Supporting Information

Carboxylated phytosterol derivative-introduced liposomes for skin environment-responsive transdermal drug delivery system

Naoko Yamazaki^{a,b}, Satoshi Yamakawa^c, Takumi Sugimoto^b, Yuta Yoshizaki^b, Ryoma Teranishi^b, Takaaki Hayashi^b, Aki Kotaka^a, Chiharu Shinde^a, Takayuki Kumei^a, Yasushi Sumida^a, Toru Shimizu^c, Yukihiro Ohashi^c, Eiji Yuba^{b,*}, Atsushi Harada^b, and Kenji Kono^b

^a Research Institute, Fancl Corporation, 12-13 Kamishinano, Totsuka-ku, Yokohama, Kanagawa, Japan

^b Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

^c Cosmetic Ingredients Laboratory, Nippon Fine Chemical Corporation, 1-1, 5-Chome, Umei, Takasago, Hyogo 676-0074, Japan

*Corresponding author: Eiji Yuba

Department of Applied Chemistry, Graduate School of Engineering,

Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

Tel.: +81-722-54-9913; Fax: +81-722-54-9330; yuba@chem.osakafu-u.ac.jp

Fig. S1. ¹H NMR spectrum of phytosterol (300 MHz, CDCl₃).

Fig. S2. ¹H NMR spectrum of Suc-phytosterol (300 MHz, CDCl₃).

Fig. S3. ¹H NMR spectrum of CHex-phytosterol (300 MHz, CDCl₃).

Fig. S4. ¹³C NMR spectrum of Phytosterol (75.45 MHz, CDCl₃).

Fig. S5. ¹³C NMR spectrum of Suc-phytosterol (75.45 MHz, CDCl₃).

Fig. S6. ¹³C NMR spectrum of CHex-phytosterol (75.45 MHz, CDCl₃).

Fig. S7. IR spectrum of phytosterol. 1382 cm⁻¹: δ (CH₃), 1462 cm⁻¹: δ _{as}(CH₂, CH₃), 2868/2953 cm⁻¹: v_{s+as} (CH₂, CH₃), 3273 cm⁻¹: v(OH). v, stretching mode; δ , bending in plane; s, symmetric vibration; as, asymmetric vibration.

Fig. S8. IR spectrum of Suc-phytosterol. 1180 cm⁻¹: v(C-O-C) for ester, 1377 cm⁻¹: $\delta(CH_3)$, 1462 cm⁻¹: $\delta_{as}(CH_2, CH_3)$, 1710/1722 cm⁻¹: $v_{as}(C=O)$ for ester, 2868/2953 cm⁻¹: v_{s+as} (CH₂, CH₃). v, stretching mode; δ , bending in plane; s, symmetric vibration; as, asymmetric vibration.

Fig. S9. IR spectrum of CHex-phytosterol. 1180 cm⁻¹: v(C-O-C) for ester, 1379 cm⁻¹: $\delta(CH_3)$, 1454 cm⁻¹: $\delta_{as}(CH_2, CH_3)$, 1705/1732 cm⁻¹: $v_{as}(C=O)$ for ester, 2868/2958 cm⁻¹: v_{s+as} (CH₂, CH₃). v, stretching mode; δ , bending in plane; s, symmetric vibration; as, asymmetric vibration.

grams of calcein (a) or rhodamine (b) fluorescence intensity for

Fig. S10. Histograms of calcein (a) or rhodamine (b) fluorescence intensity for cells treated with calcein-loaded, Rh-PE-lipid-labeled liposomes containing PS (black lines), Suc-PS (blue lines), and CHex-PS (red lines) for 3 h. Fluorescence intensity for untreated cells (gray line) was also shown as a negative control.