
Supplementary Material

A Sample splitting

Our procedure described in Sections 3.2 and 3.3 consists of two parts, the calibration of a

factor model (i.e. estimating B in equation (1)) and multiple inference. The construction

of the test statistics, or equivalently, the P -values, relies on a “fine” estimate of f̄ based on

the linear model in (25). In practice, bj ’s are replaced by the fitted loadings b̂j ’s using the

methods in Section 3.2.

To avoid mathematical challenges caused by the reuse of the sample, we resort to the

simple idea of sample splitting (Hartigan, 1969; Cox, 1975): half the data are used for

calibrating a factor model and the other half are used for multiple inference. We refer to

Rinaldo et al. (2016) for a modern look at inference based on sample splitting. Specifically,

the steps are summarized below.

(1) Split the data X = {X1, . . . ,Xn} into two halves X1 and X2. For simplicity, we

assume that the data are divided into two groups of equal size m = n/2.

(2) We use X1 to estimate b1, . . . , bp using either the U -type method (Section 3.2.1) or

the adaptive Huber method (Section 3.2.2). For simplicity, we focus on the latter and

denote the estimators by b̂1(X1), . . . , b̂p(X1).

(3) Proceed with the remain steps in the FarmTest procedure using the data in X2. De-

note the resulting test statistics by T1, . . . , Tp. For a given threshold z ≥ 0, the

corresponding FDP and its asymptotic expression are defined as

FDPsp(z) = V (z)/R(z) and AFDPsp(z) = 2pΦ(−z)/R(z),

respectively, where V (z) =
∑

j∈H0
I(|Tj | ≥ z), R(z) =

∑
1≤j≤p I(|Tj | ≥ z) and the

subscript “sp” stands for sample splitting.

The purpose of sample splitting employed in the above procedure is to facilitate the

theoretical analysis. The following result shows that the asymptotic FDP AFDPsp(z),

constructed via sample splitting, provides a consistent estimate of FDP(z).
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Theorem A.1. Suppose that Assumptions 1 (i)–(iv), Assumptions 2–4 hold. Let τj =

ajωn,p, τjj = ajjωn,p with aj ≥ σ
1/2
jj , ajj ≥ var(X2

j )1/2 for j = 1, . . . , p, and let γ =

γ0{p/ log(np)}1/2 with γ0 ≥ σε. Then, for any z ≥ 0, |AFDPsp(z) − FDPsp(z)| = oP(1) as

n, p→∞.

B Derivation of (6)

For any t and aj ≥ σ
1/2
jj , Lemma C.3 in Section C.1 shows that, conditionally on fi’s, the

rescaled robust estimator
√
n µ̂j with τj = aj(n/t)

1/2 satisfies

√
n (µ̂j − µj − bT

j f̄) =

{
1√
n

n∑
i=1

`′τj (b
T
j fi + εij)−

√
n bT

j f̄

}
+R1j , (B.1)

where the remainder R1j satisfies P(|R1j | . ajn
−1/2t) ≥ 1 − 3e−t. The stochastic term

n−1/2
∑n

i=1 `
′
τj (b

T
j fi + εij)−

√
n bT

j f̄ in (6) can be decomposed as

1√
n

n∑
i=1

`′τj (b
T
j fi + εij)−

√
n bT

j f̄ =
1√
n

n∑
i=1

{`′τj (b
T
j fi + εij)− Efi`

′
τj (b

T
j fi + εij)}︸ ︷︷ ︸

Sj

+
1√
n

n∑
i=1

{Efi`
′
τj (b

T
j fi + εij)− bT

j fi}︸ ︷︷ ︸
R2j

, (B.2)

where f̄ = n−1
∑n

i=1 fi and Efi(·) = E(·|fi) denotes the conditional expectation given fi.

Under the finite fourth moment condition υj := (Eε4
j )

1/4 < ∞, it follows from Lemma C.4

that as long as n ≥ 4a−2
j max1≤i≤n(bT

j fi)
2t,

|R2j | ≤ 8a−3
j υ4

j n
−1t3/2. (B.3)

Given {fi}ni=1, Sj in (B.2) is a sum of (conditionally) independent random variables with

(conditional) mean zero. In addition, we note from (C.4) in Lemma C.4 that the (condi-

tional) variance of `′τj (b
T
j fi + εij) given fi satisfies |varfi{`′τj (b

T
j fi + εij)} − σε,jj | . n−1t.

Therefore, by the central limit theorem, the conditional distribution of Sj given {fi}ni=1

is asymptotically normal with mean zero and variance σε,jj as long as t = t(n, p) = o(n).
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This, together with (B.3) implies that, conditioning on {fi}ni=1, the distribution of
√
n µ̂j

is close to a normal distribution with mean
√
n (µj + bT

j f̄) and variance σε,jj . Under the

identifiability condition (2), σε,jj = σjj − ‖bj‖22 for j = 1, . . . , p. We complete the proof.

C Proofs of main results

In this section, we present the proofs for Theorems 1–5 and Theorem A.1, starting with

some preliminary results whose proofs can be found in Section D. Recall that

wn,p =

√
n

log(np)
,

which will be frequently used in the sequel. Also, we use c1, c2, . . . and C1, C2, . . . to denote

constants that are independent of (n, p), which may take different values at each occurrence.

C.1 Preliminaries

For each 1 ≤ j ≤ p, define the zero-mean error variable ξj = Xj − µj and let µj,τ =

argminθ∈R E`τ (Xj−θ) be the approximate mean, where `τ (·) is the Huber loss given in (5).

Throughout, we use ψτ to denote the derivative of `τ , that is,

ψτ (u) = `′τ (u) = min(|u|, τ) sign(u), u ∈ R.

Lemma C.1 provides an upper bound on the approximation bias |µj − µj,τ |, whose proof is

given in Section D.3.

Lemma C.1. Let 1 ≤ j ≤ p and assume that υκ,j = E(|ξj |κ) < ∞ for some κ ≥ 2. Then,

as long as τ > σ
1/2
jj , we have

|µj,τ − µj | ≤ (1− σjjτ−2)−1υκ,jτ
1−κ. (C.1)

The following concentration inequality is from Theorem 5 in Fan et al. (2017), showing

that µ̂j with a properly chosen robustification parameter τ exhibits sub-Gaussian tails when

the underlying distribution has heavy tails with only finite second moment.
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Lemma C.2. For every 1 ≤ j ≤ p and t > 0, the estimator µ̂j in (5) with τ = a(n/t)1/2

for a ≥ σ1/2
jj satisfies P{|µ̂j − µj | ≥ 4a(t/n)1/2} ≤ 2e−t as long as n ≥ 8t.

The next result provides a nonasymptotic Bahadur representation for µ̂j . In particular,

we show that when the second moment is finite, the remainder of the Bahadur represen-

tation for µ̂j exhibits sub-exponential tails. The proof of Lemmas C.3–C.6 can be found

respectively in Sections D.4–D.7.

Lemma C.3. For every 1 ≤ j ≤ p and for any t ≥ 1, the estimator µ̂j in (5) with

τ = a(n/t)1/2 and a ≥ σ1/2
jj satisfies that as long as n ≥ 8t,

∣∣∣∣√n (µ̂j − µj)−
1√
n

n∑
i=1

ψτ (ξij)

∣∣∣∣ ≤ C at√
n

(C.2)

with probability greater than 1 − 3e−t, where ξij = Xij − µj and C > 0 is an absolute

constant.

Under factor model (1), note that ξj = bT
j f + εj for every j. The following conclusion

reveals that the differences between the first two (conditional) moments of ξj and ψτ (ξj)

given f vanish faster if higher moments of εj exist.

Lemma C.4. Assume that E(|εj |κ) <∞ for some 1 ≤ j ≤ p and κ ≥ 2.

