
Additional numerical examples to “The Sparse MLE for

Ultra-High-Dimensional Feature Screening”

Blinded 1 and Blinded 2

A. Testing Under Marginally Independent Data Structure

In the main article, we have empirically tested the proposed SMLE on the datasets where

the covariates have independent, auto-correlated or compound structures. Fan et al. (2009) con-

sidered an interesting setup in their numerical studies, where one relevant feature is marginally

independent with the response but not jointly independent in the presence of other features. The

marginal-effect-based screening methods (e.g. SIS) may hence fail to identify such important fea-

tures. Since SMLE is a joint-effect-based method, it is interesting to examine its performance

under this particular situation.

To this end, we first generate features according to the following setting, which is the same as

setup S3 in the main context of the paper:

S3: Candidate features x1, . . . , xp are joint normal, marginally N(0, 1), with cov(xj, xh) = 0.15

for j, h ∈ s∗ and cov(xj, xh) = 0.3 for j or h ∈ s∗c .

The desired situation is created by the deliberate choices on the relevant features and their

effects, which is given as follows.

Linear: s∗ = {1, 2, 3, 4} with βs∗ = (1, 1, 1,−0.45)T , βs∗c
= 0, and (n, p, σ) = (100, 1000, 1).

Logistic: s∗ = {1, 2, 3, 4} with βs∗ = (1.5, 1.5, 1.5,−0.675)T , βs∗c
= 0, and (n, p) = (400, 1000).

Poisson: s∗ = {1, 2, 3, 4} with βs∗ = (0.6, 0.6, 0.6,−0.27)T , βs∗c
= 0, and (n, p) = (200, 1000).

Under the normal linear regression, it is seen that

cov(X4, Y ) = cov(X4, X1 +X2 +X3 − 0.45X4) = 0.15 + 0.15 + 0.15− 0.45 = 0.

The joint normality implies X4 and Y are independent. Clearly, X4 is still an important feature,

but a marginal-effect-based method is likely to miss it. See Fan et al. (2009) for interpretations

of the other two settings.
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Table A.1: Simulation results under the setup that X4 is marginally uncorrelated with Y .

Models 1st Stage 2nd Stage RC PSR FDR CSR AMS P.err TIME

Linear SIS − .00 .63 .88 .00 21.0 .45 .70

LASSO .00 .58 .47 .00 4.8 .62 .87

SCAD .00 .61 .27 .00 3.7 .37 1.02

ISIS − .67 .91 .83 .00 21.0 .46 4.67

LASSO .27 .76 .37 .02 5.38 .52 4.81

SCAD .60 .88 .25 .29 5.01 .15 5.31

FR − .66 .91 .83 .00 21.0 .55 6.23

LASSO .45 .85 .27 .06 5.1 .41 6.35

SCAD .63 .90 .18 .37 4.6 .11 7.19

LASSO − .79 .95 .81 .00 19.7 .34 .02

LASSO .15 .71 .41 .01 5.3 .60 .16

SCAD .69 .90 .30 .19 5.5 .14 .46

SMLE − .92 .98 .81 .00 21.0 .44 .23

LASSO .28 .80 .32 .02 5.1 .53 .37

SCAD .74 .92 .23 .30 5.1 .14 1.18

Logistic SIS − .00 .74 .80 .00 15.0 .20 2.91

LASSO .00 .73 .06 .00 3.19 .20 3.57

SCAD .00 .74 .03 .00 3.09 .19 3.63

ISIS − .58 .90 .76 .00 15. .22 16.2

LASSO .31 .83 .13 .03 4.1 .19 16.6

SCAD .54 .88 .12 .39 4.1 .18 17.2

LASSO − .76 .94 .73 .00 14.1 .20 .06

LASSO .13 .78 .09 .02 3.55 .20 .51

SCAD .70 .93 .05 .57 3.96 .18 .86

SMLE − .98 .98 .73 .00 15.0 .22 3.75

LASSO .31 .83 .09 .06 3.9 .19 4.21

SCAD .77 .94 .08 .57 4.2 .18 4.68

Poisson SIS − .00 .64 .88 .00 21.0 .17 3.01

LASSO .00 .61 .48 .00 5.25 .33 3.49

SCAD .00 .62 .46 .00 5.23 .26 4.97

ISIS − .79 .95 .82 .00 21.0 .16 17.62

LASSO .48 .86 .32 .07 5.48 .17 18.02

SCAD .70 .92 .22 .33 5.02 .03 20.42

LASSO − .81 .95 .79 .00 19.0 .09 .03

LASSO .19 .75 .42 .02 5.74 .28 .38

SCAD .72 .91 .30 .22 5.69 .07 1.61

SMLE − .90 .97 .81 .00 21.0 .19 .60

LASSO .54 .87 .21 .12 4.72 .14 .97

SCAD .79 .94 .11 .59 4.40 .03 3.94

Does SMLE has the promised utility of taking joint effect into consideration? We carried

