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Online Supplement

A1. Derivation of Intrinsic Prior and Proof of Lemma 1

Here, a somewhat different notation is used than in the body of the article. In particular,

the base and alternative models are fixed and (βi, τi) is the parameter of model Mi. Let ỹ

with predictor matrix X̃ i be the training data with the distributional assumptions

f(ỹ|X̃ i,βi, τi) = N (ỹ|X̃ iβi, τ
−1
i I)

πRi (βi, τi) =
ci
τi

The base model has p0 covariates in the matrix X̃0 and the encompassing model has p1

covariates in the matrix X̃1. The training sample ỹ has dimension q > p1 and it is assumed

that X̃1 = (X̃0 X̃r). The reference marginal measures are improper and given by

mR
i (ỹ) =

ciΓ
(
q−pi
2

)
|X̃ ′iX̃ i|

1
2

(
πỹ′(I − H̃ i)ỹ

)− q−pi
2

where H̃ i is the usual hat matrix associated with X̃ i. The intrinsic prior for (β1, τ1) is given

by

π(β1, τ1|M1) = πR(β1, τ1|M1)E
M1
β1,τ1

[
mR

0 (ỹ)

mR
1 (ỹ)

]
,

where the notation EM
θ [h(ỹ)] = E[h(ỹ)|M, θ] is the conditional expectation of h(ỹ) given

θ and the model M . The only remaining task is to compute the expectation. Expanding
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mR
0 (ỹ), one can write

EM1
β1,τ1

[
mR

0 (ỹ)

mR
1 (ỹ)

]
=

∫ ∫ ∫
f(ỹ|X̃0,β0, τ0)

mR
1 (ỹ)

f(ỹ|X̃1,β1, τ1)dỹπ
R
0 (β0, τ0)dβ0dτ0

=

∫ ∫ ∫
|X̃ ′1X̃1|

1
2

c1Γ
(
q−p1
2

)(πỹ(I − H̃1)ỹ)
q−p1

2

×
( τ0

2π

) q
2

exp
(
−τ0

2
(ỹ − X̃0β0)

′(ỹ − X̃0β0)
)

×
( τ1

2π

) q
2

exp
(
−τ1

2
(ỹ − X̃1β1)

′(ỹ − X̃1β1)
)

dỹc0τ
−1
0 dβ0dτ0.

=

∫ ∫ ∫
c0|X̃

′
1X̃1|

1
2π

q−p1
2

c1Γ
(
q−p1
2

)
(2π)q

τ
q
2
−1

0 τ
q
2
1 (ỹ(I − H̃1)ỹ)

q−p1
2

× exp

(
−τ0 + τ1

2
(ỹ − µ̂ỹ)′(ỹ − µ̂ỹ)

)
× exp

(
− τ0τ1

2(τ0 + τ1)
(β0 − µ̂0)

′X̃
′
0X̃0(β0 − µ̂0)

)
× exp

(
− τ0τ1

2(τ0 + τ1)
β′1X̃

′
1(I − H̃0)X̃1β1

)
dỹdβ0dτ0

Gathering terms in the exponent and completing the square to isolate ỹ yields

EM1
β1,τ1

[
mR

0 (ỹ)

mR
1 (ỹ)

]
(1)

=
c0|X̃

′
1X̃1|

1
2π

q−p1
2

c1Γ
(
q−p1
2

)
(2π)q

τ
q
2
1

∫
τ
q
2
−1

0

∫ [∫
(ỹ(I − H̃1)ỹ)

q−p1
2 exp

(
−τ0 + τ1

2
(ỹ − µ̂ỹ)′(ỹ − µ̂ỹ)

)
dỹ

]
(2)

×exp

(
− τ0τ1

2(τ0 + τ1)
(β0 − µ̂0)

′X̃
′
0X̃0(β0 − µ̂0)

)
exp

(
− τ0τ1

2(τ0 + τ1)
β′1X̃

′
1(I − H̃0)X̃1β1

)
dβ0dτ0,

where µ̂ỹ = τ0X̃0β0+τ1X̃1β1

τ0+τ1
and µ̂0 = (X̃

′
0X̃0)