(1) On the event Gj := {|bT
j f | < τ},

|Efψτ (ξj)− bT
j f | ≤ min

{
σε,jj

τ − |bT
j f |

,
E|εj |κ

(τ − |bT
j f |)κ−1

}
(C.3)

almost surely. In addition, if κ > 2, we have

σε,jj −
E(|εj |κ)

(τ − |bT
j f |)κ−2

{
2

κ− 2
+

E(|εj |κ)

(τ − |bT
j f |)κ

}
≤ varf{ψτ (ξj)} ≤ σε,jj (C.4)

almost surely on Gj .

(2) Assume that υjk := E(|εj |κ) ∨ E(|εk|κ) <∞ for some 1 ≤ j 6= k ≤ p and κ > 2. Then

|covf (ψτ (ξj), ψτ (ξk))− cov(εj , εk)| ≤ C max(υjkτ
2−κ, υ2

jkτ
2−2κ) (C.5)
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almost surely on Gjk := {|bT
j f | ∨ |bT

k f | ≤ τ/2}, where C > 0 is an absolute constant.

Lemma C.5. Suppose that Assumption 1 holds. Then, for any t > 0,

P{‖
√
nf̄‖2 > C1Af (K + t)1/2} ≤ e−t, (C.6)

P
{

max
1≤i≤n

‖fi‖2 > C1Af (K + log n+ t)1/2

}
≤ e−t, (C.7)

and P[‖Σ̂f − IK‖2 > C2 max{A2
fn
−1/2(K + t)1/2, A4

fn
−1(K + t)}] ≤ 2e−t, (C.8)

where f̄ = n−1
∑n

i=1 fi, Σ̂f = n−1
∑n

i=1 fif
T
i and C1, C2 > 0 are absolute constants.

The following lemma provides an `∞-error bound for estimating the eigenvectors v`’s of

BTB. The proof is based on an `∞ eigenvector perturbation bound developed in Fan et al.

(2018) and is given in Appendix D.

Lemma C.6. Suppose Assumption 2 holds. Then we have

max
1≤`≤K

|λ̃` − λ`| ≤ p‖Σ̂H −Σ‖max + ‖Σε‖ (C.9)

and max
1≤`≤K

‖v̂` − v`‖∞ ≤ C(p−1/2‖Σ̂H −Σ‖max + p−1‖Σε‖), (C.10)

where C > 0 is a constant independent of (n, p).

C.2 Proof of Theorem 1

To prove (15) and (16), we will derive the following stronger results that

p−1
0 V (z) = 2Φ(−z) +OP{p−κ1/2 + w−1/2

n,p + n−1/2 log(np)} (C.11)

and p−1R(z) =
1

p

p∑
j=1

{
Φ

(
− z +

√
nµj√
σε,jj

)
+ Φ

(
− z −

√
nµj√
σε,jj

)}
+OP{p−κ1/2 + w−1/2

n,p + n−1/2 log(np)} (C.12)

uniformly over z ≥ 0 as n, p→∞, where wn,p =
√
n/ log(np).

For 1 ≤ j ≤ p and t ≥ 1, set τj = aj
√
n/t with aj ≥ σ

1/2
jj . By Lemma C.3, for every

5



j ∈ H0 so that µj = 0,

|T ◦j − σ
−1/2
ε,jj (Sj +R2j)| ≤ c1

ajt√
σε,jjn

(C.13)

with probability greater than 1− 3e−t as long as n ≥ 8t, where

Sj =
1√
n

n∑
i=1

Sij with Sij := ψτj (b
T
j fi + εij)− Efiψτj (b

T
j fi + εij), (C.14)

R2j = n−1/2
∑n

i=1{Efiψτj (bT
j fi + εij)− bT

j fi}. For j = 1, . . . , p, denote by E1j(t) the event

that (C.13) holds. Define E1(t) =
⋂p
j=1 E1j(t), on which it holds

∑
j∈H0

I

(
|T0j | ≥ z +

c1ajt√
σε,jjn

)
≤ V (z) ≤

∑
j∈H0

I

(
|T0j | ≥ z −

c1ajt√
σε,jjn

)
, (C.15)

where T0j := σ
−1/2
ε,jj (Sj +R2j). Next, let E2(t) denote the event on which the following hold:

‖
√
nf̄‖2 ≤ C1Af (K + t)1/2, max

1≤i≤n
‖fi‖2 ≤ C1Af (K + log n+ t)1/2,

and ‖Σ̂f − IK‖2 ≤ C2 max{A2
fn
−1/2(K + t)1/2, A4

fn
−1(K + t)}.

From Lemmas C.3, C.5 and the union bound, it follows that

P{E1(t)c} ≤ pe−t and P{E2(t)c} ≤ 4e−t.

With the above preparations, we are ready to prove (C.11). The proof of (C.12) follows

the same argument and therefore is omitted. Note that, on the event E2(t),

max
1≤i≤n

|bT
j fi| ≤ C1Af‖bj‖2(K + log n+ t)1/2 for all 1 ≤ j ≤ p.

By the definition of τj ’s,

max
1≤i≤n

|bT
j fi| ≤ τj/2 for all j = 1, . . . , p, (C.16)

as long as n ≥ 4(C1Af )2(K + log n+ t)t. This, together with Lemma C.5, implies |R2j | ≤

6



8a−3
j υ4

j n
−1t3/2 almost surely on E2(t) for all sufficiently large n. Moreover, taking (C.15)

into account we obtain that, almost surely on the event E1(t) ∩ E2(t),

∑
j∈H0

I(|σ−1/2
ε,jj Sj | ≥ z + c2n

−1/2t) ≤ V (z) ≤
∑
j∈H0

I(|σ−1/2
ε,jj Sj | ≥ z − c2n

−1/2t) (C.17)

as long as n & (K + t)t. For x ∈ R, define

Ṽ+(x) =
∑
j∈H0

I(σ
−1/2
ε,jj Sj ≥ x) and Ṽ−(x) =

∑
j∈H0

I(σ
−1/2
ε,jj Sj ≤ −x),

so that (C.17) can be written as

p−1
0 {Ṽ+(z + c2n

−1/2t) + Ṽ−(z + c2n
−1/2t)}

≤ p−1
0 V (z) ≤ p−1

0 {Ṽ+(z − c2n
−1/2t) + Ṽ−(z − c2n

−1/2t)}. (C.18)

Therefore, to prove (C.11) it suffices to focus on Ṽ+ and Ṽ−.

Observe that, conditional on Fn := {f1, . . . ,fn}, I(σ
−1/2
ε,11 S1 ≥ z), . . . , I(σ

−1/2
ε,pp Sp ≥ z)

are weakly correlated random variables. Define

Yj = I(σ
−1/2
ε,jj Sj ≥ z) and Pj = P(σ

−1/2
ε,jj Sj ≥ z|Fn)

for j = 1, . . . , p, and note that

var

(
1

p0

∑
j∈H0

Yj

∣∣∣∣Fn) =
1

p2
0

∑
j∈H0

var(Yj |Fn) +
1

p2
0

∑
j,k∈H0:j 6=k

cov(Yj , Yk|Fn)

≤ 1

4p0
+

1

p2
0

∑
j,k∈H0:j 6=k

{E(YjYk|Fn)− PjPk} (C.19)

almost surely. In the following, we will study Pj and E(YjYk|Fn) separately, starting with

the former. Conditional on Fn, Sj is a sum of independent zero-mean random variables

with conditional variance s2
j := var(Sj |Fn) = n−1

∑n
i=1 s

2
ij where s2

ij := var(Sij |Fn). Let

G ∼ N (0, 1) be a standard normal random variable independent of the data. By the

7



Berry-Esseen inequality,

sup
x∈R
|P(σ

−1/2
ε,jj Sj ≤ x|Fn)− P(sjσ

−1/2
ε,jj G ≤ x|Fn)|

.
1

(nsj)3/2

n∑
i=1

Efi |ψτj (b
T
j fi + εij)|3 .