out numerical studies on 500 datasets from above models, with all other simulation settings kep-

t unchanged. The results are summarized in Table A.1. As anticipated, we observe that the

marginal-effect-based SIS fails completely in terms of retaining s∗. In comparison, other screening
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methods perform reasonably well, as they all take the joint effects of features in the screening pro-

cess. The proposed SMLE has the top performances by achieving the highest retaining capability

with a relative low computation cost.

B. Testing Under Model Mis-specification

Up to this moment, the feature selections are carried out when the data-generating models

are provided without errors. This is unrealistic in applications, especially in the high-dimensional

situations. The sensitivity of model mis-specification is always an important issue for an analytic

method. For this purpose, we designed additional simulation studies in this section.

For easy comparison, we adopt the same correlation and parameter settings S1-S3 as described

in Sections 6.1-6.4. We generated the response variables under two scenarios. The first one is the

same as Example 5 of Wang (2009) - the presumed model is a linear regression with normal error

distribution but the data are generated with a heavy-tail error distribution. The second one is

when the data set is contaminated by outliers, where the effect of one relevant feature is reversed

in a percentage of observations. More specifically,

Scenario 1: Y = XTβ + e, where the error e follows a centered exponential distribution with

rate parameter σ > 0. That is, P (e+ σ−1 > t) = exp(−σt) for t ≥ 0

Scenario 2: 90% of observations are generated from the linear model Y = XTβ + e with e ∼
N(0, 1), and the other 10% from Y = XT β̃ + e such that β̃ = β except for β̃s∗3

= −βs∗3
.

Under Scenario 2, the effect of the 3rd relevant feature is substantially weakened. It is therefore

of interest to see how the performances of different methods are affected.

We analyze the data as if they were generated from a presumed normal linear model, and

apply the same set of methods for feature screening. The results are summarized in Tables B.1-

B.2. Based on Table B.1, we notice that the heavy-tail error distribution has little impact on all

five methods. There is a close match between Table B.1 and Table 1 (section 6.4) in all aspects.

Based on Table B.2, the presence of outliers under Scenario 2 deteriorates the retaining capability

for all five methods. There is no winner under this situation. Nevertheless, the proposed SMLE

is reasonably robust, by achieving relatively high RC/PSR in all three correlation settings.
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Table B.1: Simulation results for linear regression with heavy-tail random errors