−1X̃
′
0X̃1β1. Integration is first performed over

ỹ. Transforming
√
τ0 + τ1(ỹ − µ̂ỹ) 7→ t and noting that µ̂′ỹ(I − H̃1) = 0 provide that the

integral in square brackets in (1) can be written as∫
(ỹ′(I − H̃1)ỹ)

q−p1
2 exp

(
−τ0 + τ1

2
(ỹ − µ̂ỹ)′(ỹ − µ̂ỹ)

)
dỹ

=
1

(τ0 + τ1)q−p1/2

∫
[t(I − H̃1)t]

q−p1
2 exp (−t′t/2)dt =

(2π)q/2

(τ0 + τ1)q−p1/2
Γ(q − p1)2(q−p1)/2

Γ( q−p1
2

)
,
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since t(I − H̃1)t ∼ χ2
q−p1 , a chi squared random variable with q − p1 degrees of freedom.

Thus, the expectation is given by

EM1
β1,τ1

[
mR

0 (ỹ)

mR
1 (ỹ)

]
=

∫ ∫
c0Γ (q − p1) |X̃

′
1X̃1|

1
2

c1Γ
(
q−p1
2

)2
(2π)

p1
2

τ
q
2
−1

0 τ
q
2
1

(τ0 + τ1)
q− p1

2

exp

(
− τ0τ1

2(τ0 + τ1)
(β0 − µ̂0)

′X̃
′
0X̃0(β0 − µ̂0)

)
× exp

(
− τ0τ1

2(τ0 + τ1)
β′1X̃

′
1(I − H̃0)X̃1β1

)
dβ0dτ0

=

∫
c0Γ (q − p1) |X̃

′
1X̃1|

1
2

c1Γ
(
q−p1
2

)2 |X̃ ′0X̃0|
1
2 (2π)

p1−p0
2

τ
q−p0

2
−1

0 τ
q−p0

2
1

(τ0 + τ1)
q− p1+p0

2

× exp

(
− τ0τ1

2(τ0 + τ1)
β′1X̃

′
1(I − H̃0)X̃1β1

)
dτ0

Applying the change of variables τ0
τ0+τ1

7→ w provides the differential identity w−1(1 −

w)−1dw = τ−10 dτ0. This provides

EM1
β1,τ1

[
mR

0 (ỹ)

mR
1 (ỹ)

]
=

c0Γ (q − p1) |X̃
′
1X̃1|

1
2 τ

p1−p0
2

1

c1Γ
(
q−p1
2

)2 |X̃ ′0X̃0|
1
2 (2π)

p1−p0
2

×
∫
w

q−p0
2
−1(1− w)

q−p1
2
−1exp

(
−wτ1

2
β′1X̃

′
1(I − H̃0)X̃1β1

)
dw

Note that

X̃
′
1(I − H̃0)X̃1 =

 0 0

0 X̃
′
r(I − H̃0)X̃r

 ,

and thus Lemma 1 is established.

Further, |X̃ ′1X̃1| = |X̃
′
0X̃0||X̃

′
r(I−H̃0)X̃r|, w

q−p0
2
−1 = w

p1−p0
2 w

q−p1
2
−1, and β1 = (β′0,β

′
r)
′,
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providing

EM1
β1,τ1

[
mR

0 (ỹ)

mR
1 (ỹ)

]
=

c0
c1

∫ [
|X̃ ′r(I − H̃0)X̃r|1/2(τ1w)

p1−p0
2

(2π)
p1−p0

2

exp
(
−wτ1

2
β′r(I − H̃0)X

′
rX̃rβr

)]

×

[
Γ(q − p1)
Γ
(
q−p1
2

)2w q−p1
2
−1(1− w)

q−p1
2
−1

]
dw

=
c0
c1

∫
πR1 (βr|τ1, w)π1(w)dw,

where πR1 (βr|τ1, w) is a multivariate normal density with mean 0 and covariance matrix

τ−11 w−1(X̃
′
r(I− H̃0)X̃r)

−1, and π1(w) is a Beta
(
q−p1
2
, q−p1

2

)
density. Therefore the intrinsic

prior can be written as

πI1(β0,βr, τ1) = πR(β0,βr, τ1)E
M1
β1,τ1

[
mR

0 (ỹ)

mR
1 (ỹ)

]
= πI1(β0, τ1)

∫
πR1 (βr|τ1, w)π1(w)dw,

because πR1 (β0,βr, τ1) = c1τ
−1
1 and πI1(β0, τ1) = c0τ

−1
1 . This establishes mixture of g-priors

representation of the intrinsic prior.