1

(nsj)3/2

n∑
i=1

(|bT
j fi|3 + E|εij |3) (C.20)

almost surely, where conditional on Fn, sjσ
−1/2
ε,jj G ∼ N (0, s2

jσ
−1
ε,jj). Since max1≤i≤n |bT

j fi| ≤

τj/2 for all 1 ≤ j ≤ p on E2(t), applying Lemma C.4 with κ = 4 yields

σε,jj − 4a−2
j υ4

j (1 + 16a−4
j υ4

j n
−2t2)n−1t ≤ s2

j ≤ σε,jj (C.21)

almost surely on the event E2(t). Using (C.21) and Lemma A.7 in the supplement of

Spokoiny and Zhilova (2015), we get

sup
x∈R
|P(sjσ

−1/2
ε,jj G ≤ x|Fn)− Φ(x)| . a−2

j υ4
j n
−1t (C.22)

almost surely on E2(t) as long as n & (K + t)t. Putting (C.20) and (C.22) together we

conclude that, almost surely on E2(t),

max
1≤j≤p

|Pj − Φ(−z)| . n−1/2(K + log n+ t)1/2 (C.23)

uniformly for all z ≥ 0 as long as n & (K + t)t.

Next we consider the joint probability E(YjYk|Fn) = P(σ
−1/2
ε,jj Sj ≥ z, σ

−1/2
ε,kk Sk ≥ z|Fn)

for a fixed pair (j, k) satisfying 1 ≤ j 6= k ≤ p. Define bivariate random vectors ξi =

(s−1
j Sij , s

−1
k Sik)

T for i = 1, . . . , n. Observe that ξ1, . . . , ξn are conditionally indepen-

dent random vectors given Fn. Denote by A = (auv)1≤u,v≤2 the covariance matrix of

n−1/2
∑n

i=1 ξi = (s−1
j Sj , s

−1
k Sk)

T given Fn such that

a11 = a22 = 1 and a12 = a21 =
1

nsjsk

n∑
i=1

covfi(Sij , Sik).

By Lemma C.4 and (C.21), we have |a12 − rε,jk| . n−1t almost surely on E2(t). Therefore,

the matrix A is positive definite almost surely on E2(t) whenever n & t. Let G = (G1, G2)T
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be a Gaussian random vector with E(G) = 0 and cov(G) = A. Then, applying Theorem 1.1

in Bentkus (2005), a multivariate Berry-Esseen bound, to n−1/2
∑n

i=1 ξi gives

sup
x,y∈R

|P(s−1
j Sj ≥ x, s−1

k Sk ≥ y|Fn)− P(G1 ≥ x,G2 ≥ y)|

.
1

n3/2

n∑
i=1

E(‖A−1/2ξi‖32) .
1√
n

+
1

n3/2

n∑
i=1

(|bT
j fi|3 + |bT

k fi|3)

almost surely on E2(t). Taking x = s−1
j σ

1/2
ε,jj z and y = s−1

k σ
1/2
ε,kk z implies

|E(YjYk|Fn)− P(G1 ≥ s−1
j σ

1/2
ε,jj z,G2 ≥ s−1

k σ
1/2
ε,kk z|Fn)|

.
1√
n

+
1

n3/2

n∑
i=1

(|bT
j fi|3 + |bT

k fi|3). (C.24)

For the bivariate Gaussian random vector (G1, G2)T with a12 = cov(G1, G2), it follows from

Corollary 2.1 in Li and Shao (2002) that, for any x, y ∈ R,

|P(G1 ≥ x,G2 ≥ y)− {1− Φ(x)}{1− Φ(y)}| ≤ |a12|
4

exp

{
− x2 + y2

2(1 + |a12|)

}
≤ |a12|

4
.

This, together with the Gaussian comparison inequality (C.22) gives

|P(G1 ≥ s−1
j σ

1/2
ε,jj z,G2 ≥ s−1

k σ
1/2
ε,kk z|Fn)− Φ(−z)2| . |rε,jk|+ n−1t (C.25)

almost surely on E2(t) as long as n & (K + t)t.

Consequently, it follows from (C.19), (C.23), (C.24), (C.25) and Assumption 1 that

E[{p−1
0 Ṽ+(z)− Φ(−z)}2|Fn] . p−κ1 + n−1/2(K + log n+ t)1/2 (C.26)

almost surely on E2(t) as long as n & (K + t)t. A similar bound can be obtained for

E[{p−1
0 Ṽ−(z)−Φ(−z)}2|Fn]. Recall that P{E1(t)∩E2(t)} ≥ 1− (p+ 4)e−t whenever n ≥ 8t.

Finally, taking t = log(np) in (C.18) and (C.26) proves (C.11).
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C.3 Proof of Proposition 1

To begin with, observe that

∣∣∣∣T̃j −√ n

σ̃ε,jj
(µ̂j − bT

j f̄ )

∣∣∣∣ =

√
n

σ̃ε,jj
|(b̃j − bj)Tf̄ | ≤

√
n

σ̃ε,jj
‖f̄‖2‖b̃j − bj‖2,∣∣∣∣√ n

σ̃ε,jj
(µ̂j − bT

j f̄ )− T ◦j
∣∣∣∣ ≤ ∣∣∣∣ 1√

σ̃ε,jj
− 1
√
σε,jj

∣∣∣∣(|√n µ̂j |+ ‖bj‖2‖√nf̄‖2).

By Lemma C.5, ‖
√
nf̄‖2 . (K+ log n)1/2 with probability greater than 1−n−1. Moreover,

it follows from Lemma C.2 that max1≤j≤p |µ̂j − µj | . {log(np)}1/2n−1/2 with probability

at least 1− 2n−1. Putting the above calculations together, we conclude that

max
j∈H0

|T̃j − T ◦j | .
log(np)√

n
+ (K + log n)1/2 max

1≤j≤p
(‖b̃j − bj‖2 + |σ̃jj − σjj |)

with probability at least 1−3n−1. Combining this with the proof of Theorem 1 and condition

(17) implies p−1
0 Ṽ (z) = 2Φ(−z) + oP(1). Similarly, it can be proved that (C.12) holds with

R(z) replaced by R̃(z). The conclusion follows immediately.

C.4 Proof of Theorem 2

We first note that the Σ̂ = Σ̂U defined is a U -statistic of order two. For simplicity, let C

denote the set of
(
n
2

)
distinct pairs (i1, i2) satisfying 1 ≤ i1 < i2 ≤ n. Let h(Xi,Xj) =

2−1(Xi −Xj)(Xi −Xj)
T and Yij = ψτ (h(Xi,Xj)) = τψ1(τ−1h(Xi,Xj)), such that

Σ̂ =
1(
n
2

) ∑
(i,j)∈C

Yij .

We now rewrite the U -statistic Σ̂ as an average of dependent averages of identically and

independently distributed random matrices. Define k = [n/2], the greatest integer ≤ n/2

and define

W(1,...,n) = k−1(Y12 + Y23 + . . .+ Y2k−1,2k).

Let P denote the class of all n! permutations of (1, . . . , n) and π = (i1, . . . , in) : {1, . . . , n} 7→
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{1, . . . , n} be a permutation, i.e. π(k) = ik for k = 1, . . . , n. Then it can be shown that

Σ̂ =
1

n!

∑
π∈P

Wπ.

Using the convexity of maximum eigenvalue function λmax(·) along with the convexity of

the exponential function, we obtain

exp{λmax(Σ̂−Σ)/τ} ≤ 1

n!

∑
π∈P

exp{λmax(Wπ −Σ)/τ}.

Combining this with Chebyshev’s inequality delivers

P{λmax(Σ̂−Σ) ≥ t/
√
n}

= P
[

exp{λmax(kΣ̂− kΣ)/τ} ≥ exp{kt/(τ
√
n )}

]
≤ e−kt/(τ

√
n) 1

n!

∑
π∈P

E exp{λmax(kWπ − kΣ)/τ}

≤ e−kt/(τ
√
n) 1

n!

