

1

1 + ρ2s

∞∑
h=0

[(
ρ̂2s
)h( [n/2− 1]h

[n/2]h

)(
2F1(

n

2
− 1,

n

2
− 1 + h;

n

2
+ h; ρ2)

)]

=
1

1 + ρ2s

∞∑
h=0

∞∑
i=0

[(
ρ̂2s
)h (

ρ2
)i

h!i!
[1]h

[n/2− 1]h+i

[n/2]h+i
[n/2− 1]i

]
=

1

1 + ρ2s
F1

[n
2
− 1; 1,

n

2
− 1;

n

2
; ρ̂2s, ρ

2
]

where F1[.] is an Appell series of the first type (e.g. Slater (1966, p. 210)), which in our case can be

reduced to a 2F1(.) series (Slater (1966, p. 219)):

F1

[n
2
− 1; 1,

n

2
− 1;

n

2
; ρ̂2s, ρ

2
]

=

(
1

1− ρ2

)n/2−1 [
2F1

(
n

2
− 1, 1;

n

2
;
ρ̂2s − ρ2

1− ρ2

)]
=(

1

1− ρ2

)n/2−1 [
2F1

(
n

2
− 1, 1;

n

2
;
−ρ2s

1− ρ2s

)]
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Using the Euler relationships (e.g. Muirhead (1982, p. 265) ), the 2F1(.) series can be written as:

2F1

(
n

2
− 1, 1;

n

2
;
−ρ2s

1− ρ2s

)
= (1− ρ2s)

[
2F1

(
1, 1;

n

2
; ρ2s

)]

Putting all this together the expectation in (O.9) can be written as:

E

[(
s∏

i=2

(ui)
n/2

)(
1

1− ρ2us

)n/2−1
]

=
1− ρ2s

1 + ρ2s

(
1

1− ρ2

)n/2−1 [
2F1

(
1, 1;

n

2
; ρ2s

)]
=

(1− ρ2)

(
1

1− ρ2

)n/2−1 [
2F1

(
1, 1;

n

2
; ρ2s

)]

where we have used that a geometric series can be written as 1 + ρ2s = (1− ρ2s)/(1− ρ2). This proves

that (O.8) is equal to:

E(σ2
t σ

2
t−s) =

(1− ρ2)2

(2θ2)
2

(n/2− 1)2

[
2F1

(
1, 1;

n

2
; ρ2s

)]

The correlation corr(σ2
t , σ

2
t−s) can then be calculated as

(
E(σ2

t σ
2
t−s)− E(σ2

t )
)
/var(σ2

t ), where E(σ2
t )

and var(σ2
t ) are obtained from the properties of the inverted gamma distribution (e.g. Bauwens et al.

(1999. p.292)).
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