Three things are immediate. First, the intrinsic prior is a scaled mixture of g-priors with

a beta mixing distribution. Second, the prior πI1(βr, w|τ1) = πI1(βr|τ1, w)π1(w) is proper.

Third, the prior πI1(β0, τ1) is the reference prior for the base model.

A2. Convergence of the Normal-Gamma Densities

To prove that the Normal-Gamma densities converge to the appropriate point mass, it is

proven that each marginal distribution converges to the appropriate point mass when MT is

the true model. The proof is similar for both cases and so it is proven for the lower bound.
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For convenience, assume that Xr,T ⊥X0 and X̃
′
TX̃ = qT

n
X ′TX, although the proof follows

by similar arguments without the orthogonality assumption.

Proof. A lower bound for the intrinsic posterior is given by

pI(βT , τ |y,MT ) ≥
C
|X̃′r,T X̃r,T |

1
2 τ

pT−p0
2

(2π)
pT−p0

2

exp
(
− τ

2
β′r,TX̃

′
r,TX̃r,Tβr,T

)
pR(β, τ |y,MT )

∫
C
|X̃′r,T X̃r,T |

1
2 τ

pT−p0
2

(2π)
pT−p0

2

pR(β, τ |y,MT )dβdτ

(3)

=

(
y′(I −H0 −Hr,T )y

y′(I −H0 − n
n+qT

Hr,T )y

)n−p0
2 (

n

n+ qT

)− pT−p0
2

×NG
(
βT , τ

∣∣∣∣β̂T,n, τ−1Ω−1T,n, n− p02
,
n− p0

2σ̂2
n

) ∏
a/∈T

δ0(βr,a)

where

β̂T,n =

 (X ′0X0)
−1X ′0y

n
n+qT

(X ′r,TXr,T )−1X ′r,Ty

 (4)

ΩT,n =

 X ′0X0 0

0 n+qT
n
X ′r,TXr,T

 (5)

σ̂2
T,n =

y′(I −H0 − n
n+qT

Hr,T )y

n− p0
(6)

The marginal for τ is G
(
n−p0
2
, n−p0
2σ̂2
T,n

)
, which converges weakly to δτ∗ since σ̂2

T,n → 1
τ∗

.

The marginal for βj is a Student’s-t distribution centered at
(
β̂T,n

)
j

with scaling fac-

tor
(
σ̂2
T,n

(
Ω−1T,n

)
jj

) 1
2
. This converges weakly to δβ∗j because the scaling factor converges

to 0 — due to the assumption that 1
n
X ′X converges to a positive definite matrix. The

coefficient in front of the Normal-Gamma distribution converges to exp
(
− τ∗

2
`T
)

where

y′Hr,Ty
(

qT
n+qT

)
→ `T which is finite because T is the true model. The remainder of the

proof follows by similar arguments.
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A3. Change of Variables and Direct Sampling

Direct sampling for the intrinsic, Zellner-Siow, and hyper g-over-n priors can be achieved if

samples from the posterior of w can be drawn for each prior. This is accomplished through

an appropriate change of variables θ = ζ(w) for each of the priors where θ has a bounded

density on (0, 1). θ can then be sampled using an accept-reject algorithm with an appropriate

enveloping density. Such a density can be achieved using a dyadic partition of the interval

and piecewise linear interpolation.

These transformations of variables also make the calculation of the Bayes’ factor of a

model MA to the base model tractable through the integration of a bounded function over

(0, 1). If it is assumed that X̃
′
AX̃A = pA+1

n
X ′AXA, then BF π

A,0 is defined by BF π
A,0(y) =∫

BFA,0(y|w)π(w)dw where

BFA,0(y|w) =

(
w(pA + 1)

n+ w(pA + 1)

) pA−p0
2
(

1−R2
A

n

n+ w(pA + 1)

)−n−p0
2

The posterior distribution of w is given by p(w|y,MA, π) =
(
BF π

A,0(y)
)−1

BFA,0(y|w)π(w).

The function BFA,0(y|w) is bounded as a function of w for all w ∈ R+. Thus, if the

transformation θ = ζ(w) makes the prior bounded, then the posterior for θ will be bounded

and the integral can be stably computed.