∑
π∈P

E tr exp{(kWπ − kΣ)/τ},

where we use the property eλmax(A) ≤ tr eA in the last inequality. For a given permutation

π = (i1, . . . , in) ∈ P, we write Yπj = Yi2j−1i2j and Hπj = h(Xi2j−1 ,Xi2j ) with EHπj = Σ.

We then rewrite Wπ as Wπ = k−1(Yπ1 + . . .+ Yπk), where Yπj ’s are mutually independent.

Before proceeding, we introduce the following lemma whose proof is based on elementary

calculations.

Lemma C.7. For any τ > 0 and x ∈ R, we have ψτ (x) = τψ1(x/τ) and

− log(1− x+ x2) ≤ ψ1(x) ≤ log(1 + x+ x2) for all x ∈ R.

From Lemma C.7 we see that the matrix Yπj can be bounded as

− log(Ip −Hπj/τ +H2
πj/τ

2) ≤ Yπj/τ ≤ log(Ip +Hπj/τ +H2
πj/τ

2).
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Using this property we can bound E exp{tr(kWπ − kΣ)/τ} by

E[k−1]Ek tr exp

{
k−1∑
j=1

Yπj − (k/τ)Σ + Yπk

}

≤ E[k−1]Ek tr exp

{
k−1∑
j=1

Yπj − (k/τ)Σ + log(Ip +Hπj/τ +H2
πj/τ

2)

}
(C.27)

To further bound the right-hand side of (C.27), we follow a similar argument as in Minsker

(2016). The following lemma, which is taken from Lieb (2002), is commonly referred to as

the Lieb’s concavity theorem.

Lemma C.8. For any symmetric matrix H ∈ Rd×d, the function

f(A) = tr exp(H + logA), A ∈ Rd×d

is concave over the set of all positive definite matrices.

Applying Lemma C.8 repeatedly along with Jensen’s inequality, we obtain

E{tr exp(kWπ − kΣ)/τ} ≤ E tr exp

{
k−1∑
j=1

Yπj − (k/τ)Σ + log(Ip + EHπk/τ + EH2
πk/τ

2)

}

≤ tr exp

{
k∑
j=1

log(Ip + EHπj/τ + EH2
πj/τ

2)− (k/τ)Σ

}

≤ tr exp

(
k∑
j=1

EH2
πk/τ

2

)
,

where we use the inequality log(1+x) ≤ x for x > −1 in the last step. The following lemma

gives an explicit form for v2 := ‖EH2
πk‖2.

Lemma C.9. We have

‖Eh2(X1,X2)‖2 =
1

2

∥∥∥E{(X − µ)(X − µ)T}2 + tr(Σ)Σ + 2Σ2
∥∥∥.

Proof of Lemma C.9. Write X = X1 and Y = X2. Without loss of generality, assume that

12



E(X)=E(Y )=0. Let H1 = XXT, H2 = Y Y T, H12 = XY T and H21 = Y XT. Then

{(X − Y )(X − Y )T}2 = (H1 +H2 −H12 −H21)2

= H2
1 +H2

2 +H2
12 +H2

21 +H1H2 +H2H1 +H12H21 +H21H12

−H1H12 −H12H1 −H1H21 −H21H1 −H2H12 −H12H2

−H2H21 −H21H2,

which, by symmetry, implies that

E{(X − Y )(X − Y )T}2 = 2EH2
1 + 2EH2

12 + 2EH1H2 + 2EH12H21.

In the following we calculate the four expectations on the right-hand side of the above

equality separately. For the first term, note that

EH2
1 = E(XXTXXT).

Let A = (Ajk) = H2
12 and we have

EAjk = E
( p∑
`=1

X`Y`XjYk

)
= E

(
Yk

p∑
`=1

XjX`Y`

)
=

p∑
`=1

σj`σ`k,

where σjk is the (j, k)-th entry of Σ. Therefore, we have EH2
12 = Σ2. For EH1H2, using

independence, we can show that EH1H2 = Σ2. For EH12H21, we have

EH12H21 = E(XY TY XT) = E{E(XY TY XT|Y )} = tr(Σ)Σ.

Putting the above calculations together completes the proof.
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For any u > 0, putting the above calculations together and letting τ ≥ 2v2√n/u yield

P{λmax(Σ̂−Σ) ≥ u/
√
n}

≤ e−ku/(
√
nτ) tr exp

( k∑
j=1

EH2
πk/τ

2

)
≤ p exp

(
− ku√

nτ
+
kv2

τ2

)

≤ p exp

(
− ku2

4nv2

)
≤ p exp

(
− u2

16v2

)
,

where we use the fact that k := [n/2] ≥ n/4 for n ≥ 2 in the last inequality. On the other

hand, it can be similarly shown that

P{λmin(Σ̂−Σ) ≤ −u/
√
n} ≤ p exp

(
− u2

16v2

)

Combining the above two inequalities and putting u = 4v
√
t complete the proof.

C.5 Proof of Theorem 3

First we bound max1≤j≤p ‖b̂j − bj‖2. For any t > 0, it follows from Theorem 2 that with

probability greater than 1 − 2pe−t, ‖Σ̂U −Σ‖ ≤ 4v(t/n)1/2, where v is as in (19). Define

b̃j = (λ
1/2
1 v̂1j , . . . , λ

1/2
K v̂Kj)

T ∈ RK , such that ‖b̂j − bj‖2 ≤ ‖b̂j − b̃j‖2 + ‖b̃j − bj‖2. By

Assumption 2, (20) and (21), we have

|λ̂1/2
` − λ1/2

` | = |λ̂` − λ`|/(λ̂
1/2
` + λ

1/2
` ) . p−1/2(‖Σ̂U −Σ‖+ ‖Σε‖),

‖v`‖∞ = ‖b`‖∞/‖b`‖2 ≤ ‖B‖max/‖b`‖2 . p−1/2

and ‖v̂`‖∞ ≤ ‖v̂` − v`‖2 + ‖v`‖∞ . p−1‖Σ̂U −Σ‖+ p−1/2.

On the event {‖Σ̂U −Σ‖ ≤ 4v(t/n)1/2}, it follows that

|λ̂1/2
` − λ1/2

` | . v
√
t (np)−1/2 + p−1/2 and ‖v̂`‖∞ . p−1/2 (C.28)
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as long as n ≥ v2p−1t. Write v̂` = (v̂`1, . . . v̂`p)
T. It follows that, with probability at least

1− 2pe−t,

‖b̂j − b̃j‖2 =

{ K∑
`=1

(λ̂
1/2
` − λ1/2

` )2 v̂2
`j

}1/2

. p−1(v
√
t n−1/2 + 1)

for all 1 ≤ j ≤ p. Similarly,

‖b̃j − bj‖2 =

{ K∑
`=1

λ`(v̂`j − v`j)2

}1/2

≤ max
1≤`≤K

λ
1/2
` ·
√
K ‖v̂` − v`‖∞ . v

√
t (np)−1/2 + p−1/2.

By taking t = log(np), the previous two displays together imply (22).

Next we consider max1≤j≤p |σ̂ε,jj − σε,jj |. Note that with probability at least 1− 4pe−t,

max1≤j≤p |θ̂j − E(X2
j )| . (t/n)1/2 as long as n & t. Therefore, it suffices to focus on

‖b̂j‖22 − ‖bj‖22, which can be written as
∑K

`=1(λ̂` − λ`)v̂
2
`j +

∑K
`=1 λ`(v̂

2
`j − v2

`j). Under

Assumption 2, it follows from (20) and (21) that on the event {‖Σ̂U −Σ‖ ≤ 4v(t/n)1/2},

|‖b̂j‖22 − ‖bj‖22|

≤
K∑
`=1

|λ̂` − λ`|‖v̂`‖2∞ +

K∑
`=1

λ`(‖v̂`‖∞ + ‖v`‖∞)‖v̂` − v`‖∞

. v
√
t (np)−1/2 + p−1/2

as long as n ≥ v2p−1t, which proves (23) by taking t = log(np).