Setup 1st Stage 2nd Stage RC PSR FDR CSR AMS P.err TIME

S1 SIS − .23 .84 .78 .00 31.0 .49 10.64

LASSO .23 .84 .11 .17 7.7 .62 10.88

SCAD .23 .84 .12 .17 7.8 .42 11.04

ISIS − .92 .99 .74 .00 31.0 .41 62.74

LASSO .82 .97 .11 .41 8.9 .57 63.01

SCAD .92 .99 .07 .56 8.6 .14 64.08

FR − .99 .99 .74 .00 31.0 .53 162.86

LASSO .98 .99 .07 .61 8.75 .44 163.11

SCAD .98 .99 .09 .47 8.94 .12 163.23

LASSO − .97 .99 .73 .00 29.1 .35 .39

LASSO .81 .97 .11 .39 8.9 .58 .64

SCAD .95 .99 .07 .53 8.7 .20 1.82

SMLE − .98 .99 .74 .00 31.0 .45 2.62

LASSO .91 .99 .09 .46 8.9 .55 2.89

SCAD .97 .99 .08 .52 8.8 .14 3.06

S2 SIS − .58 .91 .81 .00 24.0 .34 4.51

LASSO .34 .83 .09 .23 4.7 .41 4.73

SCAD .28 .78 .14 .22 4.7 .26 4.95

ISIS − .66 .93 .81 .00 24.0 .41 23.70

LASSO .39 .85 .11 .26 4.85 .39 23.93

SCAD .31 .79 .18 .20 5.00 .30 24.25

FR − .38 .78 .84 .00 24.0 .57 45.24

LASSO .32 .77 .23 .23 5.24 .33 45.41

SCAD .20 .73 .28 .12 5.31 .25 45.78

LASSO − .89 .98 .78 .00 22.4 .34 .12

LASSO .43 .86 .09 .29 4.82 .41 .33

SCAD .34 .82 .16 .24 5.01 .30 .83

SMLE − .77 .95 .80 .00 24.0 .44 1.17

LASSO .46 .87 .10 .33 4.9 .39 1.38

SCAD .30 .80 .19 .19 5.1 .27 1.93

S3 SIS − .00 .32 .94 .00 21.0 .89 .74

LASSO .00 .22 .91 .00 9.8 .95 .95

SCAD .00 .24 .90 .01 9.8 .94 .97

ISIS − .73 .84 .84 .00 21.0 .57 5.69

LASSO .52 .70 .66 .02 8.96 .87 5.90

SCAD .73 .78 .30 .51 5.92 .26 6.24

FR − .86 .87 .83 .00 21.0 .60 6.55

LASSO .75 .83 .54 .03 8.07 .83 6.76

SCAD .85 .87 .22 .57 5.29 .14 7.35

LASSO − .26 .61 .88 .00 19.8 .71 .01

LASSO .03 .33 .87 .00 9.88 .95 .22

SCAD .26 .47 .66 .24 8.38 .70 .24

SMLE − .99 1.00 .81 .00 21.0 .49 .34

LASSO .66 .88 .55 .02 8.5 .91 .57

SCAD .99 .99 .08 .69 4.5 .01 .92
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Table B.2: Simulation results for linear regression with 10% outliers

Setup 1st Stage 2nd Stage RC PSR FDR CSR AMS P.err TIME

S1 SIS − .16 .82 .79 .00 31.0 .48 9.63

LASSO .16 .81 .16 .08 7.9 .58 9.84

SCAD .16 .81 .17 .09 8.0 .42 10.08

ISIS − .83 .97 .75 .00 31.0 .41 51.86

LASSO .65 .95 .16 .19 9.26 .54 52.11

SCAD .80 .97 .14 .25 9.21 .16 53.23

FR − .96 .99 .74 .00 31.0 .53 153.71

LASSO .95 .99 .17 .21 9.8 .39 153.94

SCAD .95 .99 .20 .13 10.1 .14 153.10

LASSO − .92 .99 .73 .00 29.0 .35 .35

LASSO .65 .95 .17 .17 9.4 .55 .57

SCAD .88 .98 .15 .23 9.5 .21 1.79

SMLE − .89 .99 .75 .00 31.0 .46 2.45

LASSO .80 .97 .16 .22 9.5 .51 2.69

SCAD .89 .99 .16 .22 9.6 .17 2.89

S2 SIS − .55 .90 .81 .00 24.0 .34 3.93

LASSO .21 .77 .11 .14 4.45 .41 4.10

SCAD .15 .74 .16 .10 4.54 .27 4.26

ISIS − .56 .90 .81 .00 24.0 .40 18.36

LASSO .25 .79 .14 .13 4.7 .40 18.53

SCAD .19 .75 .24 .08 5.1 .27 18.87

FR − .20 .75 .84 .00 24.0 .58 41.35

LASSO .17 .73 .29 .08 5.38 .30 41.50

SCAD .13 .70 .33 .05 5.44 .22 41.77

LASSO − .78 .95 .79 .00 22.5 .34 .10

LASSO .28 .80 .13 .15 4.7 .40 .27

SCAD .17 .75 .23 .08 5.0 .29 .82

SMLE − .60 .90 .81 .00 24.0 .43 .95

LASSO .27 .80 .14 .14 4.7 .38 1.12

SCAD .14 .73 .24 .06 5.0 .24 1.58

S3 SIS − .00 .39 .93 .00 21.0 .69 .69

LASSO .00 .30 .88 .00 9.8 .85 .87

SCAD .00 .31 .87 .00 9.8 .81 .89

ISIS − .65 .82 .84 .00 21.0 .52 4.49

LASSO .15 .54 .77 .00 9.8 .81 4.66

SCAD .58 .72 .66 .01 9.1 .40 5.02

FR − .85 .87 .83 .00 21.0 .54 6.07

LASSO .72 .83 .62 .00 9.2 .63 6.22

SCAD .84 .86 .62 .00 9.4 .23 6.86

LASSO − .25 .66 .87 .00 20.0 .52 .01

LASSO .02 .38 .84 .00 9.8 .85 .18

SCAD .24 .51 .73 .02 9.1 .62 .21

SMLE − .92 .97 .81 .00 21.0 .43 .25

LASSO .48 .81 .64 .01 9.5 .76 .41

SCAD .76 .90 .59 .01 9.1 .23 .72
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