Intrinsic Posterior of w For the intrinsic prior, the change of variables w = sin2
(
π
2
θ
)

provides a bounded prior for θ on (0, 1). In fact,

πI(w)dw =
I(0 < w < 1)dw

π(w(1− w))
1
2

= I(0 < θ < 1)dθ = πI(θ)dθ

and so the intrinsic prior for θ is uniform.
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Zellner-Siow Posterior of w For the Zellner-Siow prior, with πZS(w) =
exp(−w2 )√

2πw
, the

change of variables w = 1

sin2(π2 θ)
− 1 provides

πZS(w)dw = I(w > 0)
w−

1
2

√
2π

exp
(
−w

2

)
dw

=

√
πI(0 < θ < 1)√

2 sin2
(
π
2
θ
) exp

(
−1

2

(
1

sin2
(
π
2
θ
) − 1

))
dθ = πZS(θ)dθ

For any value of pA − p0, the posterior density of θ converges to 0 as θ converges to 0 or 1.

Hyper g over n Posterior of w The situation is slightly more complicated for the hyper

g prior, which is given by

πHG(w|a, b) =
Γ
(
a+1
2

)
Γ
(
1
2

)
Γ
(
a
2

) (w
b

) 1
2
(

1 +
w

b

)−a+1
2 1

w

The change of variables is based on the value of a:

w =
b

sin2k
(
π
2
θ
) − b for k ≥ 1

a
, k ∈ N

This provides the identity:

πHG(w|a, b)dw =
Γ
(
a+1
2

)
Γ
(
1
2

)
Γ
(
a
2

) (w
b

) 1
2
(

1 +
w

b

)−a+1
2 I(w > 0)dw

w

=
Γ
(
a+1
2

)
Γ
(
1
2

)
Γ
(
a
2

) (k−1∑
`=0

sin2`
(π

2
θ
))− 1

2 (
sin
(π

2
θ
))ka−1

kπI(0 < θ < 1)dθ

Any value of k ≥ 1
a

with k ∈ N provides a bounded prior density πHG(θ|a, b, k). In particular,

for k = a = 1, the prior is uniform θ over (0, 1).
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A4. Skewness of the Posterior Conditioned on a Se-

lected Model

The marginal posterior distribution of a given β is skewed. The skewness is defined as

Skew(β) = E

(β − E[β|y,MA, π]

V ar(β|y,MA, π)
1
2

)3
∣∣∣∣∣∣y,MA, π


for n− p0 > 3.

If MA � β, then the third central moment of β can be expressed as

κ3(β) = E
[
(β − E[β|y,MA, π])3 |y,MA, π

]
(7)

= E
[
(E[β|w,y,MA, π]− E[β|y,MA, π])3 |y,MA, π

]
+ 3E [V ar[β|w,y,MA, π] (E[β|w,y,MA, π]− E[β|y,MA, π]) |y,MA, π ]

The second central moment of β can be expressed as

κ2(β) = E
[
(β − E[β|y,MA, π])2 |y,MA, π

]
(8)

= E
[
(E[β|w,y,MA, π]− E[β|y,MA, π])2 |y,MA, π

]
+ E [V ar[β|w,y,MA, π] |y,MA, π ]

The same expressions hold for M0 |= β and any MA.

In order to illustrate the skewness, we focus on the case where yi = β0 + β1x1,i + εi for

i = 1, . . . , n, where εi
iid∼ N(0, σ2) and εi is independent of xi. In such a situation,

(
β̂MLE
1

)2
=

R2
Aσ̂

2
0

V ar(x1)
where σ̂2

0 is the residual variance under the intercept only model. We can characterize

the skewness of β1 conditioned on the full model in terms of R2
A, n, and the sign of β̂MLE

1 .

In particular, defining r = n
n+w(pA+1)

and r̂ = E[r|y,MA, π] provides

Skew(β1)

sign
(
β̂MLE
1

) =

(R2
A)

1
2

{
E
[
R2
A (r − r̂)3 + 3

n−3 (1− rR2
A) r (r − r̂)

∣∣y,MA, π
]}

{
E
[
R2
A (r − r̂)2 + 1

n−3 (1− rR2
A) r

∣∣y,MA, π
]} 3

2
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A similar characterization holds when there is more than one covariate in the model, though

the formulas are more complicated. They involve not only R2
A, but also the percentages of

R2
A attributed to each regressor.