C.6 Proof of Theorem 4

For µ̂j ’s and θ̂jk’s with τj = aj(n/t1)1/2 and τjk = ajk(n/t2)1/2, it follows from Lemma C.2

and the union bound that as long as n ≥ 8 max(t1, t2),

max
1≤j≤p

|µ̂j − µj | ≤ 4 max
1≤j≤p

aj

√
t1
n

and max
1≤j≤k≤p

|θ̂jk − E(XjXk)| ≤ 4 max
1≤j≤k≤p

ajk

√
t2
n

with probability at least 1 − 2pe−t1 − (p2 + p)e−t2 . In particular, taking t1 = log(np) and

t2 = log(np2) implies that as long as n & log(np), ‖Σ̂H − Σ‖max . w−1
n,p with probability

greater than 1− 4n−1.
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The rest of the proof is similar to that of Theorem 3, simply with the following modi-

fications. Under Assumption 2, it follows from (C.9) and (C.10) in Lemma C.6 that, with

probability at least 1− 4n−1,

|λ̃1/2
` − λ1/2

` | = |λ̃` − λ`|/(λ̃
1/2
` + λ

1/2
` ) .

√
p (w−1

n,p + p−1),

‖v`‖∞ = ‖b`‖∞/‖b`‖2 ≤ ‖B‖max/‖b`‖2 . p−1/2,

‖ṽ` − v`‖∞ . p−1/2w−1
n,p + p−1 and ‖ṽ`‖∞ . p−1/2.

Plugging the above bounds into the proof of Theorem 3 proves the conclusions.

C.7 Proof of Theorem 5

The key of the proof is to show that Tj(B) provides a good approximation of T ◦j uniformly

over 1 ≤ j ≤ p. To begin with, note that the estimator θ̂j with τjj = ajj(n/t)
1/2 for

ajj ≥ var(X2
j )1/2 satisfies P{|θ̂j − θj | ≥ 4ajj(t/n)1/2} ≤ 2e−t, where θj = E(X2

j ). Together

with the union bound, this yields that with probability greater than 1− 2pe−t,

max
1≤j≤p

|θ̂j − θj | ≤ 4 max
1≤j≤p

a
1/2
jj

√
t

n
(C.29)

as long as n ≥ 8t. Next, observe that

∣∣∣∣Tj(B)−
√

n

σ̂ε,jj
(µ̂j − bT

j f̄ )

∣∣∣∣ =

√
n

σ̂ε,jj
|bT
j {f̄ − f̂(B)}| ≤

√
n

σ̂ε,jj
‖bj‖2‖f̂(B)− f̄‖2

(C.30)

and

∣∣∣∣√ n

σ̂ε,jj
(µ̂j − bT

j f̄ )− T ◦j
∣∣∣∣ ≤ ∣∣∣∣ 1√

σ̂ε,jj
− 1
√
σε,jj

∣∣∣∣(|√n µ̂j |+ ‖bj‖2‖√nf̄‖2). (C.31)

Applying Proposition 3 with t = log n shows that, with probability at least 1− C1n
−1,

‖f̂(B)− f̄‖2 . (K log n)1/2p−1/2. (C.32)
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Moreover, it follows from Lemma C.2, (C.6) and (C.29) that, with probability greater than

1− 4pe−t1 − e−t2 ,

max
1≤j≤p

|µ̂j − µj | .
√
t1
n
, max

1≤j≤p

∣∣∣∣ σ̂ε,jjσε,jj
− 1

∣∣∣∣ .
√
t1
n

and ‖f̄‖2 .

√
K + t2
n

.

Taking t1 = log(np) and t2 = log n, we deduce from (C.30)–(C.32) that, with probability

at least 1− C2n
−1,

max
j∈H0

|Tj(B)− T ◦j | . {K + log(np)}n−1/2 + (Kn log n)1/2p−1/2. (C.33)

Based on (C.33), the rest of the proof is almost identical to that of Theorem 1 and therefore

is omitted.

C.8 Proof of Theorem A.1

For convenience, we write b̂j = b̂j(X1) for j = 1, . . . , p, which are the estimated loading

vectors using the first half of the data. Let f̂(X2) be the estimator of f̄ obtained by solving

(26) using only the second half of the data and with bj ’s replaced by b̂j ’s.

We keep the notation used in Section 3.2.2, but with all the estimators constructed from

X1 instead of the whole data set. Recall that B̂ = (b̂1, . . . , b̂p)
T = (λ̃

1/2
1 v̂1, . . . , λ̃

1/2
K v̂K).

Following the proof of Theorem 4, we see that as long as n & log(np), the event Emax :=

{‖Σ̂H −Σ‖max . w−1
n,p} occurs with probability at least 1− 4n−1. On Emax, we have

max
1≤`≤K

|λ̃1/2
` − λ1/2

` | .
√
p (w−1

n,p + p−1) and max
1≤`≤K

‖v̂`‖∞ . p−1/2,

which, combined with the pervasiveness assumption λ` � p, implies max1≤`≤K λ̃
1/2
` .

√
p.

Moreover, write δj = b̂j − bj for 1 ≤ j ≤ p and note that

B̂TB̂−BTB =

p∑
j=1

(b̂j b̂
T
j − bjbT

j ) =

p∑
j=1

δjδ
T
j + 2

p∑
j=1

δjb
T
j .

It follows that ‖p−1(B̂TB̂ − BTB)‖ ≤ max1≤j≤p(‖δj‖22 + 2‖bj‖2‖δj‖2). Again, from the

proof of Theorem 4 we see that on the event Emax, ‖p−1(B̂TB̂ − BTB)‖ . w−1
n,p + p−1/2.
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Under Assumption 3, putting the above calculations together yields that with probability

greater than 1− 4n−1,

λmin(p−1B̂TB̂) ≥ cl
2

and ‖B̂‖max ≤ C1

as long as n & log(np). By the independence between b̂j ’s and X2, the conclusion of

Proposition 3 holds for f̂(X2).

Next, recall that

Tj =

√
n

σ̂ε,jj
{µ̂j − b̂T

j f̂(X2)},

where µ̂j ’s and σ̂ε,jj ’s are all constructed from X2. Note that

|
√
n{µ̂j − b̂T

j f̂(X2)} −
√
n{µ̂j − bT

j f̄}| ≤
√
n‖b̂j‖2‖f̂(X2)− f̄‖2 +

√
n‖f̄‖2‖b̂j − bj‖2.

This, together with (28), Theorem 4 and (C.6), implies that with probability at least 1 −

C2n
−1,

max
1≤j≤p

|
√
n{µ̂j − b̂T

j f̂(X2)} −
√
n{µ̂j − bT

j f̄}|

. (Kn log n)1/2p−1/2 + (K + log n)1/2(w−1
n,p + p−1/2).

Following the proof of Theorem 5, it can be shown that with probability at least 1−C3n
−1,

max
j∈H0

|Tj − T ◦j | . (Kn log n)1/2p−1/2 + {K + log(np)}n−1/2.

The rest of the proof is almost identical to that of Theorem 1 and therefore is omitted.

D Additional proofs

In this section, we prove Propositions 2 and 3 in the main text, and Lemmas C.1–C.6 in

Section C.
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D.1 Proof of Proposition 2

By Weyl’s inequality and the decomposition that Σ̂ = BBT + (Σ̂−Σ) + Σε, we have

max
1≤`≤K

|λ̂` − λ`| ≤ ‖Σ̂−Σ‖2 + ‖Σε‖2 and max
K+1≤`≤p

|λ̂`| ≤ ‖Σ̂−Σ‖2 + ‖Σε‖2,

where λ̂1, . . . , λ̂p are the eigenvalues of Σ̂ in a non-increasing order. Thus, (20) follows

immediately. Next, applying Corollary 1 in Yu et al. (2015) to the pair (Σ̂,BBT) gives

that, for every 1 ≤ ` ≤ K,

‖v̂` − v`‖2 ≤
23/2‖(Σ̂−Σ) + Σε‖2

min(λ`−1 − λ`, λ` − λ`+1)
,

where we put λ0 =∞ and λK+1 = 0. Under Assumption 2, this proves (21).

