Paleoseismic event recorded in the Upper Cretaceous Nenjiang Formation in southeastern area of the Songliao Basin (NE China)

M. M. Zhang^{a,b,c*} and Y. P. Wang^a

^a Institute for Peat and Mire Research, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; ^b Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; ^c Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun 130024, China

*Corresponding author: Mingming Zhang <u>zhangmingming16@126.com</u> Corresponding address: School of Geographical Sciences, Northeast Normal University, Changchun 130024, China. Telephone number: +86 15948701536

Received 16 October 2017; accepted 28 May 2018

SUPPLEMENTARY PAPERS

Australian Journal of Earth Sciences (2019) 66, http://dx.doi.org/10.1080/08120099.2018.1499550

Copies of Supplementary Papers may be obtained from the Geological Society of Australia's website (<u>www.gsa.org.au</u>), the Australian Journal of Earth Sciences website (www.ajes.com.au) or from the National Library of Australia's Pandora archive (<u>http://nla.gov.au/nla.arc-25194)</u>.

Supplementary papers

Temperature (°C)	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar (×10⁻³)	⁴⁰ Ar*/ ³⁹ Ar _K	⁴⁰ Ar* (%)	Age (t ± 1σ) (Ma)
550	247.0	0.00	822.0	6.7	2.7	39.0 ± 29.9
650	18.1	0.07	26.1	10.4	57.7	59.8 ± 5.2
750	13.9	0.46	3.3	13.0	93.3	74.3 ± 7.1
850	15.1	3.02	5.7	13.7	90.5	78.5 ± 3.2
940	15.3	4.31	3.2	14.7	96.1	84.0 ± 0.7
970	15.3	4.62	3.9	14.5	95.0	83.2 ± 0.8
1000	15.3	4.71	2.8	14.9	97.2	85.3 ± 0.8
1050	14.8	0.00	1.7	14.2	96.6	81.3 ± 1.0
1120	15.2	5.90	3.6	14.7	96.2	83.9 ± 1.3
1250	18.0	5.80	13.2	14.7	81.2	84.0 ± 2.7

Table S1. 40Ar/39Ar analytical data for the sample YJCZ-1