The skewness of β is non-zero (y a.e.) and converges to 0 as the sample size increases.

Figure 1 shows Skew(β1) for sign
(
β̂MLE
1

)
= 1 as a function of R2

A for n = 10, 30, 60, 90.

In general, the skewness is positive for small values of R2
A and negative for large values of

R2
A. Additionally, the intrinsic prior produces generally less shrinkage (in absolute value)

than the Zellner-Siow and Hyper g-priors, though this can be violated. Figure 2 shows the

skewness as a function of n for R2
A = 0.2, 0.4, 0.6, 0.8 and demonstrates that the skewness

converges to 0 and n→∞. and that the skewness of the intrinsic prior converges to 0 faster

than the skewness for the Zellner-Siow and Hyper g-priors unless R2
A is large
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Figure 1: Plots of Skew(β1) as a function of R2
A for the linear model with one covariate.

0.0 0.2 0.4 0.6 0.8 1.0

-0
.4

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

n = 10

RA
2

S
ke
w
(β
)

Normal
Hyper g (a=2,b=1)
Zellner-Siow
Intrinsic

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

n = 60

RA
2

S
ke
w
(β
)

Normal
Hyper g (a=2,b=1)
Zellner-Siow
Intrinsic

(b)

0.0 0.2 0.4 0.6 0.8 1.0

-0
.0
5

0.
00

0.
05

0.
10

0.
15

n = 30

RA
2

S
ke
w
(β
)

Normal
Hyper g (a=2,b=1)
Zellner-Siow
Intrinsic

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

n = 90

RA
2

S
ke
w
(β
)

Normal
Hyper g (a=2,b=1)
Zellner-Siow
Intrinsic

(d)

11



Figure 2: Plots of Skew(β1) as a function of n for the linear model with one covariate.
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A5. Simulation Study

We performed a simulation study to investigate the properties of the intrinsic prior and

different priors on the model space. For this simulation, the base model is the intercept only

model, there are K = 40 test covariates, and n = 100 observations. The test covariates X

are generated as X = ZC where Z is an n × K matrix of N(0, σ2) deviates and C is a

K ×K matrix with ones on the diagonal and ρ off of the diagonal. We let σ ∈ {1, 1.5, 2, 3}

and ρ ∈ {0, .25}. The true value of the regression coefficients are β0 = 1, βr,a = 0.6 ∗ a for

a = 1, . . . , 5, and βr,a = 0 for a > 5, which allows us to compare the behavior of the posterior

distribution of coefficients of covariates with varying signal strength. The simulation involved

1000 replicates for each combination of σ and ρ. Posterior probabilities were computed via

renormalization, taking p(M |y) ∝ p(y|M)p(M) and normalizing over the models considered

in the random walk. The selected model is the model maximizing its estimated posterior

probability. The model space was explored using a random walk with 10000 iterations,

initialized at the base model.

In addition to investigating the behavior of the posterior across these scenarios, we also

compare the prediction and model selection properties of three priors on the model space.

The first prior is the standard uniform prior. The second prior is the multiplicity correction

prior where the probability of a model M with k covariates is π(M) = 1
K+1

(
K
k

)−1
. This prior

is obtained by treating the inclusion of variables as independent Bernoulli random variables

with probability p. This probability is then given a uniform prior on (0, 1). Though this

prior does provide a correction for the combinatorial complexity of the model space, it does

not explicitly penalize models for the number of covariates they use. Increasing the number

of covariates in a model decreases the model’s probability until K/2 covariates are added,

at which point the probabilities increase. An alternative is a prior that provides greater

penalization than the multiplication prior. An example of this is to let the prior for p to

be Beta(1, K). This prior has the desirable property that M ⊂ M ′ provides that the prior
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probability of M is at least that of M ′.

We consider coverage and length of intervals computed under the uniform prior, the pre-

dictive sum of squared errors under each of the model space priors, as well as the model

selection properties of the three priors.

A5.1 Coverage and Length of Intervals

Tables 1 and 2 show the average coverage (and length) of three different 95% intervals for

ρ = 0 and 0.25, respectively. We computed the intervals for each βr,a for a = 0, . . . , 6.