D.2 Proof of Proposition 3

To begin with, we introduce the following notation. Define the loss function Lγ(w) =

p−1
∑p

j=1 `γ(X̄j − bT
j w) for w ∈ RK , w∗ = f̄ and ŵ = argminw∈RK Lγ(w). Without loss

of generality, we assume ‖B‖max ≤ 1 for simplicity.

Define an intermediate estimator ŵη = w∗ + η(ŵ −w∗) such that ‖ŵη −w∗‖2 ≤ r for

some r > 0 to be specified below (D.7). We take η = 1 if ‖ŵ − w∗‖2 ≤ r; otherwise, we

choose η ∈ (0, 1) so that ‖ŵη −w∗‖2 = r. Then, it follows from Lemma A.1 in Sun et al.

(2017) that

〈∇Lγ(ŵη)−∇Lγ(w∗), ŵη −w∗〉 ≤ η〈∇Lγ(ŵ)−∇Lγ(w∗), ŵ −w∗〉, (D.1)

where ∇Lγ(ŵ) = 0 according to the Karush-Kuhn-Tucker condition. By the mean value

theorem for vector-valued functions, we have

∇Lγ(ŵη)−∇Lγ(w∗) =

∫ 1

0
∇2Lγ((1− t)w∗ + tŵη) dt (ŵη −w∗).
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If, there exists some constant amin > 0 such that

min
w∈RK :‖w−w∗‖2≤r

λmin(∇2Lγ(w)) ≥ amin, (D.2)

then it follows amin‖ŵη − w∗‖22 ≤ −η〈∇Lγ(w∗), ŵ − w∗〉 ≤ ‖∇Lγ(w∗)‖2‖ŵη − w∗‖2, or

equivalently,

amin‖ŵη −w∗‖2 ≤ ‖∇Lγ(w∗)‖2, (D.3)

where ∇Lγ(w∗) = −p−1
∑p

j=1 ψγ(µj + ε̄j)bj .

First we verify (D.2). Write S = p−1BTB and note that

∇2Lγ(w) =
1

p

p∑
j=1

bjb
T
j I(|X̄j − bT

j w| ≤ γ),

where X̄j − bT
j w = bT

j (w∗ −w) + µj + ε̄j . Then, for any u ∈ SK−1 and w ∈ RK satisfying

‖w −w∗‖2 ≤ r,

uT∇2Lγ(w)u

≥ uTSu− 1

p

p∑
j=1

(bT
j u)2I(|ε̄j + µj | > γ/2)− 1

p

p∑
j=1

(bT
j u)2I{|bT

j (w∗ −w)| > γ/2}

≥ uTSu− max
1≤j≤p

‖bj‖22
{

1

p

p∑
j=1

I(|ε̄j + µj | > γ/2) +
4

γ2
‖w −w∗‖22 uTSu

}
.

By Assumption 3, λmin(S) ≥ cl for some constant cl > 0 and max1≤j≤p ‖bj‖22 ≤ K. There-

fore, as long as γ > 2r
√
K we have

min
w∈RK :‖w−w∗‖2≤r

λmin(∇2Lγ(w)) ≥ (1− 4γ−2r2K)cl −
K

p

p∑
j=1

I(|ε̄j + µj | > γ/2), (D.4)

To bound the last term on the right-hand side of (D.4), it follows from Hoeffding’s inequality

that for any t > 0,

1

p

p∑
j=1

I(|ε̄j + µj | > γ/2) ≤ 1

p

p∑
j=1

P(|ε̄j + µj | > γ/2) +

√
t

2p
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with probability at least 1− e−t. This, together with (D.4) and the inequality

1

p

p∑
j=1

P(|ε̄j + µj | > γ/2) ≤ 4

γ2p

p∑
j=1

(µ2
j + Eε̄2

j ) = 4γ−2(p−1‖µ‖22 + n−1σ2
ε)

implies that, with probability greater than 1− e−t,

min
w∈RK :‖w−w∗‖2≤r

λmin(∇2Lγ(w)) ≥ 3

4
cl −K

√
t

2p
− 4K

γ2

(
‖µ‖22
p

+
σ2
ε

n

)
(D.5)

as long as γ ≥ 4r
√
K.

Next we bound ‖∇Lγ(w∗)‖2. For every 1 ≤ ` ≤ K, we write Ψ` = p−1
∑p

j=1 ψj` :=

p−1
∑p

j=1 γ
−1ψγ(µj+ε̄j)bj`, such that ‖∇Lγ(w∗)‖2 ≤

√
K ‖∇Lγ(w∗)‖∞ = γ

√
K max1≤`≤d |Ψ`|.

Recall that, for any u ∈ R, − log(1 − u + u2) ≤ γ−1ψγ(γu) ≤ log(1 + u + u2). After some

simple algebra, we obtain that

eψj` ≤ {1 + γ−1(µj + ε̄j) + γ−2(µj + ε̄j)
2}bj`I(bj`≥0)

+ {1− γ−1(µj + ε̄j) + γ−2(µj + ε̄j)
2}−bj`I(bj`<0)

≤ 1 + γ−1(µj + ε̄j)bj` + γ−2(µj + ε̄j)
2.

Taking expectation on both sides gives

E(eψj`) ≤ 1 + γ−1|µj |+ γ−2(µ2
j + n−1σε,jj).

Moreover, by independence and the inequality 1 + t ≤ et, we get

E(epΨ`) =

p∏
j=1

E(eψj`) ≤ exp

{
1

γ

p∑
j=1

|µj |+
1

γ2

p∑
j=1

(
µ2
j +

σε,jj
n

)}

≤ exp

(
‖µ‖1
γ

+
‖µ‖22
γ2

+
σ2
ε p

γ2n

)
.

For any t > 0, it follows from Markov’s inequality that

P(pΨj ≥ 2t) ≤ e−2tE(epΨ`) ≤ exp

{
‖µ‖1
γ

+
‖µ‖22
γ2

+
σ2
ε p

γ2n
− 2t

}
≤ exp(1− t)
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provided

γ ≥ max

{
‖µ‖1, σε

√
‖µ‖22/σ2

ε + p/n

t

}
. (D.6)

Under the constraint (D.6), it can be similarly shown that P(−pΨj ≥ 2t) ≤ e1−t. Putting

the above calculations together, we conclude that

P
{
‖∇Lγ(w∗)‖2 ≥

√
K

2γt

p

}
≤ P

{
‖∇Lγ(w∗)‖∞ ≥

2γt

p

}
≤

K∑
`=1

P(|pΨ`| ≥ 2t) ≤ 2eK exp(−t). (D.7)

With the above preparations, now we are ready to prove the final conclusion. It follows

from (D.5) that with probability greater than 1−e−t, (D.2) holds with amin = cl/4, provided

that γ ≥ 4
√
K max{r, c−1/2

l (‖µ‖22/p + σ2
ε/n)1/2} and p ≥ 8c−2

l K2t. Hence, combining

(D.3) and (D.7) with r = γ

4
√
K

yields that, with probability at least 1 − (1 + 2eK)e−t,

‖ŵη − w∗‖2 ≤ 8c−1
l

√
K p−1γt < r as long as p > 32c−1

l Kt. By the definition of ŵη, we

must have η = 1 and thus ŵ = ŵη.