The three intervals we consider are the quantile based credible set under model averaging,

the quantile based credible interval conditioned on the selected model, and the standard

frequentist confidence interval for the MLE conditioned on the selected model. The uniform

prior on the model space was used to compute the credible set under model uncertainty as

well as performing model selection.

Three facts are apparent from the tables. First, with few exceptions, the credible sets under

model uncertainty have higher coverage than those conditioned on the selected model. The

better coverage of the credible sets under model uncertainty is explained by their longer

Lebesgue measure, which can be considerably larger than the length of intervals conditioned

on the selected model. Second, as the signal strength decreases (either by increasing σ of

decreasing the true value of the regression coefficient), the coverage suffers, failing to reach

the nominal level. This is most pronounced for the intervals conditioned on the selected

model. Third, the coverage also decreases when the covariates are correlated. As we will see

later in this example, this poor behavior is most likely caused by the poor behavior of the

model posterior probabilities under the uniform prior.
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σ Type β0 β1 β2 β3 β4 β5 β6

1 MA CS 0.945 0.947 0.947 0.965 0.958 0.936 0.999

(0.385) (0.414) (0.411) (0.413) (0.415) (0.413) (0.05)

SM CI 0.947 0.938 0.937 0.955 0.95 0.931 0.986

(0.388) (0.401) (0.401) (0.402) (0.405) (0.402) (0.005)

SM FI 0.946 0.937 0.94 0.952 0.946 0.931 0.986

(0.386) (0.399) (0.399) (0.4) (0.403) (0.4) (0.005)

1.5 MA CS 0.945 0.918 0.951 0.946 0.945 0.938 0.997

(0.569) (0.599) (0.61) (0.611) (0.61) (0.607) (0.094)

SM CI 0.946 0.898 0.94 0.937 0.93 0.929 0.978

(0.572) (0.546) (0.592) (0.592) (0.591) (0.588) (0.013)

SM FI 0.944 0.896 0.937 0.936 0.923 0.927 0.978

(0.569) (0.544) (0.59) (0.589) (0.588) (0.584) (0.013)

2 MA CS 0.944 0.869 0.942 0.956 0.937 0.941 0.995

(0.762) (0.734) (0.825) (0.825) (0.824) (0.823) (0.15)

SM CI 0.945 0.719 0.931 0.939 0.933 0.927 0.968

(0.765) (0.587) (0.793) (0.794) (0.794) (0.793) (0.024)

SM FI 0.944 0.715 0.93 0.933 0.928 0.929 0.968

(0.759) (0.587) (0.792) (0.792) (0.79) (0.787) (0.024)

3 MA CS 0.945 0.729 0.926 0.933 0.918 0.902 0.993

(1.144) (0.85) (1.21) (1.236) (1.232) (1.248) (0.339)

SM CI 0.942 0.413 0.907 0.924 0.902 0.902 0.941

(1.145) (0.528) (1.116) (1.183) (1.18) (1.192) (0.078)

SM FI 0.942 0.402 0.896 0.92 0.91 0.905 0.938

(1.134) (0.532) (1.122) (1.186) (1.179) (1.185) (0.078)

Table 1: Average coverage (and length) of three different 95% intervals. MA CS is the

quantile based credible set under model uncertainty. SM CI is the quantile based credible

interval under the selected model. SM FI is the standard frequentist confidence interval

under the selected model. The prior on the model space is uniform and ρ = 0.
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σ Type β0 β1 β2 β3 β4 β5 β6

1 MA CS 0.952 0.951 0.951 0.93 0.945 0.947 1

(0.387) (0.461) (0.457) (0.456) (0.456) (0.457) (0.041)

SM CI 0.955 0.942 0.942 0.919 0.937 0.935 0.99

(0.39) (0.436) (0.437) (0.437) (0.436) (0.437) (0.004)

SM FI 0.953 0.938 0.94 0.917 0.936 0.93 0.99

(0.388) (0.434) (0.435) (0.434) (0.434) (0.435) (0.004)

1.5 MA CS 0.948 0.893 0.945 0.954 0.959 0.955 0.999

(0.581) (0.656) (0.694) (0.694) (0.698) (0.693) (0.082)

SM CI 0.95 0.821 0.926 0.943 0.941 0.937 0.986

(0.585) (0.556) (0.655) (0.656) (0.658) (0.654) (0.009)

SM FI 0.95 0.819 0.926 0.935 0.939 0.934 0.986

(0.581) (0.554) (0.652) (0.654) (0.655) (0.651) (0.009)

2 MA CS 0.947 0.811 0.942 0.936 0.945 0.954 0.999

(0.764) (0.737) (0.91) (0.913) (0.911) (0.911) (0.137)

SM CI 0.951 0.591 0.923 0.919 0.914 0.937 0.98

(0.767) (0.533) (0.849) (0.857) (0.856) (0.856) (0.017)

SM FI 0.945 0.588 0.922 0.917 0.909 0.929 0.98

(0.762) (0.532) (0.847) (0.855) (0.853) (0.852) (0.017)

3 MA CS 0.951 0.663 0.89 0.955 0.936 0.942 0.992

(1.148) (0.806) (1.316) (1.384) (1.38) (1.394) (0.295)

SM CI 0.951 0.323 0.849 0.93 0.918 0.916 0.95

(1.152) (0.465) (1.141) (1.286) (1.289) (1.301) (0.065)

SM FI 0.949 0.313 0.843 0.929 0.907 0.923 0.95

(1.143) (0.465) (1.141) (1.285) (1.287) (1.297) (0.065)

Table 2: Average coverage (and length) of three different 95% intervals. MA CS is the

quantile based credible set under model uncertainty. SM CI is the quantile based credible

interval under the selected model. SM FI is the standard frequentist confidence interval

under the selected model. The prior on the model space is uniform and ρ = 0.25.
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A5.2 Predicted Sum of Squared Errors

Table 3 provides the predictive sum of squared errors — defined in Section 4.4 — for different

model space priors. We compare the model averaged means, the model averaged MLEs, the

selected model means, and the selected model MLE for point estimates of β.

Most striking from this example is the fact that the uniform prior produces much larger

predictive error than the multiplicity correction and penalization priors — the latter two

providing essentially the same predictive error. This gain is most pronounced when σ is large.

It is also apparent from this example that model averaging provides smaller predictive error

than conditioning on the highest probability model. There is a slight increase in predictive

error when ρ = 0.25 versus when ρ = 0 when using the multiplicity or penalization priors,

which is caused by the increased marginal variance in each xi introduced by ρ.
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Prior Estimator (0,1) (0,1.5) (0,2) (0,3) (0.25,1) (0.25,1.5) (0.25,2) (0.25,3)

Uniform MA Mean 8.92 23.10 49.81 136.29 8.06 22.23 44.84 125.07

SM Mean 9.37 24.35 56.14 153.41 8.06 23.62 50.46 141.48

MA MLE 8.97 23.53 50.78 142.60 8.08 22.44 45.40 128.02

SM MLE 9.42 24.74 57.24 160.54 8.08 23.81 51.03 144.92

Multiplicity MA Mean 6.23 18.13 36.69 98.29 6.38 19.03 36.50 95.17

SM Mean 6.09 19.60 41.32 106.28 6.34 21.67 41.69 110.66

MA MLE 6.25 18.37 36.93 100.07 6.38 19.14 36.73 95.69

SM MLE 6.11 19.85 41.66 108.44 6.35 21.80 41.98 111.65

Penalizing MA Mean (P) 5.95 18.48 36.33 96.25 6.46 19.98 37.21 97.80

SM Mean (P) 5.89 20.94 41.64 110.07 6.45 22.98 42.30 116.67

MA MLE (P) 5.97 18.68 36.45 97.03 6.47 20.08 37.39 97.95

SM MLE (P) 5.91 21.17 41.90 111.88 6.46 23.11 42.56 117.50

Table 3: Comparison of average predictive sum of squared errors under different model space

priors. The columns describe (ρ, σ).