D.3 Proof of Lemma C.1

Let 1 ≤ j ≤ p be fixed and define the function h(θ) = E{`τ (Xj − θ)}, θ ∈ R. By the

optimality of µj,τ and the mean value theorem, we have h′(µj,τ ) = 0 and

h′′(µ̃j,τ )(µj − µj,τ ) = h′(µj)− h′(µj,τ ) = h′(µj) = −E{ψτ (ξj)}, (D.8)

where µ̃j,τ = λµj + (1−λ)µj,τ for some 0 ≤ λ ≤ 1. Since E(ξj) = 0, we have −E{ψτ (ξj)} =

E{ξjI(|ξj | > τ)− τI(ξj > τ) + τI(ξj < −τ)}, which implies

|E{ψτ (ξj)}| ≤ τ1−κυκ,j . (D.9)

Next we consider h′′(µ̃j,τ ) = P(|Xj − µ̃j,τ | ≤ τ). Since h is a convex function that is

minimized at µj,τ , h(µ̃j,τ ) ≤ λh(µj) + (1− λ)h(µj,τ ) ≤ h(µj) ≤ σjj/2. On the other hand,

note that h(θ) ≥ E{(τ |Xj−θ|−τ2/2)1(|Xj−θ| > τ)} for all θ ∈ R. Combining these upper
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and lower bounds on h(µ̃j,τ ) with Markov’s inequality gives

τE{|Xj − µ̃j,τ |I(|Xj − µ̃j,τ | > τ)}

≤ 1

2
τ2P(|Xj − µ̃j,τ | > τ) +

1

2
σjj ≤

1

2
τ E{|Xj − µ̃j,τ |I(|Xj − µ̃j,τ | > τ)}+

1

2
σjj ,

which further implies that for every 0 ≤ λ ≤ 1,

P(|Xj − µ̃j,τ | > τ) ≤ τ−1E{|Xj − µ̃j,τ |1(|Xj − µ̃j,τ | > τ)} ≤ σjjτ−2.

Together with (D.8) and (D.9), this proves (C.1).

D.4 Proof of Lemma C.3

Throughout the proof, we let 1 ≤ j ≤ p, a ≥ σ
1/2
jj , t ≥ 1 be fixed and write τ = a(n/t)1/2

with n ≥ 8t. The dependence of τ on (a, n, t) will be assumed without displaying. First

we introduce the following notations. Define functions L(θ) = −
∑n

i=1 `τ (Xij − θ), ζ(θ) =

L(θ)−EL(θ) and w2(θ) = − d2

dθ2
EL(θ), such that µ̂j = argmaxθ∈R L(θ). Moreover, we write

w2
0 := w2(µj) = ατn with ατ = P(|Xj − µj | ≤ τ). (D.10)

For every r > 0, define the parameter set

Θ0(r) = {θ ∈ R : |w0(θ − µj)| ≤ r}. (D.11)

Then, it follows from Lemma C.2 that

P{µ̂j ∈ Θ0(r0)} ≥ 1− 2 exp(−t), (D.12)

where r0 = 4a(ατ t)
1/2. Based on this result, we only need to focus on the local neighborhood

Θ0(r0) of µj . The rest of the proof is based on Proposition 3.1 in Spokoiny (2013). To this

end, we need to check Conditions (L0) and (ED2) there.
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Condition (L0): Note that, for every θ ∈ Θ0(r),

|w−1
0 w2(θ)w−1

0 − 1| = |α−1
τ − 1− α−1

τ P(|Xj − θ| > τ)|

≤ α−1
τ max[1− ατ , {σjj + (θ − µj)2}τ−2].

By Chebyshev’s inequality, we have 1 ≥ ατ ≥ 1− σjjτ−2 ≥ 7/8. Therefore,

|w−1
0 w2(θ)w−1

0 − 1| ≤ α−1
τ {σjj + (ατn)−1r2}τ−2.

This verifies Condition (L0) by taking

δ(r) = α−1
τ σjjτ

−2 + α−2
τ τ−2n−1r2, r > 0.

Condition (ED2): Note that ζ ′′(θ) = −
∑n

i=1{1(|Xij − θ| ≤ τ) − P(|Xij − θ| ≤ τ)}. For

every λ ∈ R satisfying |λ| ≤ ατ
√
n, using the inequalities 1+u ≤ eu and eu ≤ 1+u+u2eu∨0/2

we deduce that

E exp{λ
√
nζ ′′(θ)/w2

0} =
n∏
i=1

E exp[−λw−2
0

√
n{I(|Xij − θ| ≤ τ)− P(|Xij − θ| ≤ τ)}]

≤
n∏
i=1

{1 + (1/2)λ2w−4
0 n exp(|λ|w−2

0

√
n)}

≤
n∏
i=1

{1 + (e/2)α−2
τ λ2n−1} ≤ exp{(e/2)α−2

τ λ2}.

This verifies Condition (ED2) by taking ω = n−1/2, ν0 = e1/2α−1
τ and g(r) = ατ

√
n, r > 0.

Now, using Proposition 3.1 in Spokoiny (2013) we obtain that as long as α2
τn ≥ 4 + 2t,

sup
θ∈Θ0(r)

|ατ
√
n(θ − µj) + n−1/2{L′(θ)− L′(µj)}|

≤ α1/2
τ δ(r)r + 6α−1/2

τ e1/2(2t+ 4)1/2n−1/2r

with probability greater than 1 − e−t. Under the conditions that n ≥ 8t and t ≥ 1, it is
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easy to see that α2
τn ≥ (7/8)2 · 8t ≥ 6t ≥ 4 + 2t. Moreover, observe that

sup
θ∈Θ0(r)

|(ατ − 1)
√
n(θ − µj)| ≤ α−1/2

τ σjjτ
−2r.

The last two displays, together with (D.12) and the fact that L′(µ̂j) = 0 prove (C.2) by

taking r = r0. The proof of Lemma C.3 is then complete.

D.5 Proof of Lemma C.4

Under model (1), we have ξj = bT
j f + εj , where E(εj) = 0 and εj and f are independent.

Therefore,

Efψτ (ξj)− bT
j f

= −Ef (εj + bT
j f − τ)I(εj > τ − bT

j f) + Ef (−εj − bT
j f − τ)I(εj < −τ − bT

j f).

Therefore, as long as τ > |bT
j f |, we have for any q ∈ [2, κ] that

|Efψτ (ξj)− bT
j f | ≤ Ef{|εj |I(|εj | > τ − |bT

j f |)} ≤ (τ − |bT
j f |)1−q E(|εj |q)

almost surely. This proves (C.3) by taking q to be 2 and κ.

For the conditional variance, observe that

Ef{ψτ (ξj)− bT
j f}2 = varf{ψτ (ξj)}+ {Efψτ (ξj)− bT

j f}2 (D.13)

and that ψτ (ξj)− bT
j f can be written as

εjI(|bT
j f + εj | ≤ τ) + (τ − bT

j f)I(bT
j f + εj > τ)− (τ + bT

j f)I(bT
j f + εj < −τ),

which further implies

{ψτ (ξj)− bT
j f}2

= ε2
jI(|bT

j f + εj | ≤ τ) + (τ − bT
j f)2I(bT

j f + εj > τ) + (τ + bT
j f)2I(bT

j f + εj < −τ).
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Taking conditional expectation on both sides yields

Ef{ψτ (ξj)− bT
j f}2

= E(ε2
j )− Ef{ε2

jI(|bT
j f + εj | > τ)}

+ (τ − bT
j f)2Pf (εj > τ − bT

j f) + (τ + bT
j f)2Pf (εj < −τ − bT

j f).

Using the equality u2 = 2
∫ u

0 t dt for u > 0 we deduce that as long as τ > |bT
j f |,

Efε2
jI(bT

j f + εj > τ)

= 2Ef
∫ ∞

0
I(εj > t)I(εj > τ − bT

j f)t dt

= 2Ef
∫ τ−bTj f

0
I(εj > τ − bT

j f)t dt+ 2Ef
∫ ∞
τ−bTj f

I(εj > t)t dt

= (τ − bT
j f)2Pf (εj > τ − bT

j f) + 2

∫ ∞
τ−bTj f

P(εj > t)t dt.