A5.3 Model Selection Properties

Inclusion Probabilities for non-zero covariates In Table 4 we compare the average

inclusion of the true non-zero covariates in the selected model under each of the three model

space priors. Differences are most pronounced for β1 and β2, which correspond to the covari-

ates with the weakest signals. The penalization prior produces the largest average inclusion

of each variable in the selected model under all circumstances. Increasing σ or introducing

ρ decrease the probability of including these variables in the selected model, as expected as

the signal weakens under both scenarios.
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Covariate Prior (0,1) (0,1.5) (0,2) (0,3) (0.25,1) (0.25,1.5) (0.25,2) (0.25,3)

x1 Uniform 0.977 0.711 0.41 0.295 0.954 0.586 0.317 0.136

Multiplicity 0.989 0.794 0.489 0.31 0.972 0.668 0.391 0.163

Penalizing 0.997 0.927 0.753 0.461 0.997 0.858 0.63 0.367

x2 Uniform 1.000 1.000 0.989 0.832 1.000 0.999 0.979 0.669

Multiplicity 1.000 1.000 0.992 0.872 1.000 0.999 0.987 0.727

Penalizing 1.000 1.000 1.000 0.95 1.000 1.000 0.994 0.888

x3 Uniform 1.000 1.000 1.000 0.968 1.000 1.000 1.000 0.987

Multiplicity 1.000 1.000 1.000 0.986 1.000 1.000 1.000 0.991

Penalizing 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.998

x4 Uniform 1.000 1.000 1.000 0.998 1.000 1.000 1.000 0.997

Multiplicity 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000

Penalizing 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

x5 Uniform 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Multiplicity 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Penalizing 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4: Comparison of average inclusion probabilities for “true” covariates in the selected

model under different model space priors. The columns describe (ρ, σ).

Properties of Selected and True Model The final comparison we make regards the

properties of the selected and true models under each of the three priors, which is presented

in Table 5. We track the probability of the selected and true models, the rank of the true

model, and the number of true and false positives. This is where the differences in the priors

on the model space are the most striking. Under the uniform prior, the posterior probabilities

of all of the models are quite small. In contrast, the multiplicity correction and penalization

priors concentrate mass on parsimonious models that fit the data reasonably well. Most

striking is the rank of the true model under the different scenarios. As the signal to noise
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ratio decreases (by increasing σ or introducing ρ), the rank of the true model decreases

dramatically under the uniform prior. In contrast, the other priors provide a high rank for

the true model. The trade off is between true and false positive rates. The uniform prior

has a larger true positive rate, at the expense of increasing the number of false positives.

The penalizing prior is more conservative, sacrificing weak true positives in order to decrease

false positives.
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Scenario Prior P(selected model) TP FP Rank(true model) P(true model)

(0,1) Uniform 0.044 4.997 0.599 44.089 0.036

Multiplicity 0.461 4.989 0.081 1.255 0.447

Penalizing 0.675 4.977 0.03 1.078 0.66

(0,1.5) Uniform 0.019 4.927 0.8 197.392 0.014

Multiplicity 0.336 4.794 0.124 2.492 0.274

Penalizing 0.55 4.711 0.057 1.872 0.428

(0,2) Uniform 0.008 4.753 1.368 969.306 0.004

Multiplicity 0.256 4.481 0.171 5.285 0.136

Penalizing 0.484 4.399 0.084 3.511 0.228

(0,3) Uniform 0.005 4.41 2.171 3440.147 0.002

Multiplicity 0.263 4.167 0.433 24.156 0.089

Penalizing 0.491 4.093 0.321 9.513 0.162

(0.25,1) Uniform 0.084 4.997 0.371 5.592 0.075

Multiplicity 0.55 4.972 0.057 1.111 0.534

Penalizing 0.721 4.954 0.024 1.084 0.7

(0.25,1.5) Uniform 0.033 4.858 0.595 51.446 0.025

Multiplicity 0.399 4.667 0.089 2.000 0.289

Penalizing 0.585 4.585 0.036 1.888 0.387

(0.25,2) Uniform 0.018 4.624 0.855 378.498 0.01

Multiplicity 0.34 4.378 0.133 6.162 0.143

Penalizing 0.542 4.296 0.065 4.653 0.192

(0.25,3) Uniform 0.006 4.253 1.576 1962.423 0.002

Multiplicity 0.261 3.881 0.252 29.323 0.039

Penalizing 0.467 3.789 0.173 20.72 0.054

Table 5: Comparison of model selection properties under different model space priors. Sce-

nario describes (ρ, σ). The columns from left to right are the probability of the selected

model, the number of true positives, the number of false positives, the rank of the true

model and the probability of the true model.
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