Analogously, it can be shown that

Ef{ε2
jI(bT

j f + εj < −τ)} = (τ + bT
j f)2Pf (εj < −τ − bT

j f) + 2

∫ ∞
τ+bTj f

P(−εj > t)t dt.

Together, the last three displays imply

0 ≥ Ef{ψτ (ξj)− bT
j f}2 − E(ε2

j )

≥ −2

∫ ∞
τ−|bTj f |

P(|εj | > t)t dt ≥ −2E(|εj |κ)

∫ ∞
τ−|bTj f |

t1−κ dt = − 2

κ− 2

E(|εj |κ)

(τ − |bT
j f |)κ−2

.

Combining this with (D.13) and (C.3) proves (C.4).

Finally, we study the covariance covf (ψτ (ξj), ψτ (ξk)) for j 6= k. By definition,

covf (ψτ (ξj), ψτ (ξk))

= Ef{ψτ (ξj)− bT
j f + bT

j f − Efψτ (ξj)}{ψτ (ξk)− bT
k f + bT

k f − Efψτ (ξk)}

= Ef{ψτ (ξj)− bT
j f}{ψτ (ξk)− bT

k f}︸ ︷︷ ︸
Π1

−{Efψτ (ξj)− bT
j f}{Efψτ (ξk)− bT

k f}︸ ︷︷ ︸
Π2

.

Recall that ψτ (ξj) − bT
j f = εjI(|ξj | ≤ τ) + (τ − bT

j f)I(ξj > τ) − (τ + bT
j f)I(ξj < −τ).
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Hence,

Π1 = EfεjεkI(|ξj | ≤ τ, |ξk| ≤ τ) + (τ − bT
k f)EfεjI(|ξj | ≤ τ, ξk > τ)

− (τ + bT
k f)EfεjI(|ξj | ≤ τ, ξk < −τ) + (τ − bT

j f)EfεkI(ξj > τ, |ξk| ≤ τ)

+ (τ − bT
j f)(τ − bT

k f)EfI(ξj > τ, ξk > τ)− (τ − bT
j f)(τ + bT

k f)EfI(ξj > τ, ξk < −τ)

− (τ + bT
j f)EfεkI(ξj < −τ, |ξk| ≤ τ)− (τ + bT

j f)(τ − bT
k f)EfI(ξj < −τ, ξk > τ)

+ (τ + bT
j f)(τ + bT

k f)EfI(ξj < −τ, ξk < −τ). (D.14)

Note that the first term on the right-hand side of (D.14) can be written as

EfεjεkI(|ξj | ≤ τ, |ξk| ≤ τ)

= cov(εj , εk)− EfεjεkI(|ξj | > τ)− EfεjεkI(|ξk| > τ) + EfεjεkI(|ξj | > τ, |ξk| > τ),

where

|EfεjεkI(|ξj | > τ)| ≤ |τ − bT
j f |2−κE(|εj |κ−1|εk|) ≤ 2κ−2τ2−κ(E|εj |κ)(κ−1)/κ(E|εk|κ)1/κ

and

|EfεjεkI(|ξj | > τ, |ξk| > τ)|

≤ |τ − bT
j f |2−κE(|εj |κ/2|εk|κ/2) ≤ 2κ−2τ2−κ(E|εj |κ)1/2(E|εk|κ)1/2

almost surely on Gjk. The previous three displays together imply

|EfεjεkI(|ξj | ≤ τ, |ξk| ≤ τ)− cov(εj , εk)| . τ2−κ

almost surely on Gjk. For the remaining terms on the right-hand side of (D.14), it can be
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similarly obtained that, almost surely on Gjk,

|EfεjI(|ξj | ≤ τ, ξk > τ)| ≤ |τ − bT
k f |1−κE(|εj ||εk|κ−1),

|EfεjI(|ξj | ≤ τ, ξk < −τ)| ≤ |τ + bT
k f |1−κE(|εj ||εk|κ−1),

and EfI(ξj > τ, ξk < −τ) ≤ |τ − bT
j f |−κ/2|τ + bT

k f |−κ/2E(|εjεk|κ/2).

Putting together the pieces, we get |Π1 − cov(εj , εk)| . υjkτ
2−κ almost surely on Gjk.

For Π2, it follows directly from (C.3) that |Π2| . υ2
jkτ

2−2κ almost surely on Gjk. These

bounds, combined with the fact that covf (ψτ (ξj), ψτ (ξk)) = Π1 −Π2, yield (C.5).

D.6 Proof of Lemma C.5

For any u ∈ RK , by independence we have

E exp(uTfi) ≤ exp(C1‖f‖2ψ2
‖u‖22) for all i = 1, . . . , n, (D.15)

and E exp(
√
nuTf̄) =

n∏
i=1

E exp(uTfi/
√
n) ≤ exp(C1‖f‖2ψ2

‖u‖22),

where C1 > 0 is an absolute constant. From Theorem 2.1 in Hsu et al. (2012) we see that,

for any t > 0,

P{‖
√
nf̄‖22 > 2C1‖f‖2ψ2

(K + 2
√
Kt+ 2t)} ≤ e−t

and P{‖fi‖22 > 2C1‖f‖2ψ2
(K + 2

√
Kt+ 2t)} ≤ e−t, i = 1, . . . , n.

This proves (C.6) and (C.7) by the union bound.

For Σ̂f , applying Theorem 5.39 in Vershynin (2012) yields that, with probability at

least 1− 2e−t, ‖Σ̂f − IK‖ ≤ max(δ, δ2), where δ = C2‖f‖2ψ2
n−1/2(K + t)1/2 and C2 > 0 is

an absolute constant. Conclusion (C.8) then follows immediately.
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D.7 Proof of Lemma C.6

For each 1 ≤ ` ≤ K, as λ` > 0 and by Weyl’s inequality, we have |λ̃`−λ`| ≤ |λ`(Σ̂H)−λ`| ≤

‖Σ̂H −Σ‖+ ‖Σε‖. Moreover, note that for any matrix E ∈ Rd1×d2 ,

‖E‖2 ≤ ‖E‖1 ∨ ‖E‖∞ ≤ (d1 ∨ d2)‖E‖max.

Putting the above calculations together proves (C.9).

Next, note that

Σ̂H = Σ̂H −Σ + BBT + Σε =
K∑
`=1

λ`v`v
T
` + Σ̂H −Σ + Σε.

Under Assumption 2, it follows from Theorem 3 and Proposition 3 in Fan et al. (2018) that

max
1≤`≤K

‖v̂` − v`‖∞ ≤
C

p3/2
(‖Σ̂H −Σ‖∞ + ‖Σε‖∞) ≤ C(p−1/2‖Σ̂H −Σ‖max + p−1‖Σε‖),

where we use the inequalities ‖Σ̂H −Σ‖∞ ≤ p‖Σ̂H −Σ‖max and ‖Σε‖∞ ≤ p1/2‖Σε‖ in the

last step and C > 0 is a constant independent of (n, p). This proves (C.10) .

E Additional numerical results on FDP/FDR control

In the end, we present some additional simulation results that complement Section 4.5.

Under Models 2 and 3 defined in Section 4.2, we compare the numerical performance of

the five tests regarding FDP/FDR control. We take α = 0.05, p = 500 and let n gradually

increase from 100 to 200. The empirical FDP is defined as the average false discovery

proportion based on 200 simulations. The simulation results are presented in Figures E.1

and E.2, respectively.
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Figure E.1: Empirical FDP versus sample size for the five tests at level α = 0.05. The data
are generated from Model 2 with p = 500 and sample size n ranging from 100 to 200 with
a step size of 10. The panels from top to bottom correspond to the four error distributions
in Section 4.2.
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Figure E.2: Empirical FDP versus sample size for the five tests at level α = 0.05. The data
are generated from Model 3 with p = 500 and sample size n ranging from 100 to 200 with
a step size of 10. The panels from top to bottom correspond to the four error distributions
in Section 4.